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ABSTRACT

Multitude of design freedoms of LDPC codes and practical de-
coders require fast simulations. FPGA emulation is attractive but
inaccessible due to its design complexity. We propose a library
and script based approach to automate the construction of FPGA
emulations. Code parameters and design parameters are pro-
grammed either during run time or by script in design time. We
demonstrate the architecture and design flow using the LDPC
codes for the latest wireless communication standards: each emu-
lation model was auto-constructed within one minute and the peak
emulation throughput reached 3.8 Gb/s on a BEE3 platform.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]: Signal
processing systems

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION

Low-density parity-check (LDPC) codes are capacity-approaching
codes that can perform very close to the Shannon limit when de-
coded using the iterative belief propagation algorithm [1], [2].
Over the last few years, we have seen LDPC codes entering a
range of important applications, from wireline [3], wireless [4]-[7],
satellite [8], optical communications [9] to magnetic storage [10],
to improve reliability and spectral efficiency. However, practical
performance of LDPC codes can be far from their theoretical limit
for two reasons: (1) a practical code’s block length is limited to
hundreds to thousands of bits to meet latency and complexity
constraints; (2) practical decoder implementations introduce non-
idealities, such as finite word length and fixed-point quantization
effects [11]. It is therefore critically important to evaluate code
constructions and practical decoder implementations for each new
application that is brought in consideration.

Software-based code and decoder simulation are common in prac-
tice. A typical simulation setup shown in Fig. 1 consists of an
encoder to produce codewords (or memory that stores known
codewords), a modulator that translates bits to real values for
transmission, a channel model that generates noise to corrupt the
transmitted values, and a decoder that runs the belief propagation
algorithm to recover the binary codeword from the real values
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Fig. 1. Code and decoder simulation setup.
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received. The decoded word is compared with the transmitted
codeword to determine if an error (frame error) has occurred and,
if it has, the number of bits that are wrong (bit error). Decoding
errors are measured in frame error rate (FER) and bit error rate
(BER). When the channel condition is poor, i.e., at low signal-to-
noise ratio (SNR), decoding errors occur frequently (high FER
and BER), shortening the simulation time. At high SNR, decoding
errors occur infrequently (low FER and BER) and the simulation
time is longer. Low FER and BER simulation is the bottleneck in
code and decoder simulations.

As new generations of applications push for a higher throughput
and reliability, the required FER and BER are also extended low-
er. For example, 10-gigabit Ethernet requires a BER of 107 or
better [3]. Simulating complex decoders for these systems to ex-
tremely low BER is a challenge, as it often takes weeks or months
to run a belief propagation decoder to reach a BER of 107'? on a
high-performance microprocessor. Recently, field-programmable
gate arrays (FPGA) have been proposed to accelerate the simula-
tions, showing three orders of magnitude speedup or more [11]-
[14]. Despite the impressive speedup, FPGA emulation has not
gained wide-spread use. Designing FPGA emulation is not as easy
as writing C code. It requires extensive effort in creating hardware
architecture and running FPGA synthesis. The barrier renders
emulation inaccessible to the vast coding theory and applications
community who would otherwise benefit the most in code con-
struction and system evaluation.

In this paper, we address the challenges in creating LDPC code
and decoder emulation by creating an automated design flow
based on a reconfigurable hardware decoder architecture. The
design flow is built upon a decoder library that consists of mod-
ules parameterized by code parameters and design parameters.
Given a new LDPC code, the design flow instantiates processing
elements and constructs a highly parallelized LDPC decoder. We
experimented with the LDPC codes for IEEE 802.16e (WiMAX)
[4], IEEE 802.11n (Wi-Fi) [5], IEEE 802.15c (wireless personal
area network) [6], and IEEE 802.11ad (high-throughput wireless)
[7], with block lengths ranging from 576 bits to 2,304 bits and
code rates from 1/2 to 5/6. In all cases, the design flow completed
decoder construction under one minute, followed by FPGA syn-
thesis that took two hours or less. The resulting decoders operated
at real-time or nearly real-time, delivering a throughput up to 3.8
Gb/s on a BEE3 platform, allowing us to reach a BER of 10" in
one hour and below 107'? in one day. We demonstrated the capa-
bility of the emulation platform in evaluating the functional per-
formance of various codes. With added network interface and
publically available design flow and library, the proposed FPGA
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Fig. 2. An LDPC code example: (a) H-matrix, and (b) address lookup
table for the first block column.

emulation design flow will contribute to both the theoretical and
practical coding research.

2. BACKGROUND

LDPC codes are linear block codes. Each LDPC code is defined
by a parity-check matrix H of size mxn, where n is the block
length and m is the number of parity checks. Almost all the latest
applications have adopted LDPC codes whose H matrix is con-
structed using m, rows and n, columns of zxz identity matrix, its
cyclic shifts, or zero matrix [3]-[7]. A simple example is given in
Fig. 2, where an 8x12 H matrix is constructed using 2 rows and 3
columns of 4x4 submatrices and each submatrix is an identity
matrix, its cyclic shift, or zero matrix. We surveyed the LDPC
codes in the latest communication standards and summarized their
H matrix structures in Table I. Each H matrix has a fixed n, and
often a variable m, to control the number of parity checks (or code
rate) for different channel environments. In poor channel condi-
tions, a high m, (low code rate) is used to introduce more redun-
dancy for a stronger protection. The submatrix size z controls the
code block length: a longer block length offers better protection at
the cost of a longer latency and a higher decoding complexity.

The belief propagation decoding of LDPC codes is briefly de-
scribed as follows. To begin, the received real value for each bit is
used to initialize the bit’s prior likelihood [2]. The subsequent
steps are carried out iteratively in a procedure following the H
matrix [2]. In the horizontal half iteration, we go through each row
of the H matrix and read the prior likelihoods of the bits that par-
ticipate in the parity check described by the row, followed by
computing an update, known as the extrinsic, indicating the like-
lihood of each bit given the likelihoods from all other bits partici-
pating in this parity check. The horizontal half iteration is com-
pleted in m horizontal steps. In the vertical half iteration, we go
through each column of the H matrix and read all the extrinsics
corresponding to the parity checks that the bit is part of to com-
pute an updated likelihood, known as the posterior. A hard deci-
sion is made based on the posterior. The vertical half iteration is
completed in n vertical steps. For the second and following itera-
tions, the horizontal half iteration is carried out in the same way as
the first iteration, but instead of prior likelihoods, we use modified
posterior likelihoods for the computation. More iterations improve
the reliability of each bit. If hard decisions of all bits satisty all the
parity-check equations, decoding converges. For a full mathemati-
cal description of the belief propagation algorithm, we refer read-
ers to [1], [2]. The algorithm works remarkably well in practice,
and usually converges in a small number of iterations.

3. RECONFIGURABLE EMULATION

The belief propagation decoder is the most complex block of a
decoder emulation platform. Many high-performance architec-
tures have been introduced for individual codes, but they have to
be customized to be useful for other codes. We design an entirely

TABLE [
STRUCTURE OF LDPC CODES USED IN COMMUNICATION SYSTEMS

168

Standard z nyp m, n m
IEEE 126 to
802.11ad 42 16 3,4,6,8 672 336
IEEE 84 to
302.15¢ 21 32 4,8,16 672 336
IEEE 648 to 108 to
802.11n 27,54,81 24 4,6,8,12 1944 972
IEEE 576 to 96 to
802.16e 24.28,...,96 24 4,6.8,12 2304 1152
IEEE
802.11an 64 32 6 2048 384
TABLE I
BASIC ARCHITECTURES OF LDPC DECODERS
Submatrix- Column- Row-
parallel parallel parallel
Processing
elements z " M
Decoding time
per iteration 1> Zxmy zxmy

reconfigurable architecture that is applicable to all the codes de-
fined in Section 2.

Referring to Table I, the codes are parameterized by z, n,, my,
implying three natural ways of parallelizing the decoder: subma-
trix-parallel, column-parallel, or row-parallel. Consider a subma-
trix-parallel architecture, where z processing elements (PE) com-
pletes z horizontal (or vertical) steps concurrently, thus the decod-
ing time per iteration is proportional to n,xm,. A row-parallel
architecture requires m, processing elements for a decoding time
of zxn,. Since the parameters z and m,, are variable for some ap-
plications, the submatrix-parallel and row-parallel architectures
require pre-allocation of the maximum number of PEs and run-
time reconfiguration. Note that the parameter n, is fixed for each
application, so the column-parallel decoder architecture supports
all codes for a given application without requiring any over allo-
cation of PEs. The decoding time however varies with m. The
three basic architectures are listed in Table II for comparison.
Additional architectures can be created by parallelizing or serializ-
ing the three basic architectures or mixing them. More parallel
architectures demand more hardware resources. To achieve the
maximum throughput on a given FPGA platform, we can create
multiple decoders to run parallel emulations.

3.1 Emulation System Design

We choose the column-parallel architecture for the code and de-
coder emulation platform shown in Fig. 3, where n, PEs are allo-
cated and connected to a parity-check node for the horizontal step
computation, the output of which is sent to each PE. The vertical
step is completed within the PE. The PE datapath is entirely data-
driven. The controller only needs to generate the address counter
for each PE to access the correct data and write to the correct loca-
tion. The address sequence is determined by the H matrix and
stored in an address lookup table. An example of the address loo-
kup table is shown in Fig. 2.

An input generator consists of a Gaussian noise generator and a
set of valid codewords stored in a memory. Gaussian noise is
added to codewords to emulate the effect of an additive white
Gaussian noise channel (AWGN). The channel SNR is adjusted
by noise variance.
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Fig. 3. Column-parallel decoder architecture.
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Fig. 4. Emulation control state machine.

A controller orchestrates the emulation. Its simplified state ma-
chine is shown in Fig. 4. System starts up in IDLE state. Upon
receiving a “start” signal, it transitions to LOAD state, where n,
PEs load inputs from the input generator concurrently. As each PE
is assigned to a block column of z bits, the loading will take z
clock cycles. A persistent state variable COUNT keeps track of
the loading state. COUNT increments by 1 each clock cycle until
it reaches z, when the system transitions to RUN state.

The belief propagation algorithm operates by the H matrix row-by
row for the horizontal half iteration, and then column-by-column
for the vertical half iteration. Here we merge the vertical step with
the horizontal step by performing vertical steps following each
horizontal step. The interleaved processing lengthens the pipeline
of each horizontal step, but completes one decoding iteration in
approximately m clock cycles.

Towards the end of RUN state when the posterior likelihood of
each bit is finalized, the controller enables the decision block to
make hard decisions. If decoding converges or the iteration limit
is reached, a “done” signal is generated to trigger the transition to
LOAD state for loading another input vector; if decoding fails to
converge when the iteration limit is reached, a frame error and
number of bit errors are recorded before moving to LOAD state; if
decoding fails while the iteration limit is not yet reached, it will
remain in RUN state by starting another decoding iteration.

3.2 Design- and Run-Time Reconfiguration
The emulation system is entirely parameterized. Given an LDPC
code, the number of block columns, 7, determines the number
PEs in the system. The submatrix size z and the number of block
rows my, determine the control schedule, including number of
loading cycles, address counter, memory write enable, and deci-
sion enable. The H matrix structure, i.c., the locations of ‘1’ en-
tries in the H matrix of each block column, decides the address
lookup table entries. The PE and parity-check node complexities
are also determined by these parameters: the depth of the extrinsic
memory is zxmy,, the depth of the posterior memory is z, the pari-
ty-check node implements a #7,:1 adder tree (for the sum-product
algorithm [2]) or a n,:1 compare-select tree (for the min-sum algo-
rithm [15]).
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The parameterized emulation system enables convenient reconfi-
guration. The number of PE blocks, extrinsic and posterior memo-
ry depth, parity-check node topology are design-time reconfigura-
ble or limited run-time reconfigurable by over allocation and se-
lective enabling. Control constants and address lookup table are
run-time reconfigurable. Hence it is possible to design one IEEE
802.16e-compatible LDPC decoder to be reconfigured for all 19
LDPC codes specified by the standard [4] by setting control con-
stants and address lookup tables.

We consider additional parameters that are important in code and
decoder designs: word length and quantization of prior, extrinsic
and posterior likelihoods, limit on the number of decoding itera-
tions, channel SNR, and algorithm control knobs (such as the
offset in the min-sum algorithm [15]). Word length and quantiza-
tion are design-time reconfigurable, but it is expensive to change
in run time. Decoding iteration limit, channel SNR and some algo-
rithm controls can be easily reconfigured in run time.

To sum up, many parameters are in consideration for code and
decoder designs and the interplays among the parameters are of
great interest. To speed up these evaluations, we need a reconfi-
gurable architecture to minimize the number of redesigns, such
that one design can be reused for many different evaluations.
However, many parameters cannot be made run-time reconfigura-
ble easily, which necessitates redesigns. A fast and automated
design flow will greatly facilitate this effort.

4. DESIGN FLOW

We propose a design flow based on the BEEcube Platform Studio
(BPS) targeting BEEcube BEE3 multi-FPGA platform [16]. The
steps of the design flow are illustrated in Fig. 5. The first step is to
establish a Simulink design library that consists of the modules
that make up an emulation system: PE, parity-check node, noise
generator, decision block, and controller. The modules are de-
signed using Xilinx blockset to be readily synthesized. Design
parameters including memory size, word length, and quantization
are coded as parameters in the modules. The small number of
modules are quick to design and easily reusable.

In the second step, a Matlab script is used to perform four tasks:
(1) initialize code structure parameters, z, 1, and m,, and design
parameters, word length and quantization, that are being refe-
renced in the design library; (2) parse the given LDPC code to
build address lookup table for each PE; (3) instantiate n;, PEs, a
parity-check node, an input vector generator, a decision block, a
controller and connect these modules into a complete decoder in
Simulink; and (4) create an interface wrapper using BPS blockset
to provide configuration registers for run-time reconfigurable
parameters: control schedule, decoding iteration limit, channel
SNR, and algorithm knobs, as well as output registers that capture
BER and FER. This step is fully automated and can be completed
in well under 1 minute.

The third step involves BPS compilation, which takes less than 2
hours based on all the experiments we carried out. The resulting
bit file is programmed on the BEE3 FPGA platform for emulation
experiments.

The proposed design flow integrates with the BPS flow and simpl-
ifies the design process. The library and script will be made avail-
able online. We take advantage of Virtex 5 FPGAs’ Ethernet func-
tionality by connecting them to the network, each with its own IP
address. Remote users can control emulations through function
calls in Matlab or C code. We expect this work to contribute to the
coding research community and encourage collaborations among
researchers.
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Fig. 5 BEE3-based automated design flow.
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Fig. 6. BER plots of 1/2 LDPC codes used in four communication stan-
dards: IEEE 802.11ad, IEEE 802.15c, IEEE 802.11n, IEEE 802.16e. The
results are obtained using 10 decoding iterations and 5-bit Q5.0 fixed-
point quantization using offset min-sum algorithm.

5. RESULTS

We designed a common design library and applied the automated
design flow to LDPC decoders for four different applications,
IEEE 802.11ad, IEEE 802.15¢, IEEE 802.11n, and IEEE 802.16¢.
Excluding the initial effort in making the common design library,
the flows including compilation completed within two hours. For
a better utilization of the target Xilinx Virtex-5 XC5VLX155T
device, we created multiple decoder copies, each with its own
input generator, decision block and controller, on a single FPGA
to run parallel emulations. The device utilization details are listed
in Table III based on 5-bit fixed-point quantization and offset
min-sum algorithm [15]. The utilization includes fixed overhead
created by BPS to handle interfaces and controls. Note that the
reported level of parallelism was not limited by the resources
available on FPGA, but by the runtime memory of the 32-bit op-
eration system on which the compilation was done.

The designs in Table III have all been successfully compiled and
they meet a minimum clock frequency of 100 MHz and deliver
throughputs from 380 to 950 Mb/s (in decoding the 1/2 rate code
of the longest block length in each standard). With four such
FPGAs available on the BEE3 platform [16], we can achieve an
emulation throughput up to 3.8 Gb/s, allowing us to reach a BER
of 10" in one hour and below 10™'? in one day (with at least 100
bit errors observed for statistical significance).

Fig. 6 shows the performance of four 1/2-rate LDPC codes used in
the four communication standards. The 10® BER point was cap-
tured within one minute. Evaluation of code construction and
decoder design can be made quickly, e.g., selection of submatric-
es, code block length, code rate, word length and quantization,
iteration limit, algorithm tuning and error floor studies. The rapid
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TABLE 111
DEVICE UTILIZATION AND THROUGHPUT OF LDPC EMULATION PLAT-
FORMS (BASED ON XILINX VIRTEX-5 XC5VLX155T)

802.11ad | 802.15c | 802.1In | 802.16e
# of parallel 6 3 4 4
emulators
Shce reaistors | 22323 19,971 22,221 22,689
g (23%) (21%) (23%) (23%)
) 35,723 31,497 38,883 39,214
Slice LUTs (37%) (32%) (40%) (40%)
Occupied 12,568 11,819 13,565 13,219
slices (52%) (49%) (56%) (54%)
131 130 130 178
BRAMs (62%) 61%) | 61%) | (34%)
Throughput
(at 100MHy) | 950 MDb/s | 380 Mbis | 695 Mbls | 710 Mbls

FPGA-based code emulation will contribute to future coding
theory and applications research.
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