
Reconfigurable Architecture and Automated Design Flow 
for Rapid FPGA-based LDPC Code Emulation 

Haoran Li, Youn Sung Park, Zhengya Zhang 
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 

lihaoran@umich.edu, parkyoun@umich.edu, zhengya@eecs.umich.edu 
 

ABSTRACT 
Multitude of design freedoms of LDPC codes and practical de-
coders require fast simulations. FPGA emulation is attractive but 
inaccessible due to its design complexity. We propose a library 
and script based approach to automate the construction of FPGA 
emulations. Code parameters and design parameters are pro-
grammed either during run time or by script in design time. We 
demonstrate the architecture and design flow using the LDPC 
codes for the latest wireless communication standards: each emu-
lation model was auto-constructed within one minute and the peak 
emulation throughput reached 3.8 Gb/s on a BEE3 platform. 

Categories and Subject Descriptors 

C.3 [Special-purpose and application-based systems]: Signal 
processing systems 
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Design, Experimentation, Performance 
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1. INTRODUCTION 
Low-density parity-check (LDPC) codes are capacity-approaching 
codes that can perform very close to the Shannon limit when de-
coded using the iterative belief propagation algorithm [1], [2]. 
Over the last few years, we have seen LDPC codes entering a 
range of important applications, from wireline [3], wireless [4]-[7], 
satellite [8], optical communications [9] to magnetic storage [10], 
to improve reliability and spectral efficiency. However, practical 
performance of LDPC codes can be far from their theoretical limit 
for two reasons: (1) a practical code’s block length is limited to 
hundreds to thousands of bits to meet latency and complexity 
constraints; (2) practical decoder implementations introduce non-
idealities, such as finite word length and fixed-point quantization 
effects [11]. It is therefore critically important to evaluate code 
constructions and practical decoder implementations for each new 
application that is brought in consideration. 

Software-based code and decoder simulation are common in prac-
tice. A typical simulation setup shown in Fig. 1 consists of an 
encoder to produce codewords (or memory that stores known 
codewords), a modulator that translates bits to real values for 
transmission, a channel model that generates noise to corrupt the 
transmitted values, and a decoder that runs the belief propagation 
algorithm to recover the binary codeword from the real values 

received. The decoded word is compared with the transmitted 
codeword to determine if an error (frame error) has occurred and, 
if it has, the number of bits that are wrong (bit error). Decoding 
errors are measured in frame error rate (FER) and bit error rate 
(BER). When the channel condition is poor, i.e., at low signal-to-
noise ratio (SNR), decoding errors occur frequently (high FER 
and BER), shortening the simulation time. At high SNR, decoding 
errors occur infrequently (low FER and BER) and the simulation 
time is longer. Low FER and BER simulation is the bottleneck in 
code and decoder simulations. 

As new generations of applications push for a higher throughput 
and reliability, the required FER and BER are also extended low-
er. For example, 10-gigabit Ethernet requires a BER of 10-12 or 
better [3]. Simulating complex decoders for these systems to ex-
tremely low BER is a challenge, as it often takes weeks or months 
to run a belief propagation decoder to reach a BER of 10-12 on a 
high-performance microprocessor. Recently, field-programmable 
gate arrays (FPGA) have been proposed to accelerate the simula-
tions, showing three orders of magnitude speedup or more [11]-
[14]. Despite the impressive speedup, FPGA emulation has not 
gained wide-spread use. Designing FPGA emulation is not as easy 
as writing C code. It requires extensive effort in creating hardware 
architecture and running FPGA synthesis. The barrier renders 
emulation inaccessible to the vast coding theory and applications 
community who would otherwise benefit the most in code con-
struction and system evaluation. 

In this paper, we address the challenges in creating LDPC code 
and decoder emulation by creating an automated design flow 
based on a reconfigurable hardware decoder architecture. The 
design flow is built upon a decoder library that consists of mod-
ules parameterized by code parameters and design parameters. 
Given a new LDPC code, the design flow instantiates processing 
elements and constructs a highly parallelized LDPC decoder. We 
experimented with the LDPC codes for IEEE 802.16e (WiMAX) 
[4], IEEE 802.11n (Wi-Fi) [5], IEEE 802.15c (wireless personal 
area network) [6], and IEEE 802.11ad (high-throughput wireless) 
[7], with block lengths ranging from 576 bits to 2,304 bits and 
code rates from 1/2 to 5/6. In all cases, the design flow completed 
decoder construction under one minute, followed by FPGA syn-
thesis that took two hours or less. The resulting decoders operated 
at real-time or nearly real-time, delivering a throughput up to 3.8 
Gb/s on a BEE3 platform, allowing us to reach a BER of 10-11 in 
one hour and below 10-12 in one day. We demonstrated the capa-
bility of the emulation platform in evaluating the functional per-
formance of various codes. With added network interface and 
publically available design flow and library, the proposed FPGA 

Fig. 1. Code and decoder simulation setup. 
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emulation design flow will contribute to both the theoretical and 
practical coding research. 

2. BACKGROUND 
LDPC codes are linear block codes. Each LDPC code is defined 
by a parity-check matrix H of size m×n, where n is the block 
length and m is the number of parity checks. Almost all the latest 
applications have adopted LDPC codes whose H matrix is con-
structed using mb rows and nb columns of z×z identity matrix, its 
cyclic shifts, or zero matrix [3]-[7]. A simple example is given in 
Fig. 2, where an 8×12 H matrix is constructed using 2 rows and 3 
columns of 4×4 submatrices and each submatrix is an identity 
matrix, its cyclic shift, or zero matrix. We surveyed the LDPC 
codes in the latest communication standards and summarized their 
H matrix structures in Table I. Each H matrix has a fixed nb and 
often a variable mb to control the number of parity checks (or code 
rate) for different channel environments. In poor channel condi-
tions, a high mb (low code rate) is used to introduce more redun-
dancy for a stronger protection. The submatrix size z controls the 
code block length: a longer block length offers better protection at 
the cost of a longer latency and a higher decoding complexity. 
The belief propagation decoding of LDPC codes is briefly de-
scribed as follows. To begin, the received real value for each bit is 
used to initialize the bit’s prior likelihood [2]. The subsequent 
steps are carried out iteratively in a procedure following the H 
matrix [2]. In the horizontal half iteration, we go through each row 
of the H matrix and read the prior likelihoods of the bits that par-
ticipate in the parity check described by the row, followed by 
computing an update, known as the extrinsic, indicating the like-
lihood of each bit given the likelihoods from all other bits partici-
pating in this parity check. The horizontal half iteration is com-
pleted in m horizontal steps. In the vertical half iteration, we go 
through each column of the H matrix and read all the extrinsics 
corresponding to the parity checks that the bit is part of to com-
pute an updated likelihood, known as the posterior. A hard deci-
sion is made based on the posterior. The vertical half iteration is 
completed in n vertical steps. For the second and following itera-
tions, the horizontal half iteration is carried out in the same way as 
the first iteration, but instead of prior likelihoods, we use modified 
posterior likelihoods for the computation. More iterations improve 
the reliability of each bit. If hard decisions of all bits satisfy all the 
parity-check equations, decoding converges. For a full mathemati-
cal description of the belief propagation algorithm, we refer read-
ers to [1], [2]. The algorithm works remarkably well in practice, 
and usually converges in a small number of iterations. 

3. RECONFIGURABLE EMULATION 
The belief propagation decoder is the most complex block of a 
decoder emulation platform. Many high-performance architec-
tures have been introduced for individual codes, but they have to 
be customized to be useful for other codes. We design an entirely 

reconfigurable architecture that is applicable to all the codes de-
fined in Section 2. 

Referring to Table I, the codes are parameterized by z, nb, mb, 
implying three natural ways of parallelizing the decoder: subma-
trix-parallel, column-parallel, or row-parallel. Consider a subma-
trix-parallel architecture, where z processing elements (PE) com-
pletes z horizontal (or vertical) steps concurrently, thus the decod-
ing time per iteration is proportional to nb×mb. A row-parallel 
architecture requires mb processing elements for a decoding time 
of z×nb. Since the parameters z and mb are variable for some ap-
plications, the submatrix-parallel and row-parallel architectures 
require pre-allocation of the maximum number of PEs and run-
time reconfiguration. Note that the parameter nb is fixed for each 
application, so the column-parallel decoder architecture supports 
all codes for a given application without requiring any over allo-
cation of PEs. The decoding time however varies with mb. The 
three basic architectures are listed in Table II for comparison. 
Additional architectures can be created by parallelizing or serializ-
ing the three basic architectures or mixing them. More parallel 
architectures demand more hardware resources. To achieve the 
maximum throughput on a given FPGA platform, we can create 
multiple decoders to run parallel emulations. 

3.1 Emulation System Design 
We choose the column-parallel architecture for the code and de-
coder emulation platform shown in Fig. 3, where nb PEs are allo-
cated and connected to a parity-check node for the horizontal step 
computation, the output of which is sent to each PE. The vertical 
step is completed within the PE. The PE datapath is entirely data-
driven. The controller only needs to generate the address counter 
for each PE to access the correct data and write to the correct loca-
tion. The address sequence is determined by the H matrix and 
stored in an address lookup table. An example of the address loo-
kup table is shown in Fig. 2. 
An input generator consists of a Gaussian noise generator and a 
set of valid codewords stored in a memory. Gaussian noise is 
added to codewords to emulate the effect of an additive white 
Gaussian noise channel (AWGN). The channel SNR is adjusted 
by noise variance. 

 
 (a) (b) 
Fig. 2. An LDPC code example: (a) H-matrix, and (b) address lookup 
table for the first block column. 

TABLE I 
STRUCTURE OF LDPC CODES USED IN COMMUNICATION SYSTEMS 

Standard z nb mb n m 
IEEE 

802.11ad 42 16 3,4,6,8 672 126 to 
336 

IEEE 
802.15c 21 32 4,8,16 672 84 to 

336  
IEEE 

802.11n 27,54,81 24 4,6,8,12 648 to 
1944 

108 to 
972 

IEEE 
802.16e 24,28,…,96 24 4,6,8,12 576 to 

2304 
96 to 
1152 

IEEE 
802.11an 64 32 6 2048 384 

 
TABLE II 

BASIC ARCHITECTURES OF LDPC DECODERS 

 Submatrix- 
parallel 

Column- 
parallel 

Row- 
parallel 

Processing 
elements z nb mb 

Decoding time 
per iteration nb×mb z×mb z×nb 
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A controller orchestrates the emulation. Its simplified state ma-
chine is shown in Fig. 4. System starts up in IDLE state. Upon 
receiving a “start” signal, it transitions to LOAD state, where nb 
PEs load inputs from the input generator concurrently. As each PE 
is assigned to a block column of z bits, the loading will take z 
clock cycles. A persistent state variable COUNT keeps track of 
the loading state. COUNT increments by 1 each clock cycle until 
it reaches z, when the system transitions to RUN state. 
The belief propagation algorithm operates by the H matrix row-by 
row for the horizontal half iteration, and then column-by-column 
for the vertical half iteration. Here we merge the vertical step with 
the horizontal step by performing vertical steps following each 
horizontal step. The interleaved processing lengthens the pipeline 
of each horizontal step, but completes one decoding iteration in 
approximately m clock cycles. 
Towards the end of RUN state when the posterior likelihood of 
each bit is finalized, the controller enables the decision block to 
make hard decisions. If decoding converges or the iteration limit 
is reached, a “done” signal is generated to trigger the transition to 
LOAD state for loading another input vector; if decoding fails to 
converge when the iteration limit is reached, a frame error and 
number of bit errors are recorded before moving to LOAD state; if 
decoding fails while the iteration limit is not yet reached, it will 
remain in RUN state by starting another decoding iteration. 

3.2 Design- and Run-Time Reconfiguration 
The emulation system is entirely parameterized. Given an LDPC 
code, the number of block columns, nb, determines the number 
PEs in the system. The submatrix size z and the number of block 
rows mb determine the control schedule, including number of 
loading cycles, address counter, memory write enable, and deci-
sion enable. The H matrix structure, i.e., the locations of ‘1’ en-
tries in the H matrix of each block column, decides the address 
lookup table entries. The PE and parity-check node complexities 
are also determined by these parameters: the depth of the extrinsic 
memory is z×mb, the depth of the posterior memory is z, the pari-
ty-check node implements a nb:1 adder tree (for the sum-product 
algorithm [2]) or a nb:1 compare-select tree (for the min-sum algo-
rithm [15]). 

The parameterized emulation system enables convenient reconfi-
guration. The number of PE blocks, extrinsic and posterior memo-
ry depth, parity-check node topology are design-time reconfigura-
ble or limited run-time reconfigurable by over allocation and se-
lective enabling. Control constants and address lookup table are 
run-time reconfigurable. Hence it is possible to design one IEEE 
802.16e-compatible LDPC decoder to be reconfigured for all 19 
LDPC codes specified by the standard [4] by setting control con-
stants and address lookup tables. 
We consider additional parameters that are important in code and 
decoder designs: word length and quantization of prior, extrinsic 
and posterior likelihoods, limit on the number of decoding itera-
tions, channel SNR, and algorithm control knobs (such as the 
offset in the min-sum algorithm [15]). Word length and quantiza-
tion are design-time reconfigurable, but it is expensive to change 
in run time. Decoding iteration limit, channel SNR and some algo-
rithm controls can be easily reconfigured in run time. 
To sum up, many parameters are in consideration for code and 
decoder designs and the interplays among the parameters are of 
great interest. To speed up these evaluations, we need a reconfi-
gurable architecture to minimize the number of redesigns, such 
that one design can be reused for many different evaluations. 
However, many parameters cannot be made run-time reconfigura-
ble easily, which necessitates redesigns. A fast and automated 
design flow will greatly facilitate this effort. 

4. DESIGN FLOW 
We propose a design flow based on the BEEcube Platform Studio 
(BPS) targeting BEEcube BEE3 multi-FPGA platform [16]. The 
steps of the design flow are illustrated in Fig. 5. The first step is to 
establish a Simulink design library that consists of the modules 
that make up an emulation system: PE, parity-check node, noise 
generator, decision block, and controller. The modules are de-
signed using Xilinx blockset to be readily synthesized. Design 
parameters including memory size, word length, and quantization 
are coded as parameters in the modules. The small number of 
modules are quick to design and easily reusable. 
In the second step, a Matlab script is used to perform four tasks: 
(1) initialize code structure parameters, z, nb, and mb, and design 
parameters, word length and quantization, that are being refe-
renced in the design library; (2) parse the given LDPC code to 
build address lookup table for each PE; (3) instantiate nb PEs, a 
parity-check node, an input vector generator, a decision block, a 
controller and connect these modules into a complete decoder in 
Simulink; and (4) create an interface wrapper using BPS blockset 
to provide configuration registers for run-time reconfigurable 
parameters: control schedule, decoding iteration limit, channel 
SNR, and algorithm knobs, as well as output registers that capture 
BER and FER. This step is fully automated and can be completed 
in well under 1 minute. 
The third step involves BPS compilation, which takes less than 2 
hours based on all the experiments we carried out. The resulting 
bit file is programmed on the BEE3 FPGA platform for emulation 
experiments. 
The proposed design flow integrates with the BPS flow and simpl-
ifies the design process. The library and script will be made avail-
able online. We take advantage of Virtex 5 FPGAs’ Ethernet func-
tionality by connecting them to the network, each with its own IP 
address. Remote users can control emulations through function 
calls in Matlab or C code. We expect this work to contribute to the 
coding research community and encourage collaborations among 
researchers. 

  
Fig. 3. Column-parallel decoder architecture. 

  
Fig. 4. Emulation control state machine. 
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5. RESULTS 
We designed a common design library and applied the automated 
design flow to LDPC decoders for four different applications, 
IEEE 802.11ad, IEEE 802.15c, IEEE 802.11n, and IEEE 802.16e. 
Excluding the initial effort in making the common design library, 
the flows including compilation completed within two hours. For 
a better utilization of the target Xilinx Virtex-5 XC5VLX155T 
device, we created multiple decoder copies, each with its own 
input generator, decision block and controller, on a single FPGA 
to run parallel emulations. The device utilization details are listed 
in Table III based on 5-bit fixed-point quantization and offset 
min-sum algorithm [15]. The utilization includes fixed overhead 
created by BPS to handle interfaces and controls. Note that the 
reported level of parallelism was not limited by the resources 
available on FPGA, but by the runtime memory of the 32-bit op-
eration system on which the compilation was done. 
The designs in Table III have all been successfully compiled and 
they meet a minimum clock frequency of 100 MHz and deliver 
throughputs from 380 to 950 Mb/s (in decoding the 1/2 rate code 
of the longest block length in each standard). With four such 
FPGAs available on the BEE3 platform [16], we can achieve an 
emulation throughput up to 3.8 Gb/s, allowing us to reach a BER 
of 10-11 in one hour and below 10-12 in one day (with at least 100 
bit errors observed for statistical significance). 
Fig. 6 shows the performance of four 1/2-rate LDPC codes used in 
the four communication standards. The 10-9 BER point was cap-
tured within one minute. Evaluation of code construction and 
decoder design can be made quickly, e.g., selection of submatric-
es, code block length, code rate, word length and quantization, 
iteration limit, algorithm tuning and error floor studies. The rapid 

FPGA-based code emulation will contribute to future coding 
theory and applications research. 
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TABLE III 
DEVICE UTILIZATION AND THROUGHPUT OF LDPC EMULATION PLAT-

FORMS (BASED ON XILINX VIRTEX-5 XC5VLX155T) 

 802.11ad 802.15c 802.11n 802.16e 
# of parallel 
emulators 6 3 4 4 

Slice registers 22,323 
(23%) 

19,971 
(21%) 

22,221 
(23%) 

22,689 
(23%) 

Slice LUTs 35,723 
(37%) 

31,497 
(32%) 

38,883 
(40%) 

39,214 
(40%) 

Occupied 
slices 

12,568 
(52%) 

11,819 
(49%) 

13,565 
(56%) 

13,219 
(54%) 

BRAMs 131 
(62%) 

130 
(61%) 

130 
(61%) 

178 
(84%) 

Throughput 
(at 100MHz) 950 Mb/s 380 Mb/s 695 Mb/s 710 Mb/s 

 

 
Fig. 5 BEE3-based automated design flow. 

 
Fig. 6. BER plots of 1/2 LDPC codes used in four communication stan-
dards: IEEE 802.11ad, IEEE 802.15c, IEEE 802.11n, IEEE 802.16e. The 
results are obtained using 10 decoding iterations and 5-bit Q5.0 fixed-
point quantization using offset min-sum algorithm. 
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