
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014 283

A Native Stochastic Computing Architecture Enabled
by Memristors

Phil Knag, Student Member, IEEE, Wei Lu, Member, IEEE, and Zhengya Zhang, Member, IEEE

Abstract—A two-terminal memristor device is a promising dig-
ital memory for its high integration density, substantially lower
energy consumption compared to CMOS, and scalability below
10 nm. However, a nanoscale memristor is an inherently stochas-
tic device, and extra energy and latency are required to make a
deterministic memory based on memristors. Instead of enforcing
deterministic storage, we take advantage of the nondeterministic
memory for native stochastic computing, where the randomness
required by stochastic computing is intrinsic to the devices without
resorting to expensive stochastic number generation. This native
stochastic computing system can be implemented as a hybrid inte-
gration of memristor memory and simple CMOS stochastic com-
puting circuits. We use an approach called group write to program
memristor memory cells in arrays to generate random bit streams
for stochastic computing. Three methods are proposed to program
memristors using stochastic bit streams and compensate for the
nonlinear memristor write function: voltage predistortion, paral-
lel single-pulse write, and downscaled write and upscaled read.
To evaluate these technical approaches, we show by simulation
a memristor-based stochastic processor for gradient descent opti-
mization, and k-means clustering. The native stochastic computing
based on memristors demonstrates key advantages in energy and
speed in compute-intensive, data-intensive, and probabilistic ap-
plications.

Index Terms—Memristor, stochastic computing, stochastic
number generator, stochastic switching.

I. INTRODUCTION

CONTINUED scaling of CMOS technology to the nanome-
ter scale faces challenges of increasing power dissipation

due to leakage and escalating variations [1]. To sustain scaling
beyond the CMOS, unconventional device structures and new
materials have been proposed with the expectation that they
may be able to complement or replace CMOS devices in the
future. To incorporate new devices and materials in functional
electronic circuits, two common approaches are usually taken:
1) new nanoscale materials or devices used as a channel replace-
ment to improve the mobility of an otherwise conventional tran-
sistor geometry, but problems with transistor scaling including

Manuscript received October 15, 2012; accepted January 1, 2014. Date of
publication January 16, 2014; date of current version March 6, 2014. This work
was supported in part by NSF CCF-1217972. The work of W. Lu was supported
by the National Science Foundation CAREER award ECCS-0954621 and in
part by the Air Force Office of Scientific Research under MURI grant FA9550-
12-1-0038. The review of this paper was arranged by Associate Editor M. R.
Stan.

The authors are with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
knagphil@umich.edu; wluee@umich.edu; zhengya@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNANO.2014.2300342

Fig. 1. Current–voltage curve of a digital memristor showing hysteretic resis-
tive switching characteristic with high dynamic range.

power consumption, integration density, and interconnect com-
plexity still remain; 2) nontransistor architectures based on new
materials and devices that hold the promise of breaking the bar-
riers of transistor scaling by enabling new computing paradigms
are used. A crossbar structure [2]–[5] is one such architecture
that is made using two sets of nanowire electrodes that cross
each other and form an interconnected network of two-terminal
devices (see Fig. 1).

A two-terminal device can be made of a pair of top and bot-
tom electrodes and an active material sandwiched in-between.
Proper choice of the material can lead to hysteretic resistance
switching [6]–[13] as illustrated in Fig. 1. Such a device essen-
tially acts as a nonlinear resistor with memory, and has been
termed “memristor” [6], [14], [15].

A. Digital Memristor Device

This study focuses on the use of “digital” memristors as de-
scribed in [16]. A digital memristor stores binary information,
i.e., the low resistance on-state equal to “1” and the high re-
sistance off-state equal to “0,” with abrupt resistance changes
with on/off ratio of the order of 106 as shown in Fig. 1. These
digital memristors are “digital” in the sense that they typically
have two stable resistance states under given programming con-
ditions, and the switching transition from the high resistance
off-state to the low resistance on-state is abrupt.

The high dynamic range of the memristor devices simplifies
the read and write operations and improves the robustness. To
write a “1” to a memristor, a programming pulse of sufficient
duration and voltage VDDwrite is applied to switch the mem-
ristor to the ON state. To erase a memristor, i.e., write a “0,” a
negative VDDerase voltage is applied to return the memristor to
the OFF state. To read the memristor’s value, a reading resistor
is connected in series with the VDDread supply as shown in
Fig. 2. The high-resistance dynamic range allows the memristor

1536-125X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

284 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014

Fig. 2. Read, write, and erase a digital memristor device.

values to be read to a nearly full swing digital voltage with a sim-
ple resistor divider circuit. Note that VDDread is usually much
lower than VDDwrite to minimize the possibility of disturbing
a memristor’s state.

The digital memristors can be built using an M/I/M structure
with two conducting electrodes sandwiching a thin insulator in
the middle. The abrupt switching characteristic is the result of
the formation of a conducting filament that grows when a voltage
is applied as shown in Fig. 1. When this filament bridges the gap,
the memristor has a low resistance. When a voltage is applied
in the opposite direction, the filament will shrink and eventually
break, putting the memristor in a high-resistance state.

Recent results have demonstrated functional prototypes of
digital memristor devices at feature sizes below 10 nm, switch-
ing times below 10 ns, endurance over 1012 write/erase cy-
cles, retention time in the order of years, and low programming
current under 1 μA, but without the same problems plaguing
transistor scaling [9], [12], [13], [17]. Memristor crossbar struc-
tures promise key advantages over CMOS transistor circuits
in ultrahigh density storage, high-bandwidth connectivity, and
convenient reconfiguration. Of particular interest is that mem-
ristor devices are CMOS compatible [18]; thus, a memristor-
CMOS structure can be built to take advantage of memristor-
based high-density storage and routing and efficient CMOS
logic circuits. A functional memristor-CMOS prototype has al-
ready been demonstrated, consisting of a high-density memris-
tor crossbar vertically integrated on top of CMOS logic circuits,
that can be reliably programmed [19].

B. Memristor as an Inherently Stochastic Device

Memristor devices, based on thin metallic-wire electrodes
and amorphous or oxide switching layers, are expected to suffer
from lower yield and larger variation than conventional devices
based on crystalline silicon. Common variation sources include
electrode line-edge roughness causing device to device varia-
tions, and film thickness irregularity leading to device parameter
uncertainty. These spatial variations can be mitigated through
variation-aware methods, which has been a well-studied topic
in nanometer circuit designs.

Compared to spatial variations, the more challenging prob-
lem with memristor devices is the significant randomness
from temporal variations. A memristor’s resistance switching is

Fig. 3. Histogram of the measured switching time from a single 100-nm
memristor device. The blue line is a Poisson fit [20].

stochastic [20]–[23], rather than deterministic as in conventional
transistor-based devices. For a “digital” memristor that provides
a large dynamic range between logic levels, the change in re-
sistance is associated with the formation and rupture of a dom-
inant, nanoscale conducting filament (either caused by metallic
bridge formation [7], [8], [24] or by stoichiometric change in
the switching material [25], [26]). Such a resistance switching
can now be predicted by physics models, which show that the
ion oxidation and transport processes during filament forma-
tion are thermodynamically driven and are stochastic in nature
for a given filament [7], [20]–[23], [27]. That is, even for the
same filament in the same device with the same applied volt-
age, the switching time is broadly distributed with a statistical
average of tsw . This hypothesis has been confirmed by experi-
mental studies that also shown that the switching time follows
a Poisson distribution with a characteristic, average time τ (see
Fig. 3) [20], [21]. These results all point to the fact that mem-
ristors are inherently stochastic devices, and the same operation
of the same exact memrsitor device will be accompanied by
significant, inherent temporal variations.

Improving memristor’s reliability is an active research area,
and several approaches have already been proposed: 1) a feed-
back mechanism to check the output upon every write and ad-
just the programming voltage and pulse width [28]; 2) error-
control coding (ECC) to correct possible errors due to varia-
tions [29], [30]; 3) excess programming voltage and long pulse
width to guarantee the correctness of each write. Each approach
has its own drawback: feedback checking in each write increases
the write delay; ECC becomes ineffective when the error rate
is high; and the brute-force approach of excess programming
voltage and long pulse width costs energy and reduces device
lifetime. The extra overhead of the above approaches diminishes
the memristor’s advantages in density and energy efficiency.

Instead of trying to force the nondeterministic device to op-
erate deterministically, a more promising approach is to design
a stochastic computing paradigm to cope with, and even take
advantage of, the nondeterminism, which is the rationale behind
this study.

C. Stochastic Computing: Preliminaries and Challenges

Stochastic computing was invented in 1967 as a low-cost
form of computing based on probabilistic bit streams [31]–[33].

KNAG et al.: NATIVE STOCHASTIC COMPUTING ARCHITECTURE ENABLED BY MEMRISTORS 285

Fig. 4. Stochastic multiplication by a logic AND gate.

Fig. 5. (a) Stochastic implementation of logic function y = x1 x2 x4 +
x3 (1 − x4) [34], where SNG and counter are inserted to perform the con-
versions between binary and stochastic bit streams and (b) LFSR-based imple-
mentation of SNG.

For example, the number 0.5 can be represented in stochastic
computing by a stream of 8 bits {0, 1, 1, 0, 1, 0, 0, 1} such
that the probability of finding 1 in a bit is 0.5. In the same
way, the number 0.25 can be represented by {0, 1, 0, 0, 0,
1, 0, 0}. Compared to the common binary numeral system, the
probabilistic bit stream representation is not unique, but a longer
bit stream provides a higher precision. The bit stream is more
error-tolerant than the conventional binary system, as a bit flip
introduces an equivalent least significant bit (LSB) error. To
use stochastic computing in a binary system, binary numbers
are first converted to bit streams and the output of stochastic
computing has to be converted to binary.

Stochastic computing fills the niche of low-cost computing,
as arithmetic operations can be efficiently implemented. As an
example, the multiplication of a and b can be done using an
AND logic gate, as shown in Fig. 4. The operation can be un-
derstood as follows: by definition of probabilistic bit streams,
Pa represents the probability of any bit in stream a being 1;
similarly Pb represents the probability of any bit in stream b
being 1; and the bitwise AND operation of the two streams pro-
duces an output stream, in which the probability of having 1 at a
bit position is Pa × Pb , thereby completing the multiplication.
The previous calculation assumes that the two input bit streams
are independent. Correlation between the streams degrades the
accuracy of stochastic computing. For example, if we multiply
two identical bit streams represented by a using an AND gate,
the product will be Pa , not Pa × Pa .

The independence assumption requires the bit streams to be
randomized via stochastic number generator (SNG), as shown
in Fig. 5 [34]. The randomization cost presents a significant
overhead in stochastic computing, sometimes as high as 80% of

the total resource usage [35]. Note that not only the inputs need
to be randomized, reshuffling is also necessary at intermediate
stages to mitigate the correlations introduced by reconvergent
fanouts. The necessity of randomizing bit streams by numerous
SNGs partially defeats the simplicity of stochastic computing.

The extra cost of randomization and binary conversion, along
with limited precision, have indeed prevented the adoption of
stochastic computing. Despite the slow progress, continued re-
search has made the following advances: 1) a large collection
of logic, arithmetic, and matrix operations can now be done in
stochastic computing [34]–[39], all of which share the elegance
of very simple designs and 2) special applications, including ar-
tificial neural networks [40]–[42], image processing [35], [43],
and decoding of low-density parity-check codes [44], [45] have
been successfully demonstrated using stochastic computing.
Note the common characteristics among these special appli-
cations: 1) error-tolerant and 2) compute-intensive, and the
low-cost stochastic computing promises substantial reduction
in complexity.

These special applications are of growing importance, as
they are closely related to the most rapidly growing application
domains including multimedia (image and video), informatics
(sensor and social networks), and intelligence (recognition and
learning), all of which demand orders of magnitude improve-
ment in compute capability and energy efficiency. High-density,
energy-efficient post-CMOS devices such as memristor offer the
potential of overcoming the mounting challenges, but the ensu-
ing problem of nondeterministic switching needs to be addressed
in a scalable and cost-efficient way.

II. MEMRISTOR-BASED NATIVE STOCHASTIC COMPUTING

We develop a “native” stochastic computing to exploit the
nondeterminism in memristor switching for stochastic comput-
ing, as opposed to the conventional attempts to fix the nondeter-
minism [28]–[30]. The proposed stochastic computing is “na-
tive,” as the randomness needed in stochastic computing will be
intrinsic to the devices and no special addition is needed to gen-
erate or ensure randomness. In doing so, we not only obtain the
randomness for stochastic computing for free, but also eliminate
all the extra energy and complexity required for the determinis-
tic use of memristors. The native stochastic computing based on
memristors enables a fundamentally efficient system that is not
possible with either memristor or stochastic computing alone.

The envisioned native stochastic computing system is pic-
tured in Fig. 6. The system consists of memristor memories
integrated with stochastic arithmetic circuits in a CMOS. The
system accepts analog input to be converted to bit stream by
a memristor memory. Basic concepts of stochastic bit stream
generation have been recently demonstrated experimentally by
us [46]. Stochastic computing is performed based on bit streams
and the output bit stream is written to memristor memory. Every
write to memristor memory allows a new bit stream to be pro-
duced (assume that memristor memory is reset before write).
The self-contained system described by Fig. 6 is entirely based
on bit streams and the binary to bit stream conversions are elim-
inated. In this way, the native stochastic computing overcomes

286 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014

Fig. 6. Native stochastic computing system using memristor-based stochastic memory.

Fig. 7. (a) Binary Kogge–Stone look-ahead adder and (b) parallel stochastic
multiplier.

two hindrances of classic stochastic computing: 1) the large
overhead of stochastic number generation, as randomness does
not naturally exist in purely CMOS circuits and must be created
algorithmically [35], [47], and 2) the extra conversion steps be-
tween binary and bit streams, as the prior designs were never
intended to be self-contained systems.

The native stochastic computing system takes advantage of
both emerging memristor devices and simple stochastic arith-
metic circuits. Since no excess voltage or timing margins are
needed to ensure determinism, good energy efficiency can be
achieved. Simple stochastic arithmetic circuits can be easily
parallelized in a flat topology to deliver high performance. The
lack of dependence between bits in a bit stream, in contrast to
the bit-level dependence in a binary system, shortens the critical
paths and simplifies wiring [an illustration is shown in Fig. 7,
where parallelizing a binary adder results in a complex struc-
ture and wiring as in Fig. 7(a), compared to a parallel stochastic
multiplier that can be efficiently implemented in a flat topology
with simple wiring as in Fig. 7(b)]. The native stochastic com-
puting is inherently error-resilient, as the stochastic memory and
arithmetic provide tolerance against runtime variations and soft
errors.

Note that the native stochastic computing is an end-to-end
system that accepts analog inputs directly. Analog inputs may
need to be amplified, and a sample and hold is also needed for
writing to the memristor. In comparison, the classic stochastic
computing is an entirely digital system that requires analog-to-
digital conversion to accept analog inputs.

In the following sections, we elaborate on the new techni-
cal approaches for each of the three important parts of a native
stochastic computing system: 1) creating probablistic bit stream
using memristors, 2) writing bit stream to memristors, and 3)
carrying out native stochastic computing for practical applica-
tions. These three parts are annotated in Fig. 6.

Fig. 8. Memristor switching probability.

III. STOCHASTIC PROGRAMMING

A memristor stores 0 in its OFF (high resistance) state and
1 in its ON (low resistance) state. Before programming, the
memristor must be reset by applying a negative voltage bias
until the memristor enters the high resistance 0 state. To write 1
to a memristor in the 0 state, a positive voltage pulse is applied to
turn on the memristor. Energy is consumed in this process, and
even after the memristor completes the switching, static current
remains on as long as the pulse is ON. It is therefore desirable
to turn OFF the pulse whenever the memristor turns ON.

Memristor switching is a stochastic process. Based on prior
research, the time to switch follows a Poisson distribution [20].
Given a programming voltage V and pulse width t, the proba-
bility of switching is P (t) = 1 − e−t/τ , shown in Fig. 8, where
τ is the characteristic switching time that depends on the pro-
gramming voltage: τ(V) = τ0e

−V /V0 (τ0 and V0 are fitting pa-
rameters) [20], [21]. For an intuitive idea, if we use a pulse
width of t = τ , P (τ) = 0.632, the success rate is too low for a
functional memory. If we increase the pulse width to t = 10τ ,
P (10τ) = 0.99995, the success rate improves but the program-
ming speed is ten times slower and a significant amount of
energy is wasted. Alternatively, we can increase the program-
ming voltage V to shorten the necessary pulse width, but it also
consumes extra energy and a high voltage accelerates device
wearout and shortens its lifetime.

A. Group Write

Instead of trying to ensure a deterministic programming, we
opt for an energy-efficient, high-speed stochastic programming
using a lower voltage and shorter pulse. Suppose we write 1 to
a memristor cell with a pulse width of τ , the success rate is only
P (τ) = 0.632. If we apply the pulse to two cells simultaneously,
each cell has a 0.632 success rate (assuming each cell switches

KNAG et al.: NATIVE STOCHASTIC COMPUTING ARCHITECTURE ENABLED BY MEMRISTORS 287

Fig. 9. (a) Writing to a column of memristor cells, (b) stochastic group write to memristor using pulse train, (c) voltage pre-distortion, and (d) parallel single-pulse
write.

Fig. 10. Distribution of values using an array of 16, 64, and 256 bits (from
top to bottom) assuming 0.632 is programmed.

independently) and the expected number of 1’s written to the 2
cells is 0.632 × 2 = 1.264. If we expand the write to an array
of 16 cells, the expected number of 1’s is 0.632 × 16 = 10.112.
In the process of writing to an array of memristor cells, we have
essentially accomplished the conversion of the number 0.632 to
a stream of 16 bits whose expected number of 1’s approximates
the given number. We call the write to an array of memristor
cells group write. An illustration of group write is shown in
Fig. 9(a) and the basic concept was recently demonstrated [46].

Group write reduces the voltage and time required to program
memristors which leads to a low-energy consumption. The ap-
proach is different from duplication, as write to a larger group
of cells yields a higher resolution. For example, group write to
16 cells in Fig. 9(a) produces a 4-bit resolution in a probabilis-
tic fashion. The probabilistic distribution of the stored value
depends on the write group size (or bit stream length), as il-
lustrated in Fig. 10. A shorter bit stream sees a larger spread,
but it can still be made useful in some practical applications. An
added advantage of group write is the resilience against dynamic
variations and soft errors, as occasional upsets are unlikely to
distort the distribution and cause functional failures.

Group write saves the cost of stochastic number generators
(SNG) used in classic stochastic computing. The SNGs are com-
monly implemented using linear feedback shift register (LFSR)

as in Fig. 5(b) [35]. The SNGs generate probabilistic bit streams
based on binary inputs, and they are also needed throughout the
datapaths to reshuffle bit streams, e.g., at every reconvergent
fanout that introduces correlations as one source branches to
different paths before reconverging. Reshuffling is done by first
converting a bit stream to binary, followed by a SNG to gener-
ate a new bit stream. The extensive deployment of SNGs easily
overtakes core arithmetic logic as the dominant cost of classic
stochastic computing. In comparison, the stochastic program-
ming of an array of memristor cells exploits the randomness
native to memristors, thereby eliminating the entire conversion
and reshuffling overhead.

Spatial variations in memristors will degrade the accuracy of
stochastic number generation by group write. A recent experi-
mental study has showed that the memristor fabrication process
can be well controlled, and it also successfully demonstrated
stochastic bit stream generation in the space domain [46]. In
Section IV, we will further analyze the effects of variation
and noise, and demonstrate in Section V the reliable operation
through simulations with random voltage noise.

B. Power Estimate

Stochastic programming simplifies stochastic number gener-
ation and reduces the power consumption. A 100-MHz SNG
made with a 32-bit LFSR and comparator synthesized in a 65-
nm CMOS technology is estimated to consume 80.2 μW. The
CMOS SNG generates one stochastic bit every clock cycle. The
memristor-based stochastic computing generates stochastic bits
by simply reading the stochastically programmed memristor
values. With a 1 V read supply voltage, a memristor read con-
sumes a static power of 10 μW to read a “1” (i.e., a memristor
in the low-resistance state with Ron = 100 kΩ), and 10 nW to
read a “0” (i.e., a memristor in the high-resistance state with
Roff = 100 MΩ). Ron and Roff are based on fabricated memris-
tor devices. Note that the static power is expected to dominate
the total power consumption. With a feedback mechanism, the
static current can be turned OFF early; thus, the above power
estimates are very conservative. Assuming an equal number of
“1” and “0,” the average power to generate a stochastic bit using

288 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014

stochastic programming is approximately 5 μW, a 16× reduc-
tion compared to a CMOS SNG.

The classic CMOS stochastic computing system converts
stochastic bits to binary numbers to be stored in memory. The
conversion is done using an up counter. A 100 MHz 32-bit up
counter synthesized in a 65 nm CMOS technology is estimated
to consume 61.4 μW. In a native stochastic computing, the up
counter is eliminated and stochastic bits are stored in memristors
directly.

The static power for writing a “1” to a memristor is estimated
to be 160 μW at a 4 V write supply voltage after the memristor
turns ON (Ron = 100 kΩ). Writing a “0” consumes negligible
static power as Roff is much higher. Assuming an equal number
of “1” and “0,” then the average write power is 80 μW. With
a feedback mechanism, the static current can be turned OFF
early, which will result in a much lower power consumption.
Erase power is similar to write power considering the same
static current consumption for the respective states except that
erase naturally has a cutoff mechanism when the memristors
enter the “0” state with a high Roff resistance.

The above comparisons demonstrate the potential power effi-
ciency of the memristor-based native stochastic computing over
the classic CMOS stochastic computing. We expect the effi-
ciency of using memristors for stochastic computing will con-
tinue to improve with improved memristor devices supporting
a lower supply voltage and fast feedback mechanisms to limit
static current.

C. Erasing Memristors

Erasing memristors to restore the high-resistance state be-
fore each write is necessary for the proper operation. Erasing,
or resetting, is done by applying a programming voltage of the
opposite polarity until the memristor enters the high resistance
state. Note that the OFF→ON and ON→OFF switching thresh-
olds are unequal, as shown in Fig. 1, and the characteristic
switching times are different. We use OFF→ON switching to
stochastically program memristors; and use ON→OFF switch-
ing to deterministically erase memristors by adding extra time
margin to ensure a correct erase operation. The extra time mar-
gin needed to erase increases the latency if the same memristor
memory location is continuously being written to. Writing to
the same memory location also leads to an uneven wear-out.
Therefore, we propose using an erasing scheme similar to what
is used in a flash memory, where new data is always written
to a fresh memory location and the locations storing stale data
are queued to be erased [48]. Erasing will be done on a large
block at a time to reduce overhead. This scheme both hides the
latency of erasure and ensures an even wear-out by spreading
writes evenly to all memory cells.

IV. COMPENSATION OF NONLINEAR WRITE

TO MEMRISTOR MEMORY

In a self-contained stochastic computing system, bit streams
are generated from memristor memory for stochastic computing,
and the output bit streams of stochastic computing are written to
memristor memory. To write a bit stream to memristor memory,

Fig. 11. Probability of switching with number of pulses.

we can take one of the two approaches: deterministic or stochas-
tic. In a deterministic write, each bit of the stream is written to
one memristor cell in a one-to-one mapping; in a stochastic
write, the bit stream is applied to an array of memristor cells
using group write. The difference is that the deterministic write
produces an exact copy, while a stochastic write reshuffles the
bit stream as an elegant way of introducing randomness without
the extra reshuffling overhead.

Suppose we apply group write to write a bit stream in the
form of pulse train to an array of memristor cells as shown in
Fig. 9(b). Assume an 8-bit stream with two 1’s (two pulses) to
represent 0.25. To preserve the value, we set the pulse voltage
for a switching probability of 1/8 = 0.125. After the first pulse
is applied to an array of eight memristor cells, we get on average
1 of the 8 cells to switch ON. After the second pulse is applied,
the effect of two pulses is experimentally verified to be equiv-
alent to one pulse of twice the width [20]. Based on the model
presented in the previous section, the switching probability af-
ter each pulse is described in Fig. 11. The relationship between
switching probability and number of pulses applied is nonlin-
ear: two pulses give a switching probability of 0.234, slightly
below the ideal probability of 0.25. In the extreme case when we
apply a train of eight pulses, the switching probability only goes
up to 0.656 instead of 1, i.e., only 5.25 of the eight cells will
switch ON, resulting in a large error. Therefore, a compensation
scheme is needed to undo the nonlinearity.

A. Voltage Predistortion

The nonlinear pulse train write can be compensated using
voltage predistortion, illustrated in Fig. 9(c), for an approxima-
tion of the ideal linear relationship between switching probabil-
ity and number of pulses. If a suitably large number of voltage
levels are used, voltage predistortion could provide nearly per-
fect compensation. However, the solution based on numerous
voltage levels is expensive. To reduce the cost, we can apply
piecewise approximation made from nonlinear functions to re-
duce the number of voltage levels. A three-piece approximation
is shown in Fig. 12 with a relative error limited to 2.5%. De-
creasing the error comes at the cost of additional voltage levels,
shown in Fig. 13. Compared to a lookup table-based approach,

KNAG et al.: NATIVE STOCHASTIC COMPUTING ARCHITECTURE ENABLED BY MEMRISTORS 289

Fig. 12. Piecewise approximation of linear switching probability. The example
uses three voltages for less than 2.5% error.

Fig. 13. Number of voltage levels needed to remain under a given error bound
using piecewise approximation. Three cases are considered: no voltage noise
(stdev = 0), zero-mean Gaussian voltage noise with standard deviation of 0.1V
(stdev = 0.1), and zero-mean Gaussian voltage noise with standard deviation of
0.2 V (stdev = 0.2).

the piecewise approximation will be especially handy in long
bit streams, while sacrificing only small errors.

Note that voltage predistortion requires a serial write opera-
tion, i.e., the pulses have to be applied sequentially. Serializing
the write operation presents a potential bottleneck in an inher-
ently parallelizable stochastic computing architecture.

B. Downscaled Write and Upscaled Read

Maintaining numerous voltage levels can be expensive and
serial programming slows down the write operation. Futher-
more, in the absence of any nonlinear compensation method, the
accuracy of pulse train write degrades drastically as the input
approaches 1 or full range. This is not surprising since writing
a 1 requires the memristor cells to switch with 100% certainty,
essentially turning into a deterministic write that is not easily
guaranteed in stochastic programming. A downscaled write cir-
cumvents this problem by mapping the input to a lower range,
e.g., downscaling by a factor of 2 limits the input range from [0,
1] to [0, 0.5]. Within a lower input range, the nonlinearity error
becomes much smaller even without compensation. A scalar
gain function as described in [20] can be applied in readout,
called upscaled read, to undo the downscaled write. The down-

Fig. 14. Memristor switching probability assuming no voltage noise, and
zero-mean Gaussian voltage noise of standard deviation = 0.1 and 0.2 V.

scaled write and upscaled read approach uses a single voltage,
requires fewer memristors than the parallel single-pulse write,
and is also parallelizable. However, this approach degrades the
precision due to round-off errors in downscaled mapping.

C. Parallel Single-Pulse Write

Parallel single-pulse write [see Fig. 9(d)] uses a single-pulse
voltage in a parallel write. Instead of applying pulses one by one
as in voltage predistortion, the entire pulse train will be applied
in parallel to a memristor memory. The train is divided into
individual pulse segments and each segment is applied to one
column of memory. In this way, each column of cells is subject
to at most one pulse, thus the name single-pulse. Similar to the
downscaled write and upscaled read approach, this scheme takes
advantage of the fact that the nonlinear cumulative probability
function is relatively linear at the lower end.

The parallel write expands the bit stream representation from
a one-dimensional (1-D) array to a 2-D matrix, and an OR func-
tion is applied to each row to compress the expanded representa-
tion to one single bit stream, as in Fig. 9(d). The given example
happens to work perfectly, but a slight problem arises when
OR’ing multiple 1’s in a row, e.g., OR of two 1’s is 1, thus one
1 is lost. The probability of having multiple 1’s in a row, or the
conflict probability, can be computed beforehand. Based on the
conflict probability, the output bit stream can be compensated
for a possible loss in value. Alternatively, a stochastic scaled
adder followed by a stochastic scalar gain function could be
used to correctly read out the stored value. The parallel single-
pulse approach has an advantage in terms of implementation
cost over the voltage predistortion approach, and it does not suf-
fer from the precision issues of downscaled write and upscaled
read, but more memory is used.

D. Variations, Noise, and Calibration

One fundamental difference between the native and the clas-
sic stochastic computing is in stochastic number generation. In
the classic stochastic computing, stochastic numbers are gener-
ated using SNG; whereas in the proposed system, the stochastic
numbers are generated by the native stochastic switching of

290 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014

Fig. 15. Stochastic implementation of (a) a gradient descent solver and (b) a k-means clustering processor.

memristors. The memristor switching is affected by variation
and noise. In the following, we will analyze the effects of vari-
ation and noise, and demonstrate in the next section the reliable
operation through simulations with random voltage noise.

The proposed system can be calibrated to accommodate die-
to-die process variations and temperature. Process variations
manifest themselves in changes of the fit parameters τ0 and
V0 in the switching probability equation. The effects of die-
to-die process variations and temperature can be calibrated out
by adjusting the programming voltage, or the width of the pro-
gramming pulse, or both. Within-die local, device variations can
also be calibrated out, but at a higher cost. Therefore, within-die
local, variations should be minimized.

Memristor devices on the same die can share close correla-
tions in their device parameters, but note that the correlations
in device parameters do not affect the independent switching
of each device, i.e., each device will switch independently of
the others even though the device parameters are the same or
correlated. Independent switching of memristor devices is the
basis of the proposed native stochastic computing.

The effect of programming voltage noise can also be cali-
brated out. Given that the voltage noise vn follows a defined
statistical distribution f(vn), a memristor’s switching probabil-
ity function is given by

Pn =
∫ ∞

−∞
f(vn)(1 − e

− t

τ 0 e −(V + v n) / V 0) dvn ,

where f(vn) is the probability density function of the volt-
age noise, V is the nominal programming voltage, and τ0 and
V0 are the fit parameters used in the original switching prob-
ability equation. As an example, Fig. 14 shows the memristor
switching probability due to Gaussian voltage noise. Random
voltage noise changes Pn , but the same nonlinear compensation
techniques can be used to fit an updated Pn curve. For example,
if voltage predistortion is used, the number of voltage levels
needed to remain under a given error bound is given by Fig. 13.
Voltage noise will have no effect on the proposed system, as
long as the noise distribution is known. Also note that since the
switching probability translates into whether a digital memristor
is switched ON or OFF, only the mean switching probability Pn

is relevant.
Erratic voltage variations, such as occasional voltage droops

and oscillations, cannot be calibrated out and they cause inac-
curacies in computation. Erratic voltage variations potentially
limits the noise floor of stochastic computing. However, the

algorithms designed for stochastic computing are often error-
tolerant and if such voltage variations happen only intermit-
tently, the system will have a chance to reconverge to the ex-
pected accuracy.

V. APPLICATIONS OF NATIVE STOCHASTIC COMPUTING

Native stochastic computing by the integration of memristor
memory and stochastic arithmetic circuits offers a new energy-
efficient and high-performance computing paradigm. We take
advantage of native stochastic computing for data-intensive pro-
cessing with a soft quality metric—data-intensive so that high-
density memristor memory and easily parallelizable stochastic
arithmetic circuits can be put to good use, and a soft-quality
metric provides the necessary tolerance for a low-cost imple-
mentation.

We demonstrate native stochastic computing for two applica-
tions: a gradient descent solver and a k-means clustering pro-
cessor. The results are obtained using three memristor program-
ming techniques: 1) ideal write, 2) voltage predistortion, and 3)
downscaled write and upscaled read. We also intentionally add
voltage noise to test the robustness of the system.

A. Gradient Descent Solver

Gradient descent is a first-order optimization algorithm used
to find the minimum of a cost function [49]. The algorithm
repeats two simple steps: 1) calculate the gradient of a given cost
function at the current position; 2) move in the negative direction
of the gradient by a step proportional to the magnitude of the
gradient. If the cost function is well conditioned, the minimum
can be obtained by this iterative gradient descent algorithm.

The block diagram of a gradient descent solver is illustrated
in Fig. 15(a). The design can be readily translated to a stochastic
implementation using memristor memory and stochastic arith-
metic circuits. Input positions are stored in memristor memory
and the readout is in bit streams. The gradient is calculated using
stochastic computing circuits including multiply and add, and
the step size is obtained by scalar multiply. The position is up-
dated by the step and stored in memristor memory for the next
iteration. Known stochastic designs are available to perform
add, multiply, and subtract [31]–[33], [36], [38]. Note that all
the arithmetic processing and memory remain in the bit stream
domain and no binary conversion is necessary, thus permitting
a highly efficient native stochastic computing system.

KNAG et al.: NATIVE STOCHASTIC COMPUTING ARCHITECTURE ENABLED BY MEMRISTORS 291

Fig. 16. Stochastic gradient descent algorithm using (a) 32-Kbit stochastic bit stream with ideal write, (b) 32-Kbit stochastic bit stream with voltage predistortion,
(c) 256-Kbit stochastic bit stream with downscaled write and upscaled read, (d) 32-Kbit stochastic bit stream with voltage predistortion and zero-mean Gaussian
voltage noise of 0.2V standard deviation, and (e) 256-Kbit stochastic bit stream with downscaled write and upscaled read and zero-mean Gaussian voltage noise
of 0.2 V standard deviation. The RMS errors from the exact solutions are given for comparison.

Fig. 17. 256-point k-means clustering with 4-Kbit stochastic bit stream using (a) ideal write, (b) voltage pre-distortion with number of voltage levels chosen to
meet 0.1% error bound, (c) voltage pre-distortion with number of voltage levels chosen to meet 0.001% error bound, and (d) voltage predistortion with number of
voltage levels chosen to meet 0.1% error bound and zero-mean Gaussian noise of 0.2 V standard deviation. The RMS errors from the exact solutions are given for
comparison.

292 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 2, MARCH 2014

The design is simulated using 32 and 256-Kbit stochastic bit
streams to represent bipolar stochastic numbers in the range
of [−1, 1]. The experiments are based on the cost function of
f(x, y) = 1

24 ((x + 0.5)2 + (x + 0.5)y + 3y2). Three different
memristor programming techniques, ideal write, voltage pre-
distortion, and downscaled write and upscaled read, produce
satisfactory results shown in Fig. 16(a)–(c), respectively. Even
after voltage noise is added, the computation is shown to be
robust as in Fig. 16(d) and (e).

B. k-Means Clustering Processor

In cluster analysis, a set of data points are placed into dif-
ferent clusters whose members are similar, based on a certain
metric [50]. Clustering is essential to many applications includ-
ing image processing, bioinformatics, and machine learning.
k-means is a popular clustering algorithm [51] and it is done
in three steps: 1) select k cluster centers (centroids); 2) place
each data point in one of the clusters to minimize the distance
between the data point and the cluster centroid; 3) recompute
the centroid of each cluster as the average of all the data points
in the cluster. Steps 2) and 3) are repeated until a convergence
condition is met.

The block diagram of a k-means processor is illustrated in
Fig. 15(b), assuming that k = 3 and L1 distance is used as the
similarity metric. Data points and centroids are stored in mem-
ristor memory and the readout is in bit streams. The L1 distance
between a data point and each of the centroids is calculated by
stochastic subtraction and absolute value operation, the results
of which are compared using stochastic subtraction and compar-
ison. The data point is written to the respective cluster memory
based on the shortest L1 distance. Once a round of clustering
is done, stochastic averaging is carried out to update the cluster
centroids.

Examples of the k-means clustering using stochastic com-
puting and memristor programing techniques are simulated us-
ing 4-Kbit stochastic bit streams to represent bipolar stochastic
numbers in the range of [−1, 1]. 256-point datasets are placed
in three clusters such that the L1 distance is minimized to the
cluster centroids. The two different memristor programming
techniques, ideal write and voltage-predistortion, produce sat-
isfactory results shown in Fig. 17. The computation is robust
against voltage noise, as seen in Fig. 17(d).

VI. CONCLUSION

Two-terminal memristor devices are inherently stochastic de-
vices that require extra energy and latency to enforce determin-
istic behavior. This study takes advantage of the memristor’s
stochastic behavior to produce random bit streams needed in
stochastic computing. In the proposed approach, memristors re-
place stochastic number generators in a native stochastic com-
puting architecture.

We present group write to program the memristor memory
cells in arrays to generate the random bit streams for stochastic
computing. To enable linear write to memristor memory, we pro-
pose compensation techniques including voltage predistortion,

downscaled write and upscaled read, and parallel single-pulse
write. We evaluate the native stochastic computing architecture
by simulating a gradient descent solver and a k-means clustering
processor. Group write together with nonlinearity compensation
techniques are shown to be effective for stochastic memristor
programming. The proposed native stochastic computing archi-
tecture takes advantage of the key benefits of both stochastic
computing and memristor devices to enable a new low-energy,
high-performance, and low-cost computing paradigm.

ACKNOWLEDGMENT

The authors would like to thank S. Gaba for memristor mea-
surement data and helpful discussions.

REFERENCES

[1] (2010). “International technology roadmap for semiconductors. 2010 up-
date,” [Online]. Available: http://public.itrs.net/

[2] W. Lu and C. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater.,
vol. 6, no. 11, pp. 841–850, 2007.

[3] K. Likharev and D. Strukov, “CMOL: devices, circuits, and architectures,”
Introducing Mol. Electron., vol. 680, pp. 447–477, 2005.

[4] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys. A,
Mater. Sci. Process., vol. 80, no. 6, pp. 1165–1172, 2005.

[5] P. Kuekes, D. Stewart, and R. Williams, “The crossbar latch: Logic value
storage, restoration, and inversion in crossbar circuits,” J. Appl. Phys., vol.
97, no. 3, pp. 034 301.1–034 301.5, 2005.

[6] D. Strukov, G. Snider, D. Stewart, and R. Williams, “The missing mem-
ristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[7] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,”
Nat. Mater., vol. 6, no. 11, pp. 833–840, 2007.

[8] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,”
Adv. Mater., vol. 21, nos. 25–26, pp. 2632–2663, 2009.

[9] M. Kozicki, M. Park, and M. Mitkova, “Nanoscale memory elements
based on solid-state electrolytes,” IEEE Trans. Nanotechnol., vol. 4, no. 3,
pp. 331–338, May 2005.

[10] I. Valov, R. Waser, J. Jameson, and M. Kozicki, “Electrochemical metal-
lization memories: Fundamentals, applications, prospects,” Nanotechnol-
ogy, vol. 22, no. 25, pp. 1–22, 2011.

[11] C. Cheng, C. Tsai, A. Chin, and F. Yeh, “High performance ultra-low
energy RRAM with good retention and endurance,” in Proc. IEEE Int.
Electron Devices Meet., 2010, pp. 19.4.1–19.4.4.

[12] B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini,
I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T.
Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime,
D. Wouters, J. Kittl, and M. Jurczak, “10 × 10 nm2 Hf/HfOx crossbar
resistive RAM with excellent performance, reliability and low-energy
operation,” in Proc. IEEE Int. Electron Devices Meet., 2011, pp. 31.6.1–
31.6.4.

[13] M. Lee, C. Lee, D. Lee, S. Lee, M. Chang, J. Hur, Y. Kim, C. Kim,
D. Seo, S. Seo, U. Chung, I. Yoo, and K. Kim, “A fast, high-endurance
and scalable non-volatile memory device made from asymmetric Ta2O5-
x/TaO2-x bilayer structures,” Nat. Mater., vol. 10, no. 8, pp. 625–630,
2011.

[14] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit
Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[15] L. Chua and S. Kang, “Memristive devices and systems,” Proc. IEEE,
vol. 64, no. 2, pp. 209–223, Feb. 1976.

[16] W. Lu, K.-H. Kim, T. Chang, and S. Gaba, “Two-terminal resistive
switches (memristors) for memory and logic applications,” in Proc. Asia
South Pacif. Design Autom. Conf., 2011, pp. 217–223.

[17] K. Kim, S. Jo, S. Gaba, and W. Lu, “Nanoscale resistive memory with
intrinsic diode characteristics and long endurance,” Appl. Phys. Lett., vol.
96, no. 5, pp. 053 106.1–053 106.3, 2010.

[18] S. Jo and W. Lu, “CMOS compatible nanoscale nonvolatile resistance
switching memory,” Nano Lett., vol. 8, no. 2, pp. 392–397, 2008.

[19] K. Kim, S. Gaba, D. Wheeler, J. Cruz-Albrecht, T. Hussain,
and N. Srinivasa, W. Lu, “A functional hybrid memristor

KNAG et al.: NATIVE STOCHASTIC COMPUTING ARCHITECTURE ENABLED BY MEMRISTORS 293

crossbar-array/CMOS system for data storage and neuromorphic
applications,” Nano Lett., vol. 12, no. 1, 2012.

[20] S. Jo, K. Kim, and W. Lu, “Programmable resistance switching in
nanoscale two-terminal devices,” Nano Lett., vol. 9, no. 1, pp. 496–500,
2008.

[21] D. Strukov, J. Borghetti, and R. Williams, “Coupled ionic and electronic
transport model of thin-film semiconductor memristive behavior,” Small,
vol. 5, no. 9, pp. 1058–1063, 2009.

[22] S. Savelev, A. Alexandrov, A. Bratkovsky, and R. Williams, “Molecular
dynamics simulations of oxide memristors: Thermal effects,” Appl. Phys.
A, Mater. Sci. Process., vol. 102, no. 4, pp. 891–895, 2011.

[23] X. Ma and K. Likharev, “Global reinforcement learning in neural networks
with stochastic synapses,” in Proc. Int. Joint Conf. Neural Netw., 2006,
pp. 47–53.

[24] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation
of conducting filament growth in nanoscale resistive memories,” Nat.
Commun., vol. 3, no. 732, pp. 1–8, 2012.

[25] D. Kwon, K. Kim, J. Jang, J. Jeon, M. Lee, G. Kim, X. Li, G. Park,
B. Lee, S. Han, M. Kim, and C. Hwang, “Atomic structure of conducting
nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol.,
vol. 5, no. 2, pp. 148–153, 2010.

[26] J. Strachan, M. Pickett, J. Yang, S. Aloni, A. D. Kilcoyne, G. Medeiros-
Ribeiro, and R. Williams, “Direct identification of the conducting channels
in a functioning memristive device,” Adv. Mater., vol. 22, no. 32, pp. 3573–
3577, 2010.

[27] P. Sheridan, K. Kim, S. Gaba, T. Chang, L. Chen, and W. Lu, “Device and
SPICE modeling of RRAM devices,” Nanoscale, vol. 3, no. 9, pp. 3833–
3840, 2011.

[28] K. Jo, C. Jung, K. Min, and S. Kang, “Self-adaptive write circuit for
low-power and variation-tolerant memristors,” IEEE Trans. Nanotechnol.,
vol. 9, no. 6, pp. 675–678, Nov. 2010.

[29] P. Kuekes, W. Robinett, R. Roth, G. Seroussi, G. Snider, and R. Williams,
“Resistor-logic demultiplexers for nanoelectronics based on constant-
weight codes,” Nanotechnology, vol. 17, no. 4, pp. 1052–1061, 2006.

[30] P. Kuekes, W. Robinett, and R. Williams, “Improved voltage margins
using linear error-correcting codes in resistor-logic demultiplexers for
nanoelectronics,” Nanotechnology, vol. 16, no. 9, pp. 1419–1432, 2005.

[31] B. Gaines, “Stochastic computing,” in Proc. Spring Joint Comput. Conf.,
1967, pp. 149–156.

[32] W. Poppelbaum, C. Afuso, and J. Esch, “Stochastic computing elements
and systems,” in Proc. Fall Joint Comput. Conf., 1967, pp. 635–644.

[33] S. Ribeiro, “Random-pulse machines,” IEEE Trans. Electron. Comput.,
vol. EC-16, no. 3, pp. 261–276, Jun. 1967.

[34] X. Li, W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “A reconfigurable
stochastic architecture for highly reliable computing,” in Proc. Great
Lakes Symp. VLSI, 2009, pp. 315–320.

[35] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE Trans. Comput.,
vol. 60, no. 1, pp. 93–105, Jan. 2011.

[36] W. Qian and M. Riedel, “The synthesis of robust polynomial arithmetic
with stochastic logic,” in Proc. Design Autom. Conf., 2008, pp. 648–653.

[37] P. Mars and H. Mclean, “High-speed matrix inversion by stochastic com-
puter,” Electron. Lett., vol. 12, no. 18, pp. 457–459, 1976.

[38] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded arithmetic,”
in Proc. IEEE Int. Symp. Circuits Syst., 2000, vol. 1, pp. 599–602.

[39] J. Keane and L. Atlas, “Impulses and stochastic arithmetic for signal
processing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2001, vol. 2, pp. 1257–1260.

[40] J. Dickson, R. McLeod, and H. Card, “Stochastic arithmetic implementa-
tions of neural networks with in situ learning,” in Proc. IEEE Int. Conf.
Neural Netw., 1993, pp. 711–716.

[41] Y. Kim and M. Shanblatt, “Architecture and statistical model of a pulse-
mode digital multilayer neural network,” IEEE Trans. Neural Netw., vol. 6,
no. 5, pp. 1109–1118, Sep. 1995.

[42] B. Brown and H. Card, “Stochastic neural computation—Part I: Compu-
tational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905, Sep.
2001.

[43] T. Hammadou, M. Nilson, A. Bermak, and P. Ogunbona, “A 96×64 in-
telligent digital pixel array with extended binary stochastic arithmetic,” in
Proc. Int. Symp. Circuits Syst., 2003, vol. 4, pp. IV-772–IV-775.

[44] V. Gaudet and A. Rapley, “Iterative decoding using stochastic computa-
tion,” Electron. Lett., vol. 39, no. 3, pp. 299–301, 2003.

[45] S. Sharifi Tehrani, W. Gross, and S. Mannor, “Stochastic decoding of
LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, Oct.
2006.

[46] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memristive
devices for computing and neuromorphic applications,” Nanoscale, vol. 5,
pp. 5872–5878, 2013.

[47] P. Jeavons, D. Cohen, and J. Shawe-Taylor, “Generating binary sequences
for stochastic computing,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 716–
720, May 1994.

[48] E. Gal and S. Toledo, “Mapping structures for flash memories: Techniques
and open problems,” in Proc. IEEE Int. Conf. Softw., Sci., Technol. Eng.,
2005, pp. 83–92.

[49] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York,
NY, USA: Springer-Verlag, 2006.

[50] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. New York, NY, USA: Wiley Online Library, 1990.

[51] J. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,” in Proc. Berkeley Symp. Math. Statist. Probabil., 1967,
vol. 1, pp. 281–297.

Phil Knag (S’11) received the B.S. degree in com-
puter engineering and the M.S. degree in electrical
engineering from the University of Michigan, Ann
Arbor, MI, USA, in 2010 and 2012, respectively,
where he is currently working toward the Ph.D. de-
gree in electrical engineering.

He received a GAANN fellowship in 2010 from
the U.S. Department of Education for academic ex-
cellence. He was with Medtronic, Inc. as a Research-
Intern in 2010. His current research interests include
nanoscale and neuromorphic computing systems.

Wei Lu (M’05) received the B.S. degree in physics
from Tsinghua University, Beijing, China, in 1996,
and the Ph.D. degree in physics from Rice Univer-
sity, Houston, TX, USA, in 2003.

From 2003 to 2005, he was a Postdoctoral Re-
search Fellow at Harvard University, Cambridge,
MA, USA. In 2005, he joined the faculty of the
Department of Electrical Engineering and Computer
Science, the University of Michigan, Ann Arbor, MI,
USA, and is currently an Associate Professor. His re-
search interests includes high-density memory based

on two-terminal resistive switches (RRAM), memristor-based logic circuits, ag-
gressively scaled transistor devices, and electrical transport in low-dimensional
systems.

Dr. Lu is an Editor-in-Chief for Nanoscale, a member of the IEEE, APS,
MRS, an active member of several IEEE technical committees and program
committees. He has received the NSF CAREER Award.

Zhengya Zhang (S’02–M’09) received the B.A.Sc.
degree in computer engineering from the University
of Waterloo, Waterloo, ON, Canada, in 2003, and the
M.S. and Ph.D. degrees in electrical engineering from
the University of California, Berkeley, CA, USA, in
2005 and 2009, respectively.

Since 2009, he has been with the faculty of the
University of Michigan, Ann Arbor, MI, USA, as
an Assistant Professor in the Department of Elec-
trical Engineering and Computer Science. His cur-
rent research interests include low-power and high-

performance VLSI circuits and systems for computing communications and
signal processing.

Dr. Zhang received the National Science Foundation CAREER Award in
2011, the Intel Early Career Faculty Honor Program Award in 2013, the David
J. Sakrison Memorial Prize for outstanding doctoral research in electrical en-
gineering and computer Science at UC Berkeley, and the Best Student Paper
Award at the Symposium on VLSI Circuits. He is an Associate Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I, REGULAR PAPERS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

