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Abstract—Hardware-based computer vision accelerators will be
an essential part of future mobile devices to meet the low power
and real-time processing requirement. To realize a high energy ef-
ficiency and high throughput, the accelerator architecture can be
massively parallelized and tailored to vision processing, which is
an advantage over software-based solutions and general-purpose
hardware. In this work, we present an ASIC that is designed to
learn and extract features from images and videos. The ASIC con-
tains 256 leaky integrate-and-fire neurons connected in a scalable
two-layer network of 8 8 grids linked in a 4-stage ring. Sparse
neuron activation and the relatively small grid keep the spike colli-
sion probability low to save access arbitration. The weight memory
is divided into core memory and auxiliary memory, such that the
auxiliary memory is only powered on for learning to save inference
power. High-throughput inference is accomplished by the parallel
operation of neurons. Efficient learning is implemented by passing
parameter update messages, which is further simplified by an ap-
proximation technique. A 3.06 mm 65 nm CMOS ASIC test chip
is designed to achieve a maximum inference throughput of 1.24
Gpixel/s at 1.0 V and 310 MHz, and on-chip learning can be com-
pleted in seconds. To improve the power consumption and energy
efficiency, core memory supply voltage can be reduced to 440 mV
to take advantage of the error resilience of the algorithm, reducing
the inference power to 6.67 mW for a 140 Mpixel/s throughput at
35 MHz.
Index Terms—Feature extraction, hardware acceleration, neural

network architecture, sparse coding, sparse and independent local
network.

I. INTRODUCTION

O NE key component in many classification algorithms in-
volves developing and identifying relevant features from

raw data. For some raw data types, e.g., image pixels and audio
amplitudes, there is often a set of features that more naturally de-
scribe the data. Sparse feature encoding helps reduce the search
space of the classifiers by modeling high-dimensional data as a
combination of only a few active features and, hence, can re-
duce the computation required for classification.

Manuscript received August 26, 2014; revised November 06, 2014; accepted
December 14, 2014. Date of publication January 20, 2015; date of current ver-
sionMarch 24, 2015. This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Cooperative Agreement HR0011-
13-2-0015. This paper was approved by Guest Editor Masato Motomura.
The authors are with the Department of Electrical Engineering and Com-

puter Science, University of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: knagphil@umich.edu; jungkook@umich.edu; tcchen@umich.edu;
zhengya@eecs.umich.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSSC.2014.2386892

Sparse coding [1] is a class of unsupervised learning algo-
rithms that attempt to both learn and extract the unknown fea-
tures that exist within an input dataset under the assumption
that any given input can be described by a sparse set of fea-
tures that it learns. The original Sparsenet algorithm that at-
tempts to find sparse linear codes for natural images develops
a complete family of features that are similar to those found
in the primary visual cortex [1]. (The features are also known
as receptive fields, and we will use feature and receptive field
interchangeably.) It was shown in [2] that a layer of Hebbian
units connected with anti-Hebbian feedback connections learns
a sparse code. Research in sparse coding has further evolved in
recent years. The sparse-set coding (SSC) network forms effi-
cient visual representations using a small number of active fea-
tures [3]. The locally competitive algorithm (LCA) implements
sparse coding based on neuron-like elements that compete to
represent the input [4]. The sparse and independent local net-
work (SAILnet) implements sparse coding using biologically
realistic rules involving only local updates [5]. SAILnet was
demonstrated to learn the receptive fields that closely resemble
those of the primary visual cortex simple cells [5].
The latest sparse coding algorithms are capable of extracting

biologically relevant features through unsupervised learning
and use inference to encode image using a sparse set of features,
therefore they accomplish the two important preprocessing
tasks for object classification, namely, feature extraction and
encoding. The sparse coding algorithms are naturally mapped to
a network of neurons, where the neuron activity is kept sparse,
which is an ideal property for low-power implementation. The
sparse coding algorithms produce sparse representation of an
input image for faster and lower power classification. The unsu-
pervised learning of features, the sparse activation of neurons,
and the biologically inspired sparse encoding are the key ad-
vantages of sparse coding compared to conventional methods,
such as scale-invariant feature transform (SIFT) [6]. The pri-
mary objective of this work is to achieve high performance
and low-power feature extraction and encoding, which will be
important for emerging embedded vision applications ranging
frompersonalmobiledevices tomicrounmannedaerial vehicles.
Sparse coding algorithms differ in their neural network imple-

mentation and learning rules. Some algorithms are nonspiking,
i.e., neurons communicate via analog signals [2], [4] and re-
quire off-line computation [4], while some recent algorithms are
spiking [5], [7], and the learning rules require only the knowl-
edge of local information [5]. In this work, we take advantage of
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the biologically plausible and implementation friendly SAILnet
algorithm [5] for the design of the sparse coding ASIC [8]. The
sparse coding ASIC is intended to be used in embedded vision
applications, including image encoding, feature detection, and as
a front end to a object recognition system [9], [10].However, this
work or variations of it can be potentially extended to nonvisual
classification tasks such as speech recognition.
The design of the sparse coding ASIC leverages many prior

works on neural network hardware, yet this ASIC is unique
as all aspects of its design are optimized for low-power and
high-throughput sparse coding. In the most recent literature,
SpiNNaker [11] and Neurogrid [12] are general-purpose
hardware. SpiNNaker is a massively parallel ARM processor
based, packet-switched system designed to provide a flexible
simulator for neuroscience experiments [11]. Neurogrid is
designed to perform arbitrary mathematical computations using
neurocores communicating via packets [12]. In comparison,
our design is a dedicated ASIC that is optimized for sparse
coding. In a related work, ConvModule is an event-driven 2-D
convolution neural network processor for object recognition
[13]. Despite the similarity of the application, our sparse coding
ASIC uses a completely different algorithm that learns features
to perform sparse image encoding. Mixed-signal neural nete-
work designs have been presented in [14], [15] with highly
efficient analog neurons and digital time-multiplexing bus,
while digital designs [16], [17] exhibit software-equivalent
deterministic behavior, better noise immunity, and scalability to
newer technology nodes, though not necessarily as efficient as
mixed-signal designs. The neurosynapic core [16] implements
digital neurons and crossbar connectivity, and uses SRAM to
store offline-trained weights. [17] uses a transposable SRAM
array to implement crossbar connectivity and on-chip learning
based on spike-timing-dependent plasticity (STDP). In this
work, we propose a two-layer network to take advantage of the
sparse spiking for a further simplification of the connectivity,
and rate-based learning is used instead of time-based learning.
In parallel with neural network developments, significant ad-

vancements have been made in recent years in making object
recognition processors. An object recognition processor in [18]
uses a cellular neural network based visual attention engine, to-
getherwith key point extraction and object databasematching.A
multi-object recognition processor in [19] was designed using a
perception engine based on neural-fuzzy logic, SIFT descriptor
and object database matching. A SIFT object recognition pro-
cessor in [20] was proposed with a top-down visual attention
feedback loop implementing neural-fuzzy inference to improve
visual attention. The latest neural-fuzzy object recognition pro-
cessor in [21] was designed to perform inference and learning
using neural-fuzzy algorithms. Impressive performance and en-
ergyefficiencyhavebeen reported. In comparison, thisworkuses
a completely neural network approach as a promising alternative
to the state of the art for learning and extracting salient features
and performing sparse encoding.
In the following, we present an introduction of the sparse

coding algorithm in Section II, followed by a detailed discus-
sion of the architectural features and chip design in Section III.
The test chip measurement results are presented in Section IV.
Section V concludes this work.

Fig. 1. Sparse coding mimicking sparse neural activities in primary visual
cortex. The input is reconstructed by weighted sum of receptive fields of model
neurons.

II. SAILNET SPARSE CODING ALGORITHM

A conceptual illustration of the biologically inspired sparse
coding processor is shown in Fig. 1 [8], [22]. The sparse coding
processor mimics the feature extraction performed by the pri-
mary visual cortex. Each neuron in the sparse coding processor
develops its receptive field, or feature, through unsupervised
learning. A neuron is activated and generates a spike when its re-
ceptive field is highly correlated with the input. The spikes are
kept very sparse through lateral inhibition. The spikes consti-
tute the sparse code that represents the input image. To check
the quality of sparse coding, the input image can be recon-
structed by the sparse code and the receptive fields. Fig. 2 shows
a whitened input image example, neuron receptive fields learned
by the SAILnet algorithm, and the reconstructed image using
the sparse code and the receptive fields. The close resemblance
of the reconstructed image to the input image demonstrates the
effectiveness of the SAILnet algorithm.
In this work, we quantitatively measure the quality of the

reconstructed image using a normalized root mean square
(NRMSE) metric. NRMSE is the root mean square error nor-
malized to the range. It is mathematically defined by

(1)

where is the th pixel of the input image, is the th pixel
of the reconstructed image, is the number of pixels in the
image. As an example, the NRMSE of the reconstructed image
in Fig. 2 is 0.085.

A. Algorithm Overview

The SAILnet sparse coding algorithm [5] tries to find a sparse
set of basis vectors known as receptive fields or features to
represent an input image. The SAILnet algorithm is naturally
mapped to a network of neurons, and one basis vector is asso-
ciated with one neuron. The SAILnet algorithm describes two
operations, learning and inference [5]. In learning, the basis vec-
tors are first initialized to random values, and through itera-
tive gradient descent, the algorithm converges to a dictionary
of basis vectors that allows for an accurate representation of
images similar to the training images using a small number of
the learned dictionary elements. Learning is done in the begin-
ning to set up the weights and occasionally afterwards to update
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Fig. 2. Sparse coding of (a) an input image using (b) 256 receptive fields of model neurons, and (c) neuron spikes and receptive fields are used to reconstruct the
input.

Fig. 3. Feedforward excitatory connections between neurons and pixels and
feedback inhibitory connections between neurons.

the weights if the dictionary poorly models new input data, so
no real-time constraint is placed on learning. However, infer-
ence needs to be done in real time. In inference, the algorithm
generates neuron spikes to indicate the activated basis vectors
from an input image. Generally, the library size, or alternatively
the number of neurons needed by this algorithm, is no less than
the number of pixels in the input image, as the overcomplete li-
brary tends to capture more intrinsic features and the sparsity of
neuron activity improves with an overcomplete library [5].

B. Neuron Connectivity and Dynamics

The neurons are fully connected to each other and each pixel
to implement the SAILnet algorithm. A weight is associated
with each connection. The feed-forward connections between
neurons and pixels are excitatory, and the associated weights are
called weights. The feedback connections between neurons
are inhibitory, and the associated weights are called weights.
An illustration is shown in Fig. 3 [5].
The neural network develops weights and weights

through learning. After learning converges, the weights of
the feedforward connections from a particular neuron represent
one basis vector in the dictionary. The weights represent
the strength of directional inhibitions between neurons, which

allow neurons to dampen the responses of other neurons if their
basis vectors are all highly correlated with an input. The lateral
inhibition forces the neurons to diversify and differentiate their
basis vectors and minimizes the number of active neurons.
The SAILnet algorithm is based on leaky integrate-and-fire

neurons [23]. The neuron activity with respect to an input image
is represented by the firing rate of the neurons. The synchronous
digital description of a neuron's operation is given by [5]

(2)

where is the voltage of neuron , and is the time index. is
the update step size, is the number pixels in the input image
patch, and is the number of neurons in the network. is the
value of pixel in the input image patch, and is the binary
output of neuron . is a matrix that stores the feed-
forward connection weights, and stores the weight of the
feedforward connection between neuron and pixel . is a

matrix that stores the feedback conection weights, and
stores the weight of the feedback connection from neuron

to neuron (directional). Neuron voltage increases due to input
excitation through the feed-forward connections and decreases
due to lateral inhibitions and a constant leakage term propor-
tional to the neuron voltage. When the neuron voltage exceeds a
threshold voltage, , the neuron generates a binary spike output
and the neuron voltage is reset to a zero. The threshold voltage
is a learned parameter specific to each neuron, given by

and is reset to if
if (3)

C. Local Learning Rules
weights, weights, and for each neuron are learned

parameters. In practice, a batch of training images are given as
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inputs to generate neuron spikes. The spike counts, , where
is the neuron ID (NID), are then used in parameter updates

following the equations below [5]:

(4)

where is the update iteration number, and are tuning
parameters to adjust the learning speed and convergence, is
the target firing rate in units of number of spikes per input image
per neuron, and is used to adjust the sparsity of neuron spikes.
One key advantage of the SAILnet learning rules is their locality
[5]. and updates for any particular neuron only involve the
spike count and firing threshold of that neuron, and update
only involves the pair of neurons that are part of the lateral con-
nection.

III. SCALABLE NETWORK ARCHITECTURE

The SAILnet algorithm can be mapped to a fully connected
neural network that consists of simple homogeneous neurons
[5]. It is straightforward to parallelize the neurons. However, the
communication necessary for sharing the outputs of neurons is
one limiting factor [22]. The direct implementation of a fully
interconnected network will result in a routing nightmare. In
this work, we present a scalable two-layer network architecture
that cleanly fits the communication requirements of the sparse
coding algorithm. In this architecture, the routing complexity is
reduced by replacing all one-to-one connections within a small
cluster of neurons with a single bus. The communications be-
tween clusters are carried by an upper-layer systolic ring con-
necting the clusters. The network architecture is described in
Section III-A.
A further complication is that memory to store weights

grows at and weights grows at , where
is the number of pixels and is the number of neurons. As a
result, the memory costs significant area and power for a suf-
ficiently large neural network. In this work, we optimize the
word length of the weights to reduce the memory storage and
partition the memory into two parts, so that, during real-time
inference, only one part of the memory is powered on to reduce
power consumption. The memory optimization is described in
Section III-C.
The results of this work are demonstrated in a 256-neuron

sparse coding processor for a 16 16 input image patch. For a
larger image, the image is divided into overlapping patches for
processing.

A. Two-Layer Sparse Spiking Neural Network

To implement the SAILnet algorithm, low-latency communi-
cation for broadcasting neuron spikes to all neurons needs to be
done for each inference step. Since each step is directly depen-
dent on the previous step, significant delays in communication
will alter the dynamics of the algorithm and worsen the image
encoding quality [22]. Interestingly, the sparse coding algorithm

produces a very low spike rate, making it possible to use an ef-
ficient communication fabric.
In a conventional bus structure [24], [25], communication is a

one-to-many broadcast and has low latency for small networks.
However, a bus does not scale well with network size. The high
fan-out and wire loading of a bus lead to large RC delays. Larger
neural networks also produce more spikes and thus higher spike
collision probability. Spike collisions need to be arbitrated [14],
[15], and, to serve many simultaneous spikes in a large net-
work, the bus needs to run at a higher speed than the neurons,
increasing the power consumption.
In a conventional ring structure [26], the on-chip intercon-

nects are all local, spikes propagate serially, and spike collisions
are eliminated. Since there are no spike collisions, no arbitration
is needed, fan-out is low, and the local wire capacitance does not
grow with the network size. Therefore, a ring structure is highly
scalable. However unlike the bus structure, the serial communi-
cation along a ring incurs high latency and alters algorithm dy-
namics. Significant communication latency degrades the image
encoding quality and yields unacceptable results [22].
We create a two-layer hybrid structure, shown in Fig. 4 [8], to

combine the unique advantages of the bus and ring structures.
At the lower layer, a small cluster of neurons are connected
in a bus. The size of the bus is chosen to keep the fan-out
and wire loading low, so that a low-latency broadcast bus can
be achieved. A small bus also keeps the spike collision prob-
ability low, so that spike collisions can be discarded and arbi-
tration removed with minimal impact on the image reconstruc-
tion error. At the upper layer, a ring is used to connect multiple
buses together into a larger network. The length of the ring, ,
is chosen to keep a low communication latency.
The sizes of the two layers of the hybrid architecture need to

meet the requirement that , where is the size of
the neural network ( in this work). There is a tradeoff
between and . The image reconstruction error is mea-
sured in simulation as we sweep the size of each pair
as shown in Fig. 5. A large (small ) increases the error
due to spike collisions, while a large increases the commu-
nication latency. We choose and to balance
the trade-off. Note that in this and subsequent simulations, we
used 1 million 16 16 image patches for training the network.
The inference results (image reconstruction error) are based on
16 K 16 16 image patches.

B. Local Grid Structure

In our implementation, each 64-neuron bus is further opti-
mized into a grid structure [12], [14]. The fan-out and wire
loading seen by each neuron is quadratically reduced compared
to a flat bus. The grid is constructed of static combinational logic
blocks, as opposed to a tri-state based approach that was found
to be slower and more power consuming.
The spike outputs of the 8 8 grid of neurons are OR'ed

together in every row and column as shown in Fig. 6. The
OR structure simplifies encoding of spikes to NID to be
transmitted to the network. A single spike results in one
row and one column output to be activated. The spike is
encoded using the address of the activated row and column
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Fig. 4. Two-layer network. Four grids are connected in a 4-stage systolic ring, and the snooping core is attached to the ring to record spikes.

Fig. 5. Effect of ring length on image encoding quality. Note that the bus
size is chosen such that .

together with the grid ID and a request bit, i.e.,
REQ grid ID row address column address .

The grid also allows the detection of spike collisions. Mul-
tiple spikes will result in two ormore rows and columns to be ac-
tivated. A simple collision detection logic is used to monitor the
number of activated rows and columns. Since collisions occur
very infrequently, detected collisions are discarded with negli-
gible loss in image reconstruction error. Removing collision ar-
bitration reduces the complexity and improves the throughput.

C. Core and Auxiliary Memory Partition
The 256-neuron network requires a 64 K-word memory

to store weights and a 64 K-word memory to store
weights. Memory size and power are constraining factors in
the hardware implementation. To reduce the word length, we
performed an empirical analysis of the fixed-point quantization
effects on the image reconstruction error. Given that the input

Fig. 6. Diagram of a 64-neuron 2-D grid connected with and memory.

pixels are quantized to 8b, results show that the word length can
be reduced to 13 b per weight and 8b per weight for a good
performance, as shown in Fig. 7. Longer word lengths produce
only marginal improvements.
Furthermore, we found that the word length required by

learning and inference differ significantly. Learning requires a
relatively long word length, i.e., 13b per weight and 8b per
weight to allow for a small enough incremental weight update
to ensure convergence, whereas the word length for inference
can be reduced to 4b per weight and 4b per weight for
a good image reconstruction error as shown in Fig. 8. To save
power, the memory is partitioned into a core memory to store
4b MSB of each weight and each weight, and an auxiliary
memory to store 9b LSB of each weight and 4b LSB of each

weight as shown in Fig. 9. This partition results in a 512 Kb
main memory (256 Kb to store weights and 256 Kb to store
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Fig. 7. and weight quantization for learning.

Fig. 8. and weight quantization for inference.

Fig. 9. Diagram of and memory partition. MSB values are stored in core
memory and used for both inference and learning. LSB values are stored in
auxiliary memory that is powered on during learning.

weights) and a 832 Kb auxiliary memory (576 Kb to store
weights and 256 Kb to store weights). Once the network has
been properly trained, the larger auxiliary memory is powered
down.
The access bandwidth of the core and auxiliary memory

also differ. The core memory is needed for both inference and
learning. In every inference step, a neuron spike triggers the
simultaneous core memory access by all neurons to the same
address corresponding to the NID of the spike. Therefore, the

core memory of all neurons in a local grid are consolidated to
support the wide parallel memory access by all neurons.
The auxiliary memory is powered on only during learning.

Since learning does not need to be in real time, it is implemented
in a serial way. Moreover, we implement approximate learning
to update weights and thresholds only for the most active neu-
rons, so the fully parallel random access to the auxiliary memory
is unnecessary. Hence, the auxiliary memory of all neurons in
a local grid are consolidated into a larger address space to im-
prove area utilization.

D. Parallel and Pipelined Inference

A total of 256 neurons are used in this architecture to perform
parallel leaky integrate and fire to generate spikes for inference.
Inference is done over a number of inference steps that is
chosen based on the neuron time constant and the inference
step size , i.e., , where is the inference period.
For a low image reconstruction error, is chosen to be suffi-
ciently long, e.g., , and the inference step size is chosen
to be sufficiently small, e.g., . With these choices,
the number of inference steps is .
The leaky integrate and fire described by (2) has two

main parts, namely excitation and inhibition
. Excitation computation is a vector dot

product (256 4 b 8 b multiplies in inference, 256 13 b 8 b
multiplies in learning) and it results in a constant scalar being
accumulated in every inference step, so excitation is computed
first using a multiply-accumulate in each neuron.
The inhibition computation is driven by spike events over the

inference steps. Since the term in (2) is binary, the inhibi-
tion computation is implemented with an accumulator, requiring
no multiplication. The inhibition computation is triggered by
neuron spikes, i.e., after receiving a spike NID. It takes up to
three clock cycles for an NID to travel along the 4-stage ring
to be received by every neuron, so a cycle-accurate implemen-
tation halts the inference for three cycles after an NID is trans-
mitted. In this way, the inhibition computation over the 64-step
inference requires up to cycles, assuming one
spike per inference step. To reduce the latency, we propose to
remove the halt to implement approximate inference. In approx-
imate inference, an NID will be received by neurons in different
grids at different times, triggering inhibition computations at
different times. Excessive spike latency may worsen the image
encoding quality. However, since the latency is limited to three
cycles, the fidelity is maintained as shown in Fig. 10. Using
approximation inference, the inhibition computation over the
64-step inference requires exactly 64 cycles.
The inference operation of this chip is divided into two

phases: loading and inference. For still images, loading would
take 256 cycles and inference would take 64 cycles. However,
in the case of streaming video, we assume that consecutive
16 16 frames can be well approximated by only updating 64
of the 256 pixels. Under this assumption, each step is done in
64 cycles, so that the two steps can be interleaved. The timing
chart is shown in Fig. 11. The pipelined processing enables
the inference of a 16 16 image patch every 64 cycles, or
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Fig. 10. Effect of spike communication latency (when no pipeline halt is im-
plemented).

Fig. 11. Inference timing chart.

pixel/s, where is the clock frequency
and in our design.

E. Learning Using Message-Passing Snooping Core

Learning is implemented on chip with a snooping core
that is attached to the ring to snoop spike events. To improve
efficiency, parameter updates in learning are done in a batch
fashion—spike events are accumulated in a cache for a batch of
up to 50 training image patches, followed by batch parameter
updates based on the recorded spike counts [5].
Our experimental evidence indicates that active spiking neu-

rons, i.e., neurons with high spike counts, affects learning the
most, and active spiking neurons also tend to spike early on. We
take advantage of this insight to approximate learning by allo-
cating a small cache to store the spike counts of the first batch of
neurons to fire. The approximation reduces the cache memory
size and the frequency of parameter updates in order to speed
up learning. Based on simulations, we chose a 10-word cache
for the snooping core. It is also possible to use a larger cache to
improve the image reconstruction error even further.
Of the three types of parameter updates done in learning,

, and update is the most costly computationally, as
it involves updating the weights of all feed-forward connec-
tions from the active spiking neurons. To simplify the control of
parameter updates, we use a message-passing approach. In the
update phase, the snooping core sends a update message for

each of the most active neurons recorded in the cache. The mes-
sage takes the form of {[1 b REQ] [8 b NID] [4 b SC]}, where
REQ acts as a message valid signal and SC is the spike count.
Messages are passed around the ring and broadcasted through
the grids. A small update logic is placed inside each grid to
calculate the weight update based on (4) when the NID of the

Fig. 12. Chip microphotograph.

message belongs to the grid. The updated weight is saved in the
9 b wide auxiliary memory. Occasional carry out bit from the
update will result in an update of the 4 b wide core memory.
The updates in all four grids can execute in parallel to speed
up the updates.

update involves calculating the correlation of spike counts
between pairs of the active spiking neurons. The snooping core
implements update by generating a update message for
each active spiking neuron pair. The update message is in the
form of {[1b REQ] [8b NID ] [8b NID ] [4b SC ] [4b SC ]},
where NID and NID are the pair of active spiking neurons,
and SC and SC are the respective spike counts. A small
update logic in the snooping core calculates the weight up-
date. The updated weight is saved in the 4 b wide auxiliary
memory, and the carry out bit is written to the 4 b wide core
memory.
Similarly, update is implemented by passing a updatemes-

sage in the form of {[1b REQ] [8b NID] [4b SC]}. updates are
done by the respective neurons in parallel.

IV. CHIP MEASUREMENT RESULTS
We incorporate the architectural and algorithmic ingredients

described above in an ASIC test chip implemented in a TSMC
65 nm CMOS technology [8]. The microphotograph of the test
chip is shown in Fig. 12 with key parts of the design high-
lighted. The test chip has four separate power rails for four
macro blocks: core logic (including neurons, grid and ring logic,
and snooping core), 512 Kb core memory implemented in 16
256 128 b register files, and 832 Kb auxiliary memory im-
plemented in four 2048 72 b SRAM to store weights and
a 2048 128 b SRAM to store weights, and a voltage-con-
trolled oscillator as the clock source.
The test chip is limited in the number of input and output pads,

therefore the input image is scanned bit-by-bit into the SRAM.
After the scan is complete, the chip can operate in its full speed.
We havemade the implicit assumption that the throughput of the
ASIC chip is not bounded by its input. We envision this ASIC
chip to be integrated with an imager, so that the image input can
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Fig. 13. Inference power consumption and breakdown.

be provided directly on-chip and not be limited by expensive
off-chip input and output.

A. Power and Performance

The test chip is fully functional. The measured inference
power consumption is plotted in Fig. 13, where each point in
the plot corresponds to the power consumption at the lowest
supply voltage at the given clock frequency. The auxiliary
memory is powered down in inference to save power. At room
temperature and 1.0 V core logic and core memory supply, the
test chip operates at a maximum clock frequency of 310 MHz
for inference, consuming 218 mW. At 310 MHz, the chip
carries out inference at 1.24 Gpixel/s (Gpx/s) at 176 pJ/pixel
(pJ/px). At 35 MHz and a reduced throughput of 140 Mpx/s,
the core logic supply can be scaled to 530 mV and core memory
supply can be scaled to 440 mV. The voltage and frequency
scaling reduce the power consumption to 6.67 mW and improve
the energy efficiency to 47.6 pJ/px.
The measured learning power is shown in Fig. 14. Similarly,

each point corresponds to the power at the lowest voltage at
the given frequency. The auxiliary memory is powered on
in learning. At room temperature and 1.0 V core logic, core
memory, and auxiliary memory supply, the test chip achieves a
maximum clock frequency of 235MHz for learning, consuming
228 mW. At 235 MHz, the test chip processes training images
at 188 Mpx/s. A large training set of 1 million 16 16 image
patches can be processed in 1.4 s. Learning requires writing to
memories, which requires a minimum supply of 580 mV for
the core memory and 600 mV for the auxiliary memory. At the
minimum supplies, the learning power consumption is reduced
to 6.83 mW at 20 MHz. The energy efficiency and performance
metrics are summarized in Table I.
The test chip is the first reported work of dedicated silicon

for sparse coding. As a fully digital ASIC implementation, it is
most relevant to the prior works on fully digital neural networks
[16], [17], both of which contain 256 neurons. Table II compares
the key features. Note that the algorithms used are different, so
a direct comparison is not very meaningful.

Fig. 14. Learning power consumption and breakdown.

TABLE I
CHIP SUMMARY

TABLE II
COMPARISON WITH PRIOR WORKS
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Fig. 15. Tradeoff between image reconstruction error and memory power consumption.

B. Error Tolerance

One interesting aspect of the sparse coding algorithm is its re-
silience to errors in the stored memory weights. This resilience
stems from the inherent redundancy of the network and the
ability to correct errors through on-line learning. In order to ex-
plore the benefit of this error tolerance, we looked at voltage
over-scaling of the core memory in inference for potential en-
ergy savings to exploit the potential tradeoff possible with this
system.
Although no dedicated test structure was created in the test

chip for the precise measurement of the error rate seen by the
internal circuitry during runtime, we tried to approximate the
memory bit error rate using the scan chain interface to first
write and verify the correct known values at the nominal 1.0 V
supply, and then lower the supply voltage, run inference, and
read out the values for comparison. Fig. 15 shows the increase
of the NRMSE and the reduction of memory power dissipation
at supply voltages down to 330 mV and memory bit error rate
up to about . The NRMSE curve is relatively flat up to bit
error rate of . The rapid increase of NRMSE occurs when
the bit error rate is above . The error tolerance measure-
ments, though approximate, highlight the potential for use of
low-power unreliable memory elements in the implementation
of sparse coding processors.

V. CONCLUSION

We present a 256-neuron ASIC design for sparse coding.
To solve the communication bottleneck, a two-layer network
is designed to link four 64-neuron grids in a ring to balance
capacitive loading and communication latency. The sparse
neuron spikes and the relatively small grid keep the spike
collision probability low enough that collisions are discarded
with only slight effect on the image reconstruction error. To
reduce memory area and power, we divide memory into a core
memory and an auxiliary memory that is powered down during
inference to save power.

The parallel neural network permits a high inference
throughput. Parameter updates in learning are serialized to save
the implementation overhead, and the number of updates is
reduced by an approximate approach that considers only the
most active neurons. A message passing mechanism is used to
run parameter updates without costly controls.
The test chip performs inference at 1.24 Gpx/s at 1.0 V and

310 MHz, and on-chip learning can be completed in seconds.
The error resilience of the sparse coding algorithm provides
extra margin for voltage over-scaling. At 440 mV core memory
supply, the inference power consumption is reduced to 6.67 mW
for an energy efficiency of 47.6 pJ/px.
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