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Abstract 

A sparse coding ASIC is designed to learn visual receptive fields and infer 
the sparse representation of images for encoding, feature detection and 
recognition. 256 leaky integrate-and-fire neurons are connected in a 2-
layer network of 2D local grids linked in a 4-stage systolic ring to reduce 
the communication latency. Spike collisions are kept sparse enough to be 
tolerated to save power. Memory is divided into a core section to support 
inference, and an auxiliary section that is only powered on for learning. 
An approximate learning tracks only significant neuron activities to save 
memory and power. The 3.06mm2 65nm CMOS ASIC achieves an infer-
ence throughput of 1.24Gpixel/s at 1.0V and 310MHz, and on-chip learn-
ing can be completed in seconds. Memory supply voltage can be reduced 
to 440mV to exploit the soft algorithm that tolerates errors, reducing the 
inference power to 6.67mW for a 140Mpixel/s throughput at 35MHz. 

Introduction 

Visual receptive field (RF) of a neuron [1] is a region of space in which 
the presence of a stimulus alters the firing of the neuron. RFs can be un-
derstood as features or basis functions of images. Sparse and independent 
local network (SAILnet) [2] is a machine learning algorithm known as 
sparse coding [1] that learns RFs through training a network of model 
neurons, and infers the sparse representation of the input image using the 
most salient RFs (Fig. 1). Inference based on the learned RFs enables ef-
ficient image encoding, and detecting features and objects [3], [4]. How-
ever, the implementation of an energy-efficient high-throughput sparse 
coding processor faces challenges of on-chip interconnect and memory 
bandwidth to support the parallel operations of hundreds or more model 
neurons. Existing hardware designs cannot be adapted for sparse coding 
[5], [6], and they often resort to off-chip memory and processing [6]-[8]. 

Two-Layer Grid-Ring Network Architecture 

We develop the first fully integrated sparse coding ASIC that consists of 
256 digital neurons, 64K feed-forward synapses, and 64K feedback syn-
apses. The sparse coding chip performs both unsupervised learning and 
inference on-chip. The RF of each model neuron is initialized with ran-
dom noise, and each neuron learns its RF through training images. After 
learning converges, the chip is able to perform inference to encode images 
by the sparse activation of neurons, i.e., neuron spikes. To check the fi-
delity of inference, the input image can be compared with its reconstruc-
tion by the weighted sum of the RFs of the activated neurons (Fig. 2). 

Each model neuron in the sparse coding chip is a compute node that per-
forms leaky integrate-and-fire [2]. A two-layer network is designed to al-
low all neurons to communicate efficiently: a cluster of 64 neurons are 
connected in a 2D grid (Fig. 3) that improves the communication delay 
over a 1D bus; and the root nodes of four grids are connected in a 4-stage 
systolic ring (Fig. 4). The grid size is designed to limit the wire loading 
for sub-ns timing and bound the spike collision rate; and the ring is kept 
short to reduce latency. We exploit the soft algorithm to tolerate occa-
sional spike collisions. Collisions are detected and tolerated to save power, 
and we verify that a 5% or lower collision rate is tolerated without causing 
any noticeable degradation in fidelity. 

Memory Partition and Approximate Learning 

Each model neuron stores RFs, termed Q weights (256 entries for a 16×16 
image patch), and synaptic strengths, termed W weights (256 entries, one 
for each neuron). The Q and W weights of a cluster of 64 neurons are 
stored together in Q and W memory for a higher efficiency. We optimize 
the word length of Q and W weight to 11 and 8 bits, respectively, to min-
imize storage and guarantee reliable convergence. After learning con-
verges, the Q and W weight can be further shortened to 4 bits each for 
inference with minimal loss in fidelity. We exploit the difference in word 
length requirements between learning and inference to partition the Q and 

W memory to two sections that are placed on separate supply rails: the 
core section to support inference, and the auxiliary section that is only 
powered on for learning. The core memory is implemented in high-band-
width register file to support real-time inference. The auxiliary memory 
is implemented in a lower-bandwidth SRAM to provide the extra bits 
needed for learning. As learning is called less frequently, the SRAM 
power consumption becomes negligible. On-chip learning is nonetheless 
orders of magnitude faster and lower power than off-chip learning. 

Learning and inference make use of the same network of model neurons, 
but learning also updates Q and W weights, which dictates the learning 
speed. Learning is done by a snooping core attached to the top-level ring 
to listen to neuron spikes and record the activities in a cache (Fig. 4). After 
a batch of training images, the snooping core reads the cache and makes 
weight adjustments according the SAILnet learning rules [2]. To acceler-
ate learning and reduce the cache size, we implement approximate learn-
ing to record the activities of only the first 10 neurons that spike for each 
input image patch. Experimental evidence points to the fact that the neu-
rons that spike first tend to be the most active. The remaining neuron ac-
tivities play a minor role, and can be safely ignored. 

Chip Measurement and Error Tolerance 

The sparse coding ASIC test chip is implemented in TSMC 65nm CMOS 
(Fig. 7). Input images are scanned in to an SRAM for testing. Inference 
operates at a maximum 310MHz, consuming 218mW at 1.0V and room 
temperature. Inference is carried out in steps for each 16×16 input image 
patch. For a high fidelity, the number of steps is set to at least 64, which 
translates to a maximum inference throughput of 1.24Gpixel/s (Gpx/s) at 
an energy efficiency of 176pJ/px (Fig. 5, Table I). To enable learning, the 
auxiliary memory is powered on. Learning consumes 228mW at 1.0V and 
235MHz for a learning speed of 188Mpx/s (Fig. 6, Table I). A training set 
of 1 million 16×16 image patches is completed in 1.4s. 

The sparse coding algorithm is error tolerant, and with on-chip learning, 
errors can be corrected by on-line training. Our measurements indicate a 
gradual degradation of the normalized root-mean-square error (NRMSE) 
of the reconstructed image (measure of fidelity) until the core memory 
supply is lowered to 390mV, where a nearly 10-3 core memory bit error 
rate results in no more than 0.03 NRMSE in inference (Fig. 8). The error 
tolerance is exploited to reduce power. The core memory supply voltage 
can be reduced to 440mV, while still keeping NRMSE within 0.01. To-
gether with voltage scaling the core logic, the inference power consump-
tion is reduced to 6.67mW for an inference throughput of 140Mpx/s, im-
proving the energy efficiency 48pJ/px (Fig. 5, Table I). Learning requires 
writing to memory, which places lower bounds on the core and auxiliary 
memory supply at 580mV and 600mV, respectively. At these low sup-
plies, the learning power consumption is reduced to 6.8mW for a learning 
speed of 16Mpx/s (Fig. 6, Table I). A comparison with recent literature is 
presented in Table II. The on-chip learning capability, as well as the 
achieved high throughput and energy efficiency demonstrate the potential 
of the sparse coding ASIC for embedded vision processing tasks. 
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Fig. 3. 2D grid of a cluster of 64 neurons. Spike collisions are 
detected and tolerated to save power.
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Fig. 4. 4-stage systolic ring connecting 4 2D local grids. A snooping core 
is attached to the ring to record neuron spikes for learning.
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Fig. 1. Sparse coding mimicking neural coding in the primary visual cortex. 
The input image can be reconstructed by the weighted sum of receptive fields 
of model neurons.

Fig. 2. (a) Receptive fields learned by model neurons through training, (b) an input 
image presented to the sparse coding ASIC, and (c) the reconstructed image based on 
the neuron spikes obtained by inference.
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TABLE II: COMPARISION WITH PRIOR WORKS

RBM

Core Area

Reference

# Neurons

# Synapses

Algorithm

Application

Interconnect

Technology

Mem size

This work

256

128K

2-layer grid 
and ring

1.31Mbits

SAILnet

Image 
sparse coding

TSMC 65nm

 3.1mm2

Merolla [6]

256

256K

Crossbar

256Kbits

Digit 
recognition

IBM 45nm

 4.2mm2

Learning Off chip On chip

Energy metric  48pJ/pixel 45pJ/spike

Bitwith 
of a Synapse

8 and 
11 bits

1 bit

Seo [5]

256

64K

Crossbar

256Kbits

STDP 

Pattern 
recognition

IBM 45nm

 4.2mm2

On chip

-

4 bits

Energy Efficiency 
(pJ/pixel)

Throughput 
(Mpixel/s)

TABLE I: CHIP SUMMARY

Technology 

Core Area 

Chip Area                      

Frequency (MHz)    

Core logic (V)

Core mem (V)
Aux. mem (V)

TSMC 65nm GP CMOS 

(Core logic: 1.16mm2,
  Core mem: 1.01mm2           
  Aux. mem: 0.89mm2)  

 2.11 × 2.11mm (4.45mm2)

Inference Learning

Power (mW)

31035    

1.000.53

1.000.44

1240140

2186.67

175.847.6

20 235

1.000.50

0.000.00

1.000.58

1.000.60

18816

228.16.83

1213426.9
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Fig. 5. Measured inference power consumption: core 
memory power, core logic power, and total inference 
power (auxiliary memory is powered off in inference). 
Power is measured at the minimum logic and memory 
supply voltages for each clock frequency.

Fig. 8. Measured normalized root-mean-square error 
(NRMSE) in inference with increasing core memory bit 
error rate. The core memory supply voltage is annotated.
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Fig. 7. Chip microphotograph
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Fig. 6. Measured learning power consumption: core 
memory power, auxiliary memory power, core logic 
power, and total learning power (auxiliary memory is 
powered on in learning). Power is measured at the 
minimum logic and memory supply voltages for each 
clock frequency.

10-210-310-410-510-6

       
2014 Symposium on VLSI Circuits Digest of Technical Papers


