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Abstract—Sparse coding encodes natural stimuli using a small
number of basis functions known as receptive fields. In this
work, we design custom hardware architectures for efficient and
high-performance implementations of a sparse coding algorithm
called the sparse and independent local network (SAILnet). A
study of the neuron spiking dynamics uncovers important design
considerations involving the neural network size, target firing rate,
and neuron update step size. Optimal tuning of these parameters
keeps the neuron spikes sparse and random to achieve the best
image fidelity. We investigate practical hardware architectures
for SAILnet: a bus architecture that provides efficient neuron
communications, but results in spike collisions; and a ring ar-
chitecture that is more scalable, but causes neuron misfires. We
show that the spike collision rate is reduced with a sparse spiking
neural network, so an arbitration-free bus architecture can be
designed to tolerate collisions without the need of arbitration.
To reduce neuron misfires, we design a latent ring architecture
to damp the neuron responses for an improved image fidelity.
The bus and the ring architecture can be combined in a hybrid
architecture to achieve both high throughput and scalability. The
three architectures are synthesized and place-and-routed in a 65
nm CMOS technology. The proof-of-concept designs demonstrate
a high sparse coding throughput up to 952 M pixels per second at
an energy consumption of 0.486 nJ per pixel.

Index Terms—Algorithm and architecture co-optimization,
hardware acceleration, neural network architecture, sparse and
independent local network, sparse coding.

I. INTRODUCTION

B ETTER understanding of the mammalian primary visual
cortex has led to advances in computer vision [1], [2]. The

visual cortical neurons respond to visual stimuli with spikes.
The visual feature or region that stimulates a cortical neuron in
the visual cortex is known as the receptive field of the neuron
[3]–[5]. (In this work, we consider receptive field to be excita-
tory [3]–[5], but in general, the receptive field of a neuron can
also be inhibitory.) The receptive fields of the visual cortical
neurons can be compared to the basis functions that form the
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natural images we see, and are closely related to the intrinsic
structures of natural images. Learning the receptive fields and
neuron activities allows us to carry out many complex vision
processing tasks, including efficient encoding of images and de-
tecting features and objects [6], [7].
Much progress has been made in training unsupervised ma-

chine learning algorithms using natural images to build recep-
tive fields that resemble the receptive fields of the primary visual
cortex. Among the most promising candidates are the sparse
coding algorithms [8]–[13] that learn to represent natural im-
ages using a small number of receptive fields. The Sparsenet
algorithm by Olshausen and Field [8] attempts to minimize the
mean neuron activity in learning the representation of natural
images, and it is shown to reproduce the receptive fields that
match the key qualitative features of the receptive fields of the
primary visual cortex. The sparse-set coding (SSC) network by
Rehn and Sommer [11] tries to minimize the number of active
neurons, and it successfully predicted the distribution of recep-
tive field shapes found in the primary visual cortex of cat and
monkey.
Sparse coding algorithms can be mapped to a biologically

inspired network of computing nodes, or “neurons”. Foldiak
proposed a network of model neurons with feed-forward
connections between neurons and stimulus, and inhibitory
feedback connections between neurons [9]. The feed-forward
connection weights are updated by the Hebbian rule [14] to
strengthen a feed-forward connection when an input pattern
matches the receptive field; and the feedback connection
weights are updated by the anti-Hebbian rule to suppress
correlated neuron activities and enforce sparse activation. The
locally competitive algorithm (LCA) by Rozell et al. [12]
is naturally mapped to a network similar to what Foldiak
proposed. In Rozell’s network, a model neuron’s membrane
potential charges up in response to input stimulus at a rate
depending how well the input pattern matches the neuron’s
receptive field, and when the potential exceeds a threshold, the
neuron emits an action potential to inhibit neighboring neurons.
LCA was shown to perform the optimal sparse approximation
that minimizes the mean squared error (MSE) of image recon-
struction and a sparsity cost function. The parallel network of
neurons implementation is appealing, but the model neurons
in Foldiak’s network were designed to communicate with
analog signals. Also, the weight updates in Rozell’s network
are performed offline by costly global computations.
Recently, Zylberberg et al. proposed sparse and independent

local network (SAILnet) algorithm to perform sparse coding
using spiking neurons and local update rules [13]. The SAILnet
algorithm was demonstrated to learn the full diversity of the
primary visual cortex simple cell receptive field shapes when
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trained on natural images. The SAILnet algorithm enables a fun-
damentally more efficient mapping to a network of spiking neu-
rons that uses only local computation in weight updates. The
spiking neural network consists of a set of interconnected simple
computing neurons that communicate using binary spikes. In
contrast to modern multi-core von Neumann processors that are
optimized for sequential tasks and often limited by interconnect
and memory bandwidth, the biologically inspired spiking neural
network is an inherently parallel array of self-adapting compu-
tational units that are ideally suited for computer vision pro-
cessing. This work aims at building a dedicated sparse coding
hardware to be used as the front-end vision processor to achieve
both high throughput and energy efficiency, while maintaining
a high image fidelity. The hardware will be fully integrated with
both inference and on-chip learning capability with low power
and silicon area, so that it can be applied to embedded vision
processing.
The implementation of a sparse coding hardware can

leverage a large body of prior work on neural network im-
plementations. The direct mapping of neural network onto
VLSI hardware [15] is not scalable due to the overwhelming
interconnect and memory bandwidth necessary to support the
full connectivity between neurons and the access to synaptic
weights. More scalable architectures including bus [16], ring
[17] and array [18] solved the interconnect bottleneck, and
the invention of address-event representation (AER) [19], [20]
enables the efficient time-multiplexing of sparse neuron spikes
on a shared bus. Since then, much progress has been made in
the key challenging areas of compact synaptic weight storage
[21]–[23], efficient neuron and synapse circuits [21]–[25], and
scalable synaptic connections [22], [23], [25]–[28]. The latest
wave of new hardware designs have demonstrated increasing
capabilities, from simulating real-time spike-timing-dependent
plasticity [24] and cortical circuits [21] to digit recognition [22]
and pattern recognition [23], from multilayer vision sensing
and actuation [26] to performing arbitrary mathematical com-
putations [25] and simulating neuroscience experiments [27].
At the same time, the integration scale has gone from tens of
neurons [24] to over 10 K neurons [26] and over 10 M synaptic
connections [25], and the power consumption has been lowered
to mW level [23] and the energy reduced to tens of pJ/spike
[22]. However, some of the latest works are not directly appli-
cable to sparse coding due to the mismatch of learning rules
and our requirement of entirely on-chip learning capability.
The general-purpose solutions are applicable, but they are not
tailored to sparse coding algorithm, thus the energy and area
efficiency will be sacrificed.
In this paper, we design custom hardware for the SAILnet

sparse coding algorithm [13], and focus on a synchronous digital
implementation which exhibits robust deterministic logical be-
havior at nominal operating conditions [23]. Alternative designs
including analog and asynchronous approaches offer unique ad-
vantages and are also expected to affect algorithm dynamics.
They remain our future work and will not be discussed in this
paper.
The SAILnet algorithm is unique as it constrains neuron

spikes to be very sparse and uncorrelated [9], [13]. The unique
characteristic enables more efficient hardware architectures.

On the other hand, the hardware architecture also regulates
the dynamics of the sparse coding algorithm, thereby affecting
the fidelity of sparse coding. This paper presents a hard-
ware-algorithm co-design for sparse coding, and its technical
contributions are two folds: (1) a better understanding of the
sparse coding algorithm, including algorithm dynamics and
tuning parameters, which translate to hardware performance
and complexity; and (2) custom hardware design that is tailored
to the sparse coding algorithm to achieve the highest throughput
and energy efficiency.
We consider bus and ring architectures for sparse coding

based on prior works, but our emphasis on hardware-algorithm
co-design goes beyond prior works. It is known that a bus archi-
tecture [16], [29] provides an efficient neuron communication
and a high throughput, but it results in spike collisions. Though
collisions negatively impact the fidelity of sparse coding, we
find that their occurrences are vastly reduced with a sparse
spiking network and a sufficiently small neuron update step,
so the collisions can be tolerated without requiring arbitration.
The arbitration-free bus operates at the same clock speed as
the neurons, saving significant area and power compared to
the conventional synchronous AER bus [21], [24]–[26] that
requires arbitration and a higher bus speed to serve neuron
requests in a timely manner. It is also known that a ring archi-
tecture [17] eliminates spike collisions altogether, but neurons
communicate in a serial fashion along the ring, delaying in-
hibitions and causing neurons to misfire. By damping neuron
responses to reduce neuron misfires, we show that the fidelity
of sparse coding can be optimally tuned. The resulting latent
ring architecture is more scalable than the bus architecture.
Combining the bus and ring into a hybrid architecture of mul-
tiple small buses connected in a short ring reduces the collision
rate and communication latency for the optimal sparse coding
performance and throughput.
We demonstrate through synthesis and physical place-and-

route three 512-neuron networks in a 65 nm CMOS technology,
one implemented in an arbitration-free bus architecture, one
implemented in a latent ring architecture, and the other imple-
mented in a hybrid bus-ring architecture. The bus architecture
is more area efficient, but the ring architecture runs at a higher
frequency. The hybrid bus-ring architecture takes advantage
of both the bus and the ring architecture for a high throughput
of 952 M pixels per second (Mpx/s) at 0.486 nJ/px. These
proof-of-concept designs demonstrate the high throughput and
efficiency that can be achieved in practical implementations of
the SAILnet sparse coding algorithm.

II. BACKGROUND

We first review the two operation phases, inference and
learning, of a sparse coding algorithm implemented in a neural
network. In the learning phase, a spiking neural network is
trained using images to extract a library of features. During
learning, the neural network updates the connection weights to
optimally adapt to the operating environment. Training image
pixels excite the neurons, which then generate binary (1 or 0)
spikes [9], [10], [13] that are propagated through the neural
network. When a neuron spikes, it updates its feed-forward
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Fig. 1. A spiking neural network for inference.

connection weight. When a neuron sees a spike from a neigh-
boring neuron, it updates the feedback connection weight. The
updates are based on a learning rule. Upon convergence, the
neural network will have finalized a library of feed-forward
connection weights, which resemble the receptive fields, as
well as the feedback connection weights that regulate the
interactions between neurons.
Learning is very compute-intensive as it involves weight up-

dates, but learning is done infrequently – in the beginning for
setting up the weights and occasionally to update the weights to
accommodate changes in the operating environment. The deci-
sion to switch learning on and off is made by a controller that is
external to the sparse coding processor, e.g., if the sparse coding
processor is integrated as part of a vision system, the system
decides whether to switch learning on or off. More specifically,
when the sparse coding processor is moved to a new operating
environment, e.g., a different terrain, it needs to update the re-
ceptive fields to reflect the new operating environment. There is
no real-time constraint on learning and its power budget is not
the most critical due to its infrequent activation.
In the inference phase, the neural network receives an input

image and responds by neuron spikes that correspond to the re-
ceptive fields that are activated, as illustrated in Fig. 1. Using
a sparse coding algorithm, such as SAILnet [13], spikes will
be kept very sparse, thus the neural network will be capable of
encoding an image using a sparse set of receptive fields. Tasks
including image reconstruction, target extraction and tracking
can be performed based on the neuron firing and the receptive
fields.
Inference is also compute-intensive, but to a lesser extent

compared to learning, because it does not perform weight up-
dates. However, inference needs to be done in real time. Fur-
thermore, inference is always on and its power consumption
needs to be minimized. In this paper, we develop optimized al-
gorithm and hardware architecture to reduce the implementation
cost and power consumption of a sparse coding hardware for in-
ference. As inference shares the same hardware as learning, the
efficiency of learning is also improved.

A. Spiking Neuron Model

A biological neuron in the visual cortex receives stimuli
from visual inputs and other neurons in the network in the
form of electrical signals. The received stimuli will increase or
decrease the neuron’s membrane potential. The neuron fires an
action potential, or spike, when its membrane potential reaches
a threshold value [30]. After the firing, the neuron resets its
membrane potential for the next firing.
Fig. 2 describes a simple passive or leaky integrate-and-fire

(IF) neuron model, including a current source and a par-
allel RC circuit [30]–[32]. The current source in a neuron

Fig. 2. Integrate-and-fire neuron model.

Fig. 3. Feed-forward connection between neuron and pixel, and feedback con-
nection between neurons.

is determined by the inputs and the activities of other neurons
in the network along with feed-forward and feedback connec-
tion weights. The current is mathematically formulated as
a continuous-time function.

(1)

where denotes an input pixel value, represents the
spike train generated by neuron ( if neuron fires
at time , and otherwise). is the weight of the
feed-forward connection between input pixel and neuron ,
and is the weight of the feedback connection from neuron
to neuron , as labeled in Fig. 3. is the number of pixels.
Equation (1) can be interpreted as that the input stimuli increase
the current (an excitatory effect) and the neighboring neuron
spikes decrease the current (an inhibitory effect).
The voltage across the capacitor represents a neuron’s

membrane potential. The resistor in parallel with the capacitor
models the membrane resistance. While the current source
charges up the capacitor and increases the membrane potential,
some current leaks through . The following equation describes
the leaky integration of the membrane potential.

(2)

When exceeds a threshold voltage , set by the diode,
the neuron output emits a spike, or a spike train over
time. After firing, the capacitor is discharged through a small

, i.e., , to reset . Note that the spiking
neural network described above uses binary spikes to communi-
cate between neurons, different from a non-spiking neural net-
work [11], [12] or a spiking neural network that relies on analog
voltage or current as the way to communicate between neurons
[9], [10].
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For simulation and digital implementation of the neuron, it is
customary to discretize the continuous-time voltage and current
equations to

(3)
where is the neuron update step size, and
is the neuron time constant. is normalized by the time
constant .

B. Sailnet Learning Rule

In the learning phase, the firing threshold and the weights
and are constantly updated according to a learning rule.

The SAILnet learning rule [13] provides a good performance
and is also shown to successfully produce key features of recep-
tive fields in mammalian visual cortex. The SAILnet learning
rule enforces sparse and independent neuron spiking, and it in-
volves only local computations, both of which are implementa-
tion-friendly features. In the following, we briefly introduce the
SAILnet learning rule. In response to an input image , neurons
in the network generate spikes, and the spikes can be used to re-
construct the input image based on the learned dictionary of re-
ceptive fields. The dictionary of receptive fields is simply the
set of feed-forward connection weights:
where is the total number of neurons in the network and

are feed-forward connection weights as-
sociated with the connections between neuron and each pixel
of the input image patch. The reconstructed image is ob-
tained by the linear combination of the dictionary elements [13],
known as the linear generative model.

(4)

where denotes the number of spikes generated by neuron in
response to an input image, collected over an inference window
. Given a neuron update step size of , the number of update
steps . With these, , where
is either 1 or 0, indicating whether neuron has spiked at time
step . Using the SAILnet learning rule [13], the spikes are kept
sparse, and the majority of the terms in the summation of (4) are
zero.
The SAILnet algorithm minimizes the mean squared error

(MSE) between the input image and the reconstructed image
while satisfying the constraints of sparse and decorrelated

neural activities across the network [13]. The two constraints
are justified by the experiments in [33], [34]. The solution to the
constrained optimization problem is the SAILnet learning rule
that governs the iterative updates of the firing thresholds, feed-
back connection weights, and feed-forward connection weights:

(5)

where , , are tuning parameters, and is the target firing
rate, or the number of spikes per image, which is set to a low

Fig. 4. (a) A digital neuron design, and (b) a fully connected network for sparse
coding.

value, and and indicate the current and the next update
iteration. Note that the above learning rule is local: neuron
updates the firing threshold and the feed-forward connection
weight based on its own spike count, and it updates the
feedback connection weight based solely on the activity of
the pair of neurons that are associated with the connection. For
a detailed derivation of these learning rules, see [13].
In the learning phase, input stimuli and neuron spikes trigger

updates of firing thresholds, feedback connection weights and
feed-forward connection weights following (5). In the inference
phase, the thresholds and weights are all fixed.

III. HARDWARE IMPLEMENTATION CHALLENGES

A binary spiking and discrete-time neuron model described
above makes it possible to design a simple digital neuron, as il-
lustrated in Fig. 4(a). The neuron is connected to input pixels
and neighboring neurons through point-to-point links.
The neuron contains two memories: memory to store feed-
forward connection weights ( entries in total, one per each
pixel) and memory to store feedback connection weights
( entries in total, one per each neighboring neuron). The
neuron performs leaky integrate-and-fire described in (3) in re-
sponse to pixel inputs and neuron spikes.
The size of the neural network depends on the size of the

input image patch. For example, to detect features in a 16 16
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Fig. 5. (a) 144 randomly selected receptive fields (each square in the grid represents a 16 16 receptive field), (b) whitened input image, and (c) reconstructed
image using sparse code.

image patch of 256 pixels, at least a overcomplete network
of 512 neurons is needed. Each neuron in this network requires a
256-entry memory and a 511-entry memory, which easily
dominate the size of the digital neuron. To implement the fully
connected network [15], each neuron needs to be connected to
256 pixel inputs and 511 neighboring neurons. The fully con-
nected network provides the highest throughput of
image patches per second, or pixels/s (px/s),

where is the clock frequency, is the number of neuron
update steps for each inference. The fully connected network as
illustrated in Fig. 4(b) is however impractical due to the high
interconnection overhead that grows at for a network of
neurons.
Regardless of the practicality, the fully connected network is

often the underlying assumption of neural network algorithms.
The performance of the algorithms using the fully connected
network can be simulated in software to provide the baseline
reference. In Fig. 5, we show the performance of a 512-neuron
network in feature detection and image reconstruction after it
has been trained using the SAILnet learning rule. In the begin-
ning of each training, the weights are set to zero, and the
weights are initialized with Gaussian white noise. Fig. 5(a)

shows 144 sample neurons’ receptive fields ( weights) that
are obtained after learning. Fig. 5(b) is the input 512 512
whitened natural image from [35]. Whitening of natural images
is an operation that flattens the amplitude spectrum. Whitening
is done by computing the 2D FFT of the original images,
passing through a 2D ramp filter (since the amplitude spectrum
of natural images tends to be , where is the frequency),
followed by 2D IFFT [6], [36]. The whitened image is divided
to 16 16 patches as the inputs to the neural network for in-
ference. Fig. 5(c) is the reconstruction of the image using the
linear generative model (4) with the neuron spikes obtained
from the fully connected network and the neurons’ receptive
fields ( weights). The fidelity of sparse coding is measured
by the error in the reconstructed image by the linear generative
model. In the following we will use root-mean-square error
(RMSE) as the image fidelity metric.

IV. DYNAMICS OF SPARSE CODING ALGORITHM

Sparse coding implemented in a neural network is a dynamic
system, and its learning and inference are dependent on the
neuron update step size and the target neuron firing rate .
controls the step size of the neuron potential update. The

smaller the , the more the number of time steps and the closer
the discrete-time system mimics a continuous-time system for a
higher accuracy, but the longer it takes for learning to converge,
so intuitively determines the tradeoff between accuracy and
throughput. controls the target firing rate, and is set to a low
value to maintain sparse firing. A low is also appealing as the
sparse firing results in sparse communication and low power
consumption. However, the sparseness is relative to the neural
network size. A small network is not likely to support a low
firing rate.
We analyze the influence of and and relate them to the

neuron spike rate pattern that underpin the performance of the
SAILnet algorithm. In the following experiments, we first train
the network based on given and values, and then perform
inference using the trained network. A fully connected network
is assumed. The focus here is on the dynamics of the network
when it is performing inference, consistent with the motivation
outlined previously.

A. Spike Rate Pattern

The neuron spike rate pattern is depicted in Fig. 6 as the av-
erage spike rate at each time step across a network of 512
neurons when performing inference with a target firing rate of

. is varied between to , and the inference
window is set to . determines the number of time steps
in the window , i.e., . For example, if ,

. Suppose a fully connected digital neural network oper-
ating at a clock frequency of , the sparse coding throughput
is image patches per second. The throughput of the net-
work is inversely proportional to , and thus proportional to .
To measure the spike rate, the neuron potential is initialized

to 0 before performing each inference. When presented with an
input image patch, some neurons will start to charge up and fire,
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Fig. 6. Average spike rate at each time step across a network of 512 neurons
when performing inference with a target firing rate of .

leading to a rise of the spike rate until it starts to settle to a steady
state. The target firing rate determines the average spike rate
summed over the inference window , i.e., ,
where is the spike rate at time step . A larger step size
means fewer time steps , and a higher spike rate in each time
step to meet the a given target firing rate .
Varying has a pronounced effect on the spike rate pattern,

as seen in Fig. 6. A large results in a large peaking of the spike
rate, which is attributed to the quick rise of neuron potentials:
many neurons fire together after a few initial steps and then in-
hibitions take effect to silence most of the neurons. The bursts
of neuron spikes are not desirable for implementation, because
they lead to competitions for hardware resources and commu-
nication bandwidth. A small results in a sparse, random, and
more evenly distributed spike rate over time, and a more effi-
cient utilization of hardware resources.
The influence of can be understood by the distribution of

the neuron firing threshold and the distribution of the feed-
back connection weights (inhibitory weights). The neuron
firing threshold controls the sparseness of neuron spikes [13]:
the higher the threshold, the more difficult it is to reach the
threshold, thus fewer spikes are expected. The feedback con-
nection weight controls the correlation between neuron spikes
[13]. A higher positive feedback connection weight indicates
a strong inhibition – when one neuron spikes, the other neu-
rons will be strongly inhibited to de-correlate spike activities.
Fig. 7(a) shows the cumulative distribution function (CDF) of
the neuron firing threshold, and Fig. 7(b) shows the CDF of the
feedback connection weights for different values. A smaller
results in higher neuron firing thresholds and feedback con-

nection weights, which confirm the observation that a smaller
produces more sparse and random spikes that are amenable

for an efficient implementation.
The smaller update step size improves the fidelity of sparse

coding, as evidenced in the lower RMSE in image reconstruc-
tion by the linear generative model, as shown in Fig. 8. There-
fore it is advantageous to choose the smallest that meets the
throughput requirement.

Fig. 7. (a) CDF of neuron firing thresholds, and (b) CDF of feedback connec-
tion weights for different values.

Fig. 8. RMSE of the image reconstruction by sparse code using different step
size .

B. Target Firing Rate

The target firing rate determines the average spike rate. A
low results in a low average spike rate, as seen in Fig. 9 for a
network of 512 neurons with and . Reducing
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Fig. 9. Average spike rate at each time step across a network of 512 neurons
when performing inference with .

Fig. 10. (a) CDF of neuron firing thresholds, and (b) CDF of feedback connec-
tion weights for different values.

raises the firing thresholds and the feedback connection weights,
as shown in Fig. 10(a) and (b), and creates a more sparse and
random spiking network.

Fig. 11. RMSE of the image reconstruction by sparse code using different
target firing rate .

Fig. 12. RMSE of the image reconstruction by sparse code using different
target firing rate and network size.

A low target firing rate is attractive for an efficient im-
plementation, but a very low raises the RMSE, as seen in
Fig. 11. In a network of 512 neurons, results in an
average of only spikes over the inference
window. The linear generative model (4) contains less than
a handful of terms, which are insufficient for sparse coding.
Raising to 0.02 doubles the number of spikes and reduces
the RMSE. Continued increase of improves the RMSE until
reaches about 0.045, or about 23 spikes over the inference

window. The RMSE then worsens as the spikes start to crowd.
Therefore, while we optimize the SAILnet algorithm for sparse
and random spikes, a minimum number of spikes are needed
for a good RMSE.
To verify the minimum number of spikes necessary, we de-

signed networks of 256, 512, 768, and 1024 neurons, and ana-
lyzed the choice of , as illustrated in Fig. 12. A lower RMSE is
attainable in a larger network, but only with a good choice of .
The optimal is lower in a larger network: about 0.09 in the 256
network, 0.045 in the 512 network, 0.03 in the 768 network, and
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Fig. 13. (a) Neuron communication via AER protocol, and (b) neuron commu-
nication via arbitration-free bus.

0.025 in the 1024 network, which all point to the almost constant
optimal number of spikes to be around 20 to 25 regardless of the
size of the network.
The above analysis yields two important insights: (1) a min-

imum number of spikes are needed for a good RMSE, and more
spikes beyond the minimum are not necessary, and (2) sparse
and random spikes result in better RMSE. The two insights
guide the selection of the neural network size along with the
target firing rate for the best tradeoff between RMSE and im-
plementation cost, and the selection of the update step size for
the best tradeoff between RMSE and throughput.

V. ARBITRATION-FREE BUS ARCHITECTURE

A bus allows many neurons to be connected [16], [29], re-
placing individual point-to-point links altogether. A bus can be
used to connect pixel inputs to the neurons using a pixel bus,
and connect neurons together using a neuron bus.
Once the inputs are complete, neurons will be ready to per-

form integrate and fire and generate spikes. The spikes are ex-
changed on the neuron bus. Since the neuron spikes are random,
arbitration is required to resolve the conflicts when multiple
neurons try to access the bus at the same time. An arbiter de-
cides the order that the access is granted depending on a pre-
or a dynamically determined priority. The design of an arbiter
is complicated by a large neural network, as the arbiter needs
to serve many neurons and handle large fan-in and fan-out con-
nections, and the service time is critical as excessive delays alter
the algorithm dynamics and degrade the performance. Solutions
have been proposed to structure the arbiter design to reduce its
fan-in and fan-out connections and improve its service time, but
increasing the hardware cost [21], [24]–[26].
AER is a popular time-multiplexing communication protocol

for the neuron bus. Fig. 13(a) explains the protocol [19], [20].
When a neuron fires, the AER encoder puts the address of the
neuron on the AER bus and asserts a request REQ. All neurons
are attached to this bus. Upon hearing REQ, neurons read the
address from the bus and perform integrate and fire. If neuron
spikes are very sparse, AER enables an efficient sharing of the

bus. When there are more than one spike at the same time, it re-
sults in a collision, and arbitration is required to resolve the con-
flict. To be able to handle multiple requests in a timely manner, a
synchronous AER bus needs to operate at a higher clock speed.
If spikes happen in bursts, the bus speed has to be increased fur-
ther. An asynchronous AER bus is potentially beneficial, but in
this work we focus on a synchronous bus.

A. Arbitration-Free Bus

The power-consuming arbitration and higher bus speed are
used to resolve spike collisions. If the collisions can be toler-
ated, arbitration is removed and the bus will run at the same
clock speed as neurons, leading to a more efficient bus architec-
ture. The sparse and independent neuron firing backed by the
SAILnet algorithm [13] is promising, as the spike rate is kept
low and the spikes are random, making the collision rate much
lower than a conventional neural network. It is then plausible to
adopt an arbitration-free bus that tolerates spike collisions.
An arbitration-free bus architecture can be designed as in

Fig. 13(b). Each neuron is equipped with a tri-state transmitter
(TX) and an inverter as receiver (RX). The TX and RX are
assumed to be symmetrical, i.e., the pull-up and pull-down
strength are balanced. (The assumption is used to simplify the
analysis.) When a neuron fires, it puts its address (composed of
multiple bits) on the shared neuron address bus. All neurons are
attached to the address bus. Upon detecting an address-event,
neurons will read the address and perform integrate and fire.
The bus runs at the same clock frequency as the neurons. A
collision occurs when multiple neurons spike at the same time,
as they will all attempt to drive their addresses onto the bus. We
assume a collision resolution scheme to match the implemen-
tation in Fig. 13(b): if a bus line is driven by multiple neurons,
the pull-up and pull-down strength determine the “winning”
bit. For example, if there are neurons pulling up a line and
neurons pulling down a line, the winning bit will be 1 if ,
0 if , and a random draw if (as the voltage level
will be in the undetermined region and the RX output will be
determined by noise). The throughput of the bus architecture is

image patches per second, same as the fully connected
network.

B. Spike Collisions

A collision on the neuron address bus results in spike corrup-
tion. The winning neuron address in a collision may not match
any of the competing neurons involved in the collision. There-
fore, the fidelity of sparse coding will be sacrificed. Tominimize
the degradation, the collision rate needs to be kept low.
The spike collision probability can be analytically derived

by assuming that the spikes are independent. The independent
spikes assumption is backed by the SAILnet algorithm [13]. A
collision occurs when two or more spikes occur in the same time
step, thus the average collision probability in each time step is
given by

where is the size of the network, which is assumed to be large,
and is the spike rate in each time step, which is assumed to
be low and close to 0. By Taylor series expansion of
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and at , and keeping only the first two terms
in each expansion, we get

Assume that is approximately the target firing rate averaged
over the time steps, i.e., , the above equation can
be written as

(6)

Note that is the total number of spikes over the inference
window, which remains approximately constant if the target
firing rate is optimally set based on the size of the network, as
discussed previously. The result (6) suggests the collision prob-
ability’s quadratic dependence on the total number of spikes
within the inference window averaged over the number of time
steps. In a network of 512 neurons with a target firing rate of

, , the average collision probability
.

As an experimental verification of (6), the arbitration-free bus
is first trained to learn the feed-forward and feedback connec-
tion weights and firing thresholds, and then used to perform in-
ference. Fig. 14(a) shows the average collision probability of
the four networks of size with
a target firing rate , respec-
tively. The neuron update step size , and the number
of time steps . The average collision probability of
each of the four networks is approximately 5%, which agrees
with the analytical result. Collisions result in a small increase
of the RMSE in image reconstruction using the linear genera-
tive model, as shown in Fig. 14(b).
The dependency of the collision probability on is plotted in

Fig. 15(a) for a network of 512 neurons that perform inference
with a target firing rate . Note that the neuron update
step size is inversely proportional to the number of time steps
. The neuron update step size is varied from to ,

and the collision probability decreases quadratically, confirming
the analytical result in (6). A small helps spread spikes over
more steps, resulting in a much lower collision probability and
RMSE, as shown in Fig. 15(b).
The efficient arbitration-free bus architecture provides the

same throughput as a fully connected network. It also avoids
using AER that requires a bus arbiter and a higher bus speed.
To implement the arbitration-free bus architecture, the neuron
update step size needs to be kept sufficiently low to maintain
a low spike collision rate for a good RMSE.

VI. LATENT RING ARCHITECTURE

Systolic ring [17] is a serial relay architecture as shown in
Fig. 16. In the simplest setup, the communication in a ring is
unidirectional, i.e., a neuron can only talk to one neighboring
neuron. When a neuron spikes, it passes the spike as an address-
event to the next neuron, who then passes the address-event one
step further, and so on.

A. Spike Generation and Propagation

In a digital implementation, a spike address-event steps
through one neuron every clock cycle. For a spike to be heard

Fig. 14. (a) Collision probability in 256, 512, 768, 1024-neuron arbitration-free
bus with , respectively, and (b) RMSE of
the image reconstruction by sparse code obtained from the arbitration-free bus
compared to a fully connected network.

by all neurons, it will have to travel along the entire ring, which
takes clock cycles, where is the size of the network.
Once an address-event reaches its originating neuron, the event
is deleted. One advantage of the ring over the bus is that it
is more scalable because communications are local, and it
eliminates all collisions. The throughput of the ring architecture
is image patches per second. The short connections
between neighboring neurons allow the ring to run at a higher
clock frequency than a fully connected network or a bus.
Even though the throughput of the ring architecture can be

as high as the fully connected network or the bus, a choice of
will result in the incomplete propagation of spikes,

since it takes a minimum of clock cycles for a spike to
be propagated through the ring. As a result, some of the spikes
are lost. Another consequence of the serial spike propagation
along the ring is that the inhibitions due to neuron spikes do
not take effect immediately, which allows neuron potentials to
grow without inhibitions and mistakenly fire. The delayed inhi-
bitions eventually take effect to suppress the spike rate later in
the propagation. The two factors, spike losses due to incomplete
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Fig. 15. (a) Collision probability in a 512-neuron arbitration-free bus with
, and (b) RMSE of the image reconstruction by sparse code obtained from

the arbitration-free bus compared to a fully connected network.

Fig. 16. A ring architecture.

spike propagation, and neuron misfires due to delayed inhibi-
tions, worsen the fidelity of sparse coding.

B. Damping Neuron Responses

Unlike in the bus where the spikes reach all neurons within
one clock cycle, the serial spike passing in the ring takes much
longer to reach all neurons. Neuron potentials will grow, and
without seeing spikes immediately, the potential will grow to

Fig. 17. Average spike rate at each time step across a 512-neuron ring when
performing inference with a target firing rate of .

high levels, resulting in many more spikes. The majority of
the spikes are actually misfires, which contribute to errors. The
spike rate pattern of a network of neurons in a ring
with update step size of and number of update steps

is shown in Fig. 17. The distinctive spike rate pattern of
the ring is compared with the fully connected network, showing
the spike rate grows up to an order of magnitude higher due to
neuron misfires, followed by a depression as the inhibitions take
effect to suppress the spikes. Note that since , spikes
do not reach all neurons. The neuron misfires and spike losses
result in a high RMSE.
The serial spike passing along the ring slows down the inhi-

bitions, whereas the neurons are active in every update step and
ready to fire. The mismatch between the inhibitions and excita-
tions cause many neurons to misfire. To improve the fidelity of
sparse coding, the inhibitory and excitatory effects need to be
balanced. A simple scheme is to implement a holding policy:
each neuron is allowed to propagate one spike every cycle, but
perform inference update only once every cycles. For ex-
ample, setting will allow each neuron to update once
every two cycles. The number of inference steps is still , so
the spikes will propagate to neurons. The holding policy
reduces the excessive excitatory strength. Longer spike prop-
agation also reduces spike losses. As Fig. 18(a) shows, after
implementing holding, the misfire rate is lower and the RMSE
improves until reaches about 6, as shown in Fig. 18(b). Note
that in the example of and , when ,

, i.e., spikes are allowed to propagate around the en-
tire ring, eliminating spike losses.
The holding policy is one way of implementing a “latent” ring

that damps neuron responses to adapt to the slow spike propaga-
tion. During holding, each neuron disables firing. To implement
holding of cycles, a -entry memory needs to be added to each
neuron to store up to address-events. The latent ring decreases
the throughput to image patches per second, where

should be set to close to for the best RMSE.
An alternative approach to damp the neuron response is to

use a smaller neuron update step size . A smaller increases



KIM et al.: EFFICIENT HARDWARE ARCHITECTURE FOR SPARSE CODING 4183

Fig. 18. (a) Average spike rate of a 512-neuron ring with holding, and (b)
RMSE of the image reconstruction by sparse code obtained from the ring that
implements holding.

the number of update steps for a fixed window . Fig. 19(a)
shows the spike rate pattern as is reduced from to ,
the misfire rate is reduced significantly. The RMSE improves
with a lower , as indicated in Fig. 19(b), and the best RMSE is
reached between and , or when .
A latent ring is a scalable network. The serial spike prop-

agation slows down the inhibitions and neuron responses are
damped to match the slow spike propagation for a good RMSE.
The damping decreases the throughput, but a higher clock fre-
quency can be achieved with the ring architecture than the bus
architecture.

VII. HYBRID BUS-RING ARCHITECTURE

The arbitration-free bus architecture is efficient and provides
high throughput but its clock speed is limited by capacitive
loading, so the number of neurons that can be connected to a
bus is limited. The latent ring architecture is scalable, but the
extra delay introduced hurts the throughput. Therefore, we pro-
pose to combine bus and ring in a hybrid architecture.

Fig. 19. (a) Average spike rate of a 512-neuron ring by changing update step
size , and (b) RMSE of the image reconstruction by sparse code obtained from
the ring.

Fig. 20. A 512-neuron 2-layer bus-ring architecture, consisting of 4 neuron
clusters.

The hierarchical bus-ring architecture is implemented in a
two-level hierarchy, as illustrated in Fig. 20. At the first level,
neurons are grouped into local clusters, and the neurons in a
cluster are connected in a bus. The cluster size is limited to con-
trol the capacitive loading of the bus to maintain a high clock
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Fig. 21. (a) Collision probability in a 512-neuron hybrid network with
and , and (b) RMSE of the image reconstruction by sparse code

obtained from the hybrid network.

speed. At the second level, a small number of clusters are con-
nected in a ring. The length of the ring is kept short to mini-
mize the communication latency. The spike address-events are
generated in local clusters and then propagated through the ring
to broadcast to all other clusters. The throughput of the hybrid
architecture is image patches per second. The hybrid
architecture is scalable as buses are kept short, and the commu-
nication latency is reduced compared to a global bus or a long
ring.
With short local buses in the hybrid architecture, the prob-

ability of spike collision is reduced. Using (6) and assuming
that the spikes are independent, the collision probability is re-
duced quadratically with smaller clusters, and more clusters are
needed for a given neural network size, as shown in Fig. 21(a).
With a reduced collision probability and faster spike propaga-
tion through a short ring, the hybrid architecture allows for an
efficient implementation of the SAILnet sparse coding algo-
rithm to achieve an excellent RMSE with as few as 4 clusters,

TABLE I
65 NM CMOS CHIP SYNTHESIS RESULTS.

as shown in Fig. 21(b). In the next section, we compare hard-
ware implementation results to demonstrate the advantages of
the hybrid architecture.

VIII. CHIP DESIGN RESULTS

As a proof of concept, we synthesized a 512-neuron net-
work for sparse coding in a TSMC 65 nm CMOS technology.
One design was implemented in an arbitration-free bus archi-
tecture, one was implemented in a latent ring architecture with
a holding factor , and a third design was implemented in
a hybrid bus-ring architecture with a 4-stage ring connecting 4
128-neuron buses.
Learning and inference are both soft operations that are intrin-

sically noise tolerant. The feed-forward weight and the feed-
back are quantized to 4 bits with minimal impact on RMSE,
saving significant memory and complexity. To improve the area
utilization, the and memories of 32 neurons are grouped
together to increase the word size and amortize the addressing
overhead. Memory grouping is feasible in a bus architecture or
a hybrid architecture because all neurons in a bus or a cluster (in
the hybrid architecture) will be accessing the same address in the
memories in response to a pixel input, and the same address

in the memories in response to a neuron spike. However,
memory grouping is not possible in a ring architecture, because
each neuron receives spikes at different times, and the memory
accesses are not synchronized. With a holding policy, neurons
perform updates every cycles, so the memories of neurons
are grouped together to save area. The three designs are synthe-
sized using Synopses Design Compiler, and place-and-routed
using Cadence Encounter. The results are compared in Table I,
where core area refers to the area of the design excluding pe-
ripheral circuits, such as clock generation, testing circuits, and
input and output pads. The designs are built using standard cells
and SRAMs, and the memory capacity and standard cell count
are also reported.
The area of the bus and the hybrid architectures are smaller

than the ring because memories can be grouped together into
larger arrays to save area. The bus architecture runs at a max-
imum clock frequency of 357 MHz (2.8 ns clock period), lim-
ited by the capacitive loading of the bus. The ring and the hy-
brid architecture can run faster at up to 385 MHz and 370 MHz,
receptively. Note that the 512-neuron network is still relatively
small to see a notable difference in clock frequency. For a larger
network, we expect the difference will be more pronounced.
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At 357 MHz, the power consumption of the three architec-
tures can be compared. The ring architecture consumes the
highest power, due to the smaller memory arrays that incur a
higher overhead. The bus architecture consumes less power
with the help of larger memory arrays that amortize the over-
head. The hybrid architecture consumes the least power due to
larger memory arrays and a reduction in bus loading. At 357
MHz, the throughput of the hybrid architecture is 952 Mpx/s,
which is fast enough to process 3980 3980 image frames at 60
frames per second at a low energy consumption of 0.486 nJ/px.
The ring architecture is more scalable than the bus architec-

ture. To support an even larger network, the area and power of
the ring architecture are expected to scale up linearly. However,
the ring delays spike propagation, which lowers the throughput.
The hybrid bus-ring architecture divides the bus into smaller
clusters, which is more scalable than a flat bus architecture, and
it improves the throughput and RMSE over the latent ring ar-
chitecture.

IX. CONCLUSION

In this work, we design efficient neural network architectures
for the mapping of the SAILnet sparse coding algorithm. By
exploring the dynamics of the algorithm in a digital neural net-
work, we show that a low target firing rate and a small neuron
update step size are necessary to maintain sparse and random
neuron spikes for an efficient use of hardware resources. The
optimal target firing rate is dependent on the network size, and
the minimum neuron update step size is determined by the
throughput requirement.
For a practical implementation of the SAILnet sparse coding

algorithm, three network architectures are considered: a bus ar-
chitecture that provides a shared medium for neuron communi-
cations, and a ring architecture that serializes neuron commu-
nications. The bus architecture results in spike collisions and
requires access arbitration. We show that the collision rate is
quadratically dependent on the number of spikes averaged over
the number of neuron update steps. Keeping the spikes sparse
and random by a small neuron update step reduces the collision
rate to about 5%, small enough that the errors due to collisions
are tolerated by the SAILnet algorithm with only a small im-
pact on the RMSE. We design an efficient arbitration-free bus
architecture that tolerates spike collisions and removes bus ac-
cess arbitration.
A conventional ring architecture propagates spikes serially,

delaying inhibitions and causing neurons to misfire. The mis-
fires are fundamentally due to the mismatch between slow inhi-
bitions and fast neuron responses. To reduce the neuronmisfires,
the neuron responses are damped by a holding policy in a latent
ring architecture, where each neuron is allowed to propagate one
spike every cycle, but only allowed to perform inference update
once every cycles ( ). Alternatively, the neuron responses
can be damped by a small update step size.
The arbitration-free bus architecture and the latent ring

architecture are combined in a hybrid bus-ring architecture
to achieve a better scalability than the bus architecture, and
a higher throughput than the ring architecture. Synthesis,
place-and-route in 65 nm CMOS show that the hybrid archi-
tecture occupies the same area as the bus architecture, and it

consumes the lowest power. At 357 MHz, the hybrid archi-
tecture achieves a throughput of 952 Mpx/s at 0.486 nJ/px.
The proof-of-concept designs demonstrate the high throughput
and energy efficiency of practical implementations of sparse
coding.
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