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Abstract—Iterative image reconstruction can dramatically
improve the image quality in X-ray computed tomography (CT),
but the computation involves iterative steps of 3D forward- and
back-projection, which impedes routine clinical use. To accelerate
forward-projection, we analyze the CT geometry to identify the
intrinsic parallelism and data access sequence for a highly parallel
hardware architecture. To improve the efficiency of this architec-
ture, we propose a water-filling buffer to remove pipeline stalls,
and an out-of-order sectored processing to reduce the off-chip
memory access by up to three orders of magnitude. We make
a floating-point to fixed-point conversion based on numerical
simulations and demonstrate comparable image quality at a much
lower implementation cost. As a proof of concept, a 5-stage fully
pipelined, 55-way parallel separable-footprint forward-projector
is prototyped on a Xilinx Virtex-5 FPGA for a throughput of
925.8 million voxel projections/s at 200 MHz clock frequency, 4.6
times higher than an optimized 16-threaded program running on
an 8-core 2.8-GHz CPU. A similar architecture can be applied
to back-projection for a complete iterative image reconstruction
system. The proposed algorithm and architecture can also be
applied to hardware platforms such as graphics processing unit
and digital signal processor to achieve significant accelerations.

Index Terms—Algorithm and architecture co-optimization,
hardware acceleration, iterative image reconstruction, separable
footprint projection, X-ray computed tomography.

I. INTRODUCTION

X -RAY computed tomography (CT) is a widely used med-
ical imaging method that produces three-dimensional

(3D) images of the inside of a body from many two-dimen-
sional (2D) X-ray images. A 2D X-ray image captures X-ray
photons that pass through a body. As different materials atten-
uate X-ray differently, they can be effectively differentiated
by their attenuation coefficients. Using many X-ray images
taken around an axis of rotation, the attenuation coefficient of
each volume element (voxel) can be reconstructed, providing
high-resolution imaging for medical diagnosis.
In current clinical practice, a single CT scan using a state-of-

the-art helical CT scanner records up to several thousand X-ray
images taken in multiple rotations as the patient’s body is moved
slowly through the scanner. The projections are captured on
an array of detector cells and a dedicated computer is used for
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image construction. Efficient algorithms, such as filtered back-
projection (FBP) [1] and its variants, are in common commer-
cial use to handle large projection data sets and reconstruct im-
ages at sufficient throughput. However, being an analytical algo-
rithm, FBP disregards the effects of noise. To improve the image
quality and/or reduce X-ray dose, statistical image reconstruc-
tion methods have been proposed [2], [3]. These methods are
based on accurate projection models and measurement statis-
tics, and formulated as a maximum likelihood (ML) estimation.
Iterative algorithms such as conjugate gradient (CG) [4], coor-
dinate descent (CD) [5] and ordered subsets (OS) [6], have been
proposed. These algorithms find theminimizer of a cost function
by iterative forward- and back-projection. Iterations increase the
compute load substantially over FBP and impede routine clin-
ical use.
Recently, a separable footprint (SF) projection algorithm was

designed to simplify the forward-projection by approximating
the voxel footprints as separable functions [7]. The SF projector
has high accuracy and favorable speed, but it is still very compu-
tationally intensive: each forward- and back-projection requires
on the order of 100 billion floating-point multiply-accumulate
(MAC) operations, requiring minutes or longer for each for-
ward- and back-projection on a state-of-the-art multicore mi-
croprocessor [8].
High-performance computing platforms have been proposed

to accelerate image reconstruction. For example, graphics
processing unit (GPU) has recently been demonstrated to
achieve 10 to 100 times speedup over a microprocessor for
image reconstruction [9], [10]. As a vector processor, GPU can
be programmed for efficient parallel processing [11]. Provided
with sufficient memory bandwidth, GPU accomplished a 30
times speedup of cone-beam Feldkamp (FDK) back-projection
over a system based on 12 2.6-GHz dual-core Xeon processors
[9], and a 12 times speedup of algebraic reconstruction [10].
Field-programmable gate array (FPGA) is an another family
of hardware platforms that enable more flexibility in mapping
parallel computation with an improved efficiency. It was shown
to accomplish a 6 times speedup of the cone-beam Feldkamp
(FDK) back-projection [9], [12]. However, existing GPU and
FPGA implementations are tailored to analytical reconstruction
algorithms or algebraic reconstruction methods [9], [10], [12],
[13], and challenges still remain in mapping statistical iterative
algorithms.
In this paper, we propose architecture and algorithm co-op-

timization for iterative image reconstruction. We show through
numerical simulation that iterative image reconstruction algo-
rithm can be robust to quantization noise. Even with a much
shorter word length and coarse quantization, the resulting noise
introduced to the reconstructed image is limited, causing no per-
ceptual degradation in image quality. The results provide the
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Fig. 1. Axial cone-beam arc-detector geometry for X-ray CT.

basis of a fixed-point quantization that cuts the memory band-
width and reduces the complexity of arithmetic operations, thus
enabling more parallel implementations.
We propose a highly efficient hardware architecture based on

a thorough geometry analysis that helps simplify complex con-
trol loops, eliminate data dependencies, and maximize temporal
and spatial locality of reference. In particular, we present algo-
rithm restructuring to take advantage of loop-level parallelism,
water-filling buffer to minimize pipeline stalls, and out-of-order
scheduling to compress off-chip memory bandwidth to enable
more parallel architectures.
A prototype 55-way parallel SF forward-projector is demon-

strated on a Xilinx Virtex-5 FPGA [14] as a proof of concept.
The design is capable of completing 925.8 million voxel pro-
jections/s. The proposed architecture is also applicable to back-
projection and motivates more efficient designs on alternative
hardware platforms including GPU and digital signal proces-
sors (DSP). The numerical and geometrical insights can be em-
ployed in both software and hardware implementations of iter-
ative image reconstruction to achieve significant accelerations.

II. BACKGROUND

Current generation CT systems have a cone-beam projection
geometry, illustrated in Fig. 1 [3], [15]–[17]. The X-ray source
rotates on a circle centered at on the plane.
The angle indexes the projection view measured from posi-
tive -axis to X-ray source. For each angle , the source emits
X-rays that project the volume onto the detector. The transaxial
direction is perpendicular to and the axial direction is par-
allel to .

A. Statistical Iterative Image Reconstruction

ACT system captures a large series of projections at different
view angles, recorded as sinogram. Mathematically, sinogram
can be modeled as , where represents the volume
being imaged, is the system matrix, or the forward-projection
model, and denotes measurement noise. The goal of image re-
construction is to estimate the 3D image from the measured
sinogram . A statistical image reconstruction method performs
the ML estimation of based on detector measurement sta-
tistics. The estimation can be formulated as a solution to a
weighted least square (WLS) problem [3], [18].

(1)

Fig. 2. Block diagram of iterative image reconstruction.

where is a diagonal matrix with entries based on
photon measurement statistics [3]. A solution to (1) sat-
isfies [18]. If is invertible, the
unique solution to (1) is given by ,
where , the adjoint of the system matrix, represents the
back-projection model. This solution can be interpreted as the
weighted back-projection of , followed by a deconvolution
filter . As the deconvolution filter has a high pass
characteristic, the deconvolved image is affected by high
frequency noise [18]. One approach to control this noise is to
add a penalty term to form a penalized weighted least square
(PWLS) [3], [18] cost function:

(2)

where is known as the regularizer and is a regularization
parameter. One example of is an edge-preserving regular-
izer [19].
Minimizing (2) requires iterative methods [4]–[6]. In this

paper we consider a diagonally preconditioned gradient descent
method to solve (2) [6], [18]:

(3)

The solution is obtained iteratively. In each iteration, a new
3D image estimate is obtained by updating the previous
image with a chosen step, the negative gradient of the cost
function scaled by . Fig. 2 shows a block diagram of
this iterative approach. To start, the CT scanner produces the
measured sinogram, and the FBP algorithm is used to estimate
the initial image , followed by computed forward-projection
to obtain the computed sinogram . The error between the
computed and measured sinogram is back-projected

, then offset by a regularization term. The result
is scaled by , and used to improve the initial image to produce

. The image is iteratively updated to minimize the cost
function.

B. Forward- and Back-Projection

Forward and back-projection are the most computationally
intense operations in iterative image reconstruction due to the
large size of the system matrix . It is infeasible to store , thus
the forward-projection , and back-projection

in (3) are computed on the fly.
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The forward-projection is mathematically based on the
Radon transform. The Radon transform of a 3D volume

at view angle is described by the line integrals [7]:

(4)

where is the line that connects the X-ray source and
the detector cell at . In a practical implementation, a 3D
continuous volume is discretized to a collection of
volume elements, or voxels , where
is the voxel coordinate. The grid spacings are
and dimensions are along the directions.
Let be the common voxel basis function, defined as a
cubic function, , and

be the location of voxel .
We have

(5)

To account for the finite detector cell size, the projection is
convolved with the detector blur . Following a common
assumption that the detector blur is shift invariant, independent
of the view angle , and acts only along and coordinates,
then the ideal noiseless forward-projection on the detector cell

centered at is given by

(6)

where

(7)

and

(8)

where is the footprint of voxel
and is the blurred footprint. For a
detailed description of this derivation, see [18]. The sep-
arable footprint (SF) method [7] approximates the blurred
footprint function as the product of and

, thus (6) is approximated as

(9)

Based on (9), one complete forward-projection involves
multiplication and summation over six nested loops:

, and . For a practical object made up of
more than 10 million voxels, a SF forward-projection that
comprises more than 900 view angles, as in a commercial
axial CT scanner [3], requires on the order of 100 billion
multiply-accumulate (MAC) operations. In the following sec-
tions, we explore architecture and algorithm co-optimization to
accelerate the SF forward-projection.
For the sake of completeness, we briefly summarize back-

projection. Back-projection is the operation that smears the pro-
jection in detector space back into the object space to recon-
struct the 3D volume [18]. Back-projection is mathematically
described as

(10)

where is the weighted difference between measured
sinogram and the computed sinogram . Similarly, the
SF method approximates back-projection as

(11)

Note that the equations governing forward- and back-projec-
tion are similar and they also share a common architecture. In
this paper, we will focus the discussions on forward-projection,
but the results can also be applied to back-projection.

III. QUANTIZATION ERROR INVESTIGATION

Iterative CT image reconstruction algorithms are usually
implemented in 32-bit single-precision floating-point quantiza-
tion. Floating-point arithmetic costs more hardware resources
and longer latency than integer (or fixed-point) operations. The
substantially smaller area and higher speed provide strong in-
centives for using fixed-point operations. However, fixed-point
quantization introduces errors that may degrade image quality.
We show in the following that good image quality can be
achieved with appropriate quantization choice and sufficient
number of iterations.
Our experiment was done using a 61-slice test volume, with

each slice made up of 320 320 voxels. Errors are defined in
reference to a baseline that is the image reconstructed using
32-bit floating-point quantization after 1 000 iterations. We
converted floating-point to fixed-point and varied the word
length and quantization of each parameter and operand. Mean
absolute error (MAE) and root mean square error (RMSE) of
the image update in every iteration were measured compared
to the baseline. The errors are expressed in Hounsfield unit
(HU), which is a linear transformation of the linear attenuation
coefficient (the attenuation coefficient of water at standard
pressure and temperature is defined as 0 HU and that of the air
is HU).
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Fig. 3. (a)Mean absolute error and (b) root mean square error of iterative image
reconstruction using floating-point and fixed-point quantization.

TABLE I
FIXED-POINT QUANTIZATION OF ITERATIVE IMAGE RECONSTRUCTION

We used an OS algorithm [6] with 82 subsets which is a vari-
ation of (3) that uses a subset of the projection views for each
update. Fig. 3 comprises the 32-bit floating-point quantization
and the fixed-point quantization described in Table I. We use
the notation to denote a fixed-point format with

before the radix point and after the radix point. The
experiment confirms that the fixed-point quantization errors in-
troduced can be limited to fairly low levels. More iterations can

help suppress the errors, and the word length can be increased
to reduce the errors further if necessary.
Fig. 4 shows the images obtained by iterative image recon-

struction as well as the absolute pixel-by-pixel differences be-
tween the reconstructed image using 32-bit floating-point quan-
tization and the reconstructed image using fixed-point quanti-
zation. Three representative slices in the region of interest are
shown from left to right. The vast majority of the pixel errors
remain relatively small. We observe no perceptual difference
between floating-point and fixed-point reconstructed images.
These initial results suggest that the iterative image reconstruc-
tion algorithm can be robust to quantization error. The property
allows us to simplify the hardware with much more efficient in-
teger arithmetic and smaller memory.

IV. ARCHITECTURE AND ALGORITHM CO-OPTIMIZATION

Forward- and back-projection are the core and most com-
putationally intense building blocks of iterative image recon-
struction. A simplistic forward-projection architecture includes
image memory on the input and detector memory on the output
as in Fig. 5; back-projection exchanges the positions of image
and detector memory but its processing architecture is similar.
In a state-of-the-art commercial CT scanner, the image and de-
tector datasets are up to 1 GB in size. Such enormous datasets
can only be accommodated in off-chip memory, and input and
output data are selectively brought to on-chip memory (cache)
for processing. The on-chip memory is smaller but much faster
and sometimes immediately accessible by the processor, while
the larger off-chip memory interface is much slower and costs
a longer latency to access. Iterative image reconstruction algo-
rithm in its original form requires moving of large datasets on
and off chip constantly, resulting in a low throughput due to lim-
ited off-chip memory interface.
Parallelism can be used to improve the throughput, but it

further increases memory bandwidth. The architecture can
be pipelined, though its throughput is far from ideal due to
loop-carried dependencies from geometry processing. In the
following we investigate the projection geometry and design
algorithms and architectures to reduce the memory bottle-
neck and improve the efficiency of parallel and pipelined
architectures.

A. Projection Geometry

The projection geometry is central to the proposed algo-
rithms and architectures. Fig. 6 illustrates the X-ray projection
of a single voxel of dimension centered at

. We define the magnification factor as the
ratio of the source-to-detector distance (which is a constant
in cone-beam geometry) over the distance between the source
and . (The magnification factors of all voxels in an axial
column are equal.) is maximized when the voxel is
closest to the X-ray source and minimized when the voxel is
furthest to the X-ray source, i.e.,

(12)
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Fig. 4. Reconstructed images using (a) 32-bit floating-point quantization, (b) fixed-point quantization, (c) absolute pixel-by-pixel differences between the floating-
point and the fixed-point quantization, and (d) histograms of the differences in logarithm scale. Three slices in the region of interest are shown: slice 17, 31 and
45 from left to right.

where FOV, or field of view, is the diameter of the volume that
is reconstructed from all view angles, and is the source-to-
rotation-center distance.

Now, consider the position of a voxel relative to the X-ray
source—the transaxial width of a voxel’s projection is maxi-
mized if the transaxial diagonal of the voxel is perpendicular to
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Fig. 5. High-level forward-projection architecture. (a) One-level memory.
(b) Two-level memory hierarchy.

Fig. 6. Forward-projection of a single voxel.

Fig. 7. Top view of the transaxial span of the forward-projection of one voxel.

the line joining the X-ray source and the center of the voxel, il-
lustrated in Fig. 7. Considering both the magnification and the
transaxial diagonal of the voxel, the transaxial span of the pro-
jection of a voxel, quantized to the axial spacing of the de-
tector grid, is

(13)

where denotes ceiling.
The magnification factor in (12) can also be used to derive the

axial span. Typically the axial spacing of the detector grid
is designed to match the voxel grid by having

. Therefore, on average one voxel maps to one detector
cell along the axial direction. However, grid misalignment and
geometry cause multiple consecutive voxels in an axial column
to project to a single detector cell, as shown in Fig. 8. The axial
height of a voxel’s projection is minimized if the voxel is located

Fig. 8. Forward-projection of one axial column of voxels.

Fig. 9. Side view of the axial span of the forward-projection of one voxel.

TABLE II
SAMPLE HELICAL CONE-BEAM CT GEOMETRY PARAMETERS

on the plane, illustrated in Fig. 9. It follows that the
number of voxels in an axial column that project to a single
detector cell is

(14)

For a numerical example, substituting sample helical cone-
beam geometry parameters given in Table II, we get
and , i.e., one voxel’s projection spans at most 11 de-
tector cells along the transaxial direction, and at most 3 consec-
utive voxels in an axial column project to one detector cell.

B. Loop-Level Parallelism and Water-Filling

The SF forward-projection algorithm contains six layers of
nested loops (9): (view angle), ( index), ( index),
( index), ( index) and ( index) for each forward-projec-
tion. The innermost loop computes the transaxial projection of
a voxel. As discussed in the previous section, one voxel projects
to a row of up to detector cells, each of which can be eval-
uated independently. Thus we exploit loop-level parallelism by
allocating multiply-accumulate (MAC) units and detector
memory banks for the transaxial projection, as shown in Fig. 10.
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Fig. 10. Parallel transaxial projection.

Fig. 11. Pipeline bubbles inserted to resolve data dependencies in axial
projections.

The quantization study showed that the transaxial projection
can be carried out in a 16-bit 16-bit fixed-point multiply fol-
lowed by a 28-bit accumulate. To operate at a high clock fre-
quency, e.g., 200 MHz on a Xilinx Virtex-5 FPGA, we pipeline
the MAC unit to 3 stages: multiply (MU), add (AD), and write
back (WB). Let be the wordlength of that is stored
in the detector memory and be the clock frequency. Then,
the required read and write bandwidth to the on-chip detector
memory is b/s. Since one complete transaxial pro-
jection block uses MAC units, the total on-chip detector
memory bandwidth is b/s.
The outer loop can be easily pipelined, but it is compli-

cated by loop-carried dependencies: multiple voxels in an axial
column can project to a single detector cell, as illustrated in
Fig. 8, so the pipeline would have to be stalled, waiting for write
back to complete before next add. The 3-stage pipeline chart in
Fig. 11 shows that one pipeline bubble is necessary to resolve
data dependency. A deeper pipeline will result in more stalls.
The mismatch between the voxel grid and detector grid re-

quires the joint consideration between the loop and the loop.
To eliminate loop-carried dependencies, we propose an algo-
rithm transformation to merge the two loops. In the transformed
algorithm, for each -th detector cell, we identify the group of
contiguous voxels along the axial column that project to the cell
and sum up the contributions. In particular, we allocate shift
registers, each providing one candidate voxel (because up to
voxels in an axial column project to a single detector cell), as in
Fig. 12. Each candidate voxel is multiplied by its axial footprint
and the contributions are summed, which is equivalent to a par-
tial unrolling of the loop.
An example is shown in Fig. 13 using 2-stage shift

registers and input prefetching. Initially, , voxels
and project to detector cell . A controller sets

and
, respectively. The contributions by voxels and

to the axial projection are summed, followed by transaxial
projection. Next, , voxels and project to detector
cell . The controller sets to pop
and keep and . Now the water level in has dropped

Fig. 12. Water-filling buffer and partially-unrolled axial projection.

Fig. 13. Example showing (a) and grid mismatch, and (b) the corre-
sponding water-filling buffering scheme.

TABLE III
PIPELINE STALL RATE VERSUS SHIFT REGISTER LENGTH OF THE

WATER-FILLING BUFFER

and the input multiplexer will direct the new voxel input to
.

Note that in the above example, one new voxel is brought in
the water-filling buffer every cycle to support the average input
consumption rate. The average consumption rate is one input
per clock cycle because and are designed to be matched
as previously described. However, the actual input consumption
varies every cycle and prefetching is needed to avoid stalling
the pipeline. A longer shift register and prefetching guarantee
a lower stall rate, but increase latency and resource usage. We
experimentally verified the stall rate versus shift register length,
and the results are listed in Table III. We choose a 2-stage shift
registers in our prototype design for a stall rate %.
A lower stall rate is possible with longer shift registers.
The new water-filling architecture can be implemented using

3 MAC units that are pipelined in two stages: read (RE) and
sum (SU), which augment the 3-stage pipeline in Fig. 11 to
5 stages as in Fig. 14. Pipeline bubbles due to loop-carried
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Fig. 14. Pipeline chart for the complete forward-projection module.

TABLE IV
FPGA RESOURCE UTILIZATION OF A FORWARD-PROJECTION MODULE BASED

ON XILINX VIRTEX-5 XC5VLX155T DEVICE

Fig. 15. Top view of the forward-projection following an X-ray.

dependencies have been eliminated to achieve an average
throughput of voxel projections/s. The required
on-chip image memory bandwidth is b/s with
as the voxel wordlength. Substituting parameters from Table II,

%, and MHz that is typical of an FPGA
platform, the proposed projection module completes 185.2 mil-
lion voxel projections/s and requires an on-chip image memory
bandwidth of 2.6 Gb/s and detector memory bandwidth of
123.2 Gb/s. In the following section, we propose out-of-order
scheduling to reduce the detector memory bandwidth.
A complete forward-projection module consisting of the

water-filling axial projection and parallel transaxial projection
has been synthesized on a Xilinx Virtex-5 XC5VLX155T
FPGA and the device usage is listed in Table IV.

C. Out-of-Order Scheduling

We could further parallelize the and loops, but it
would increase the memory bandwidth. Absent of any temporal
locality of reference, the off-chip memory bandwidth will be
easily saturated as we continue to parallelize. To circumvent
the difficulty, we compress the off-chip memory bandwidth by
an out-of-order access schedule that maximizes the temporal
locality of reference. To explain the approach, note that the
voxels along a line cast projections onto the same block of
detector cells, thus the on-chip memory can be reused without
resorting to off-chip access, as shown in Fig. 15. Based on this
observation, we design an out-of-order scheduling algorithm
as follows: (1) divide the detector into sectors as in Fig. 16(a);
(2) draw the upper and lower edge of each sector by connecting
the X-ray source and the upper and lower end of the sector;
(3) determine the set of voxels whose projections lie entirely

Fig. 16. Illustrations showing (a) non-overlapping sectors, and (b) overlapping
sectors.

TABLE V
MOVING DIRECTIONS FOR RUN-LENGTH ENCODING

in each sector. Assign the set of voxels to a projection module
for processing to maximize the detector memory’s locality of
reference.
If we choose the sectors to be non-overlapping as in

Fig. 16(a), some voxels will be missed as their projections do
not completely lie in any sector. Adjacent sectors will have
to overlap by an amount to ensure all voxels
are accounted for. (Recall that is the maximum transaxial
span of a voxel’s projection. An overlap of or more is
not necessary.) For simplicity of implementation, we choose a
fixed overlap of in making sectors. Now another
problem arises with the choice of a fixed overlap, as some
voxels will be counted twice in adjacent sectors, as shown in
Fig. 16(b). To avoid double counting, we keep track of the
upper and lower edge of each sector.
The out-of-order schedule can be computed in design

time and stored in memory. The required memory is
, where is the wordlength to

store the coordinate pair. Using the sample geometry in
Table II, the out-of-order schedule memory takes 796.5 MB.
If we take into account the multiple rotations in a CT scan
that repeat view angles and only voxels inside the FOV, the
out-of-order schedule memory size is reduced to 86.3 MB,
which is still significant.
To further shrink the out-of-order schedule memory, we de-

sign a run-length encoding to compress the schedule. The en-
coding scheme is illustrated in Fig. 17: we store the voxel co-
ordinates along of , and encode and store of

as the run length from . of becomes the
of and the encoding follows a similar fashion.

The direction to count run length depends on the view angle ,
as described in Table V. For a numerical example, if we choose
a sector size of , the out-of-order schedule memory
can be compressed by an order of magnitude to 8 MB.
Table VI lists a few more example sector sizes based on the

geometry in Table II. If we choose sector size , with a
fixed sector-sector overlap of , the detector is di-
vided into 89 sectors. A sector covers an average of
voxel columns. Sectors are processed sequentially. After fin-
ishing one sector, we move forward by a stride of

to the new sector. The external memory access
is reduced to only banks every sector. When ,
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TABLE VI
SECTOR CHOICE FOR OUT-OF-ORDER SCHEDULING

Fig. 17. Illustration of run-length encoding: (a) first sector, and (b) second
sector.

the off-chip detector memory bandwidth of the proposed pro-
jection module described in the previous section is reduced to
245.2 Mb/s. As we increase the sector size, both the stride
and sector coverage increase, resulting in an almost con-
stant off-chip memory bandwidth. A larger sector size requires
a larger on-chip memory but a smaller out-of-order schedule
memory.
The out-of-order scheduling requires sectored processing.

The number of on-chip detector memory banks has to be
increased from to . Since a projection covers only an

segment of the sector, a rotator and an inverse rotator are
needed to select the detector memory banks. The rotator-based
architecture can be implemented using multiplexers and it
incurs a high routing overhead. An alternative selector-based
architecture allocates sec transaxial projection blocks, and each
block can be enabled or disabled by the write enable to the
corresponding memory bank. The comparison between the
rotator-based and the selector-based architecture is illustrated
in Fig. 18 with FPGA synthesis results listed in Table VII. A se-
lector-based architecture uses fewer logic units or FPGA slices,
but more MAC units or DSP48E slices. In both architectures, a
small sector size results in more efficient use of hardware.
The detector memory is dual-port to support one read and

one write per cycle for the read-accumulate-write operation. To
enable loading and unloading from off-chip memory without
stalling the computation, we increase the number of detector
memory banks from to . While memory
banks are accessed for the projection of the current sector,
the remaining banks are being unloaded/loaded to/from
off-chip memory. To avoid stalling the pipeline, the loading
and unloading time by the memory banks should be no
greater than the time spent on the projection computation.
This condition can be easily met in the proposed sectored
processing.

Fig. 18. Architectures supporting sectored processing: (a) rotator-based archi-
tecture, and (b) selector-based architecture.

TABLE VII
FPGA RESOURCE UTILIZATION OF A FORWARD-PROJECTION MODULE
SUPPORTING SECTORED PROCESSING BASED ON XC5VLX155T DEVICE

V. FPGA IMPLEMENTATION

A complete forward-projection module is shown in Fig. 19.
Inputs are read from the imagememory, held by the water-filling
buffer before being processed by the partially-unrolled axial
projection block. Transaxial projections are performed in par-
allel and the results are accumulated in the detector memory. A
selector-based architecture orchestrates sectored processing fol-
lowing an out-of-order schedule. A summary of the architecture
metrics is listed in Table VIII.
The projection module has been mapped to a Xilinx Virtex-5

XC5VLX155T FPGA [14] and the device utilization is listed
in Table IX. We followed the sample geometry in Table II and
chose a small sector size with . The projection
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Fig. 19. Complete selector-based forward-projection module supporting sectored processing.

TABLE VIII
ARCHITECTURE METRICS OF A FORWARD-PROJECTION MODULE

SUPPORTING SECTORED PROCESSING

TABLE IX
FPGA RESOURCE UTILIZATION OF COMPLETE FORWARD-PROJECTION
MODULES BASED ON XILINX VIRTEX-5 XC5VLX155T DEVICE

module uses 24 DSP48E slices as MAC units, 43 block RAMs
as on-chip memory banks, and occupies 6,328 FPGA slices.
Note that the resource usage includes a fixed overhead created
to handle interfaces to the FPGA and controls. At a 200 MHz
clock frequency, the off-chip input image memory bandwidth is
2.6 Gb/s and the off-chip output detector memory bandwidth is
compressed to 245.2Mb/s. Additional memory access is needed
to load the out-of-order schedule, but the bandwidth is very low
as only one pair of coordinates is read per column of voxels
and the coordinates have been compressed using run-length en-
coding. The projection module is fully pipelined and capable
of completing up to projections per clock cycle for
an average throughput of 185.2 million voxel projections/s at

MHz.
The substantially reduced off-chipmemory bandwidth allows

us to parallelize the design further by multiple projection mod-
ules. The Xilinx Virtex-5 XC5VLX155T FPGA can accommo-
date 5 parallel projection modules, and the device utilization
is shown in Table IX. The parallel projection modules will be
assigned to non-adjacent sectors, so they will be able to op-
erate independently for a 55-way parallel computation towards

a combined average throughput of 925.8 million voxel projec-
tions/s at MHz. The 55-way parallel forward-pro-
jector is integrated with two DDR400 64-bit DRAM channels
that each provides up to 25.6 Gb/s off-chip memory interface.
One DRAM channel is used as the off-chip image memory and
the other as the off-chip detector memory. This 55-way parallel
design completes one forward-projection of a 320 320 61
test object over 3,625 views in 6.31 seconds. The same task im-
plemented in C requires 31.1 seconds of execution time on an
8-core 2.8-GHz Intel processor for a throughput of 203.0 mil-
lion voxel projections/s. The C program uses 16 threads, and is
optimized based on the projection geometry.

VI. CONCLUSION

We present algorithm and architecture techniques to construct
a highly efficient hardware-based forward-projection for itera-
tive image reconstruction. The solutions are based on a study of
the projection geometry which uncovers loop-level parallelism,
locality of reference, as well as geometric mismatch between
the object grid and the projection grid. We exploit loop-level
parallelism and spatial locality of reference to unroll inner loops
for a high throughput. However, geometric mismatches and off-
chip memory access bottleneck limit the achievable throughput.
A water-filling buffer is thus created to bridge the geometric
mismatch and remove the pipeline stalls, and an out-of-order
schedule is designed to compress the off-chip memory access.
The cost of implementing these schemes is kept low by judi-
cious considerations of buffer length used in the water-filling
buffer, sector size and architecture used in the sectored pro-
cessing, as well as run-length encoding designed to compress
the out-of-order schedule memory.
The resulting architecture is fully pipelined and can be

parallelized for a very high throughput. We demonstrate the
design in a 5-stage pipelined, 55-way parallel forward-pro-
jector implemented on a Xilinx Virtex-5 XC5VLX155T FPGA
that achieves an average throughput of 925.8 million voxel
projections/s at a clock frequency of 200 MHz. Note that the
throughput is limited by the number of MAC units available on
this device, as a Virtex-5 XC5VLX155T FPGA contains only
128 DSP48E slices. The latest Xilinx Virtex-7 devices offer up
to 3,600 DSP slices [20], which will allow for a much higher
throughput potential.
The proposed architecture can be adopted for back-projec-

tion for a complete iterative image reconstruction system, which
is part of our future work. Testing fixed-point quantization of
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higher-resolution images also remains our future work. The pro-
posed algorithm and architecture techniques also apply to de-
signs that are built on alternative hardware platforms, such as
GPU and DSP to achieve significant accelerations.
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