
Hardware Acceleration of Iterative Image Reconstruction for X-Ray Computed Tomography

Jung Kuk Kim, Zhengya Zhang, Jeffrey A. Fessler
EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

ABSTRACT

X-ray computed tomography (CT) images could be im-
proved using iterative image reconstruction if the 3D cone-
beam forward- and back-projection computations can be
accelerated significantly. We investigated the feasibility of a
field-programmable gate array (FPGA) implementation of
the separable footprint (SF) forward projector. A 16-bit
fixed-point quantization introduces negligible numerical
errors without affecting the perceptual image quality. The
SF-based 3D cone-beam projector can be efficiently paralle-
lized and its memory bandwidth reduced by exploiting pro-
jection geometry and data locality. We demonstrate a fully
pipelined, 75-way parallel hardware architecture of the SF
forward projector on a Xilinx Virtex-5 FPGA that can com-
plete one forward projection of a 320×320×61 object over
3,625 views in 6.3 seconds.

1. INTRODUCTION

Recently there is increasing interest in using iterative image
reconstruction algorithms for X-ray computed tomography
(CT) to improve image quality and reduce dose [1]. These
algorithms perform forward- and back-projection in a feed-
back loop to minimize a cost function, increasing computa-
tion substantially over the conventional filtered backprojec-
tion (FBP) algorithm [2]. In particular, the evaluation of a
discrete version of the Radon transform [3] in the forward
projection is one of the main compute bottlenecks that im-
pede routine clinical use of iterative algorithms for CT.

The recently proposed separable footprint (SF) projec-
tor simplifies the forward projection by approximating the
voxel footprint functions as 2D separable functions [4]. The
SF projector has high accuracy and favorable speed, but the
computational cost is still high: each forward- and back-
projection requires on the order of 100 billion floating-point
multiply-accumulate (MAC) operations for a practical CT
scanner, requiring almost 10 minutes of execution time on a
2.4 GHz quad-core microprocessor.

Graphics processing unit (GPU) has recently been
demonstrated to achieve 10 to 100 times speedup over a
microprocessor for CT image reconstruction [4]-[6]. These
GPU implementations were based on the Feldkamp (FDK)
method [2], and challenges still exist in implementing the
iterative algorithms.

In this paper, we explore field-programmable gate array
(FPGA) as a viable alternative to GPU for CT image recon-
struction. FPGA offers efficient integer operations and more
flexibility in hardware architecture mapping. We propose a

fixed-point quantization of the SF forward projector that
substantially reduces the memory usage and computational
complexity. We conducted numerical analysis to determine
the optimal quantization that satisfies a given error metric.
The final fixed-point SF forward projector was mapped to a
Xilinx Virtex-5 FPGA [8]. This highly parallel forward pro-
jector increases the throughput and its memory bandwidth is
reduced by a scheduling algorithm that exploits projection
geometry and data locality. The resulting design can accele-
rate the forward projection by almost an order of magnitude
over a quad-core microprocessor.

2. BACKGROUND

We illustrate the projection geometry of an X-ray CT sys-
tem in Fig. 1 [4]. We denote (x, y, z) as the coordinate of a
voxel of the object being imaged. The X-ray source rotates
on a circle centered at (x, y) = (0, 0) on the z = 0 plane. The
angle indexes the projection view. For each angle , the
source emits X-rays that project the object onto the detector.
We denote (s, t) as the coordinate of a detector cell. The
transaxial direction s is perpendicular to z and the axial di-
rection t is parallel to z.

Fig. 2 shows the block diagram of an iterative image
reconstruction algorithm. An object is first imaged from
many view angles to produce the measured sinogram (a set
of projections over all view angles) of the object. The FBP
algorithm is used to estimate the initial image, followed by
the computed forward projection to obtain the computed
sinogram. The error between the computed and measured
sinogram is back-projected and the result is used to improve
the initial image estimate. The image and sinogram are itera-
tively updated to minimize the error, and regularization is
included to control noise [1]. In this paper, we focus on the
compute-intense forward projection, mathematically de-
scribed by [4]:

,),,(),,;,,(),,(
,, zyx

zyxfzyxtsatsg (1)

Fig. 1. Axial cone-beam arc-detector geometry for X-ray CT.

1697978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

where g(s, t,) is the projection, f(x, y, z) is the voxel value
at (x, y, z), and a(s, t, ; x, y, z) is the footprint function of
the voxel centered at (x, y, z). The separable footprint me-
thod approximates the footprint function as in [4]:

),,,;,(),;,(),;(),,(),,;,,(2121 zyxtFyxsFyxutsvzyxtsa (2)
where v1(s, t,) and u2(; x, y) are scaling factors, F1(s, ; x,
y) is the footprint function in the s direction with a trape-
zoidal profile, and F2(t, ; x, y, z) is the footprint function in
the t direction with a rectangular profile. The footprints in s
and t can be separated and independently evaluated, simpli-
fying (1) to:

.),,(),,;,(),;,(),;(
),,(),,(

, 212

1

yx z
zyxfzyxtFyxsFyxu

tsvtsg (3)

To compute one forward projection over all view angles, we
need to perform multiplication and summation over six lay-
ers of nested loops: , x, y, z, t and s. For a practical object
made up of more than 10 million voxels, a forward projec-
tion that comprises more than 3,000 view angles, as in a
commercial CT scanner, requires on the order of 100 billion
multiply-accumulate (MAC) operations. We propose three
approaches below to simplify this computation: (1) a fixed-
point quantization that reduces the cost of each MAC opera-
tion and the memory usage; (2) an efficient parallel hard-
ware architecture that unrolls the loops; and (3) a scheduling
algorithm that reduces the memory bandwidth.

3. FIXED-POINT QUANTIZATION

CT image reconstruction algorithms are usually imple-
mented in 32-bit single-precision floating-point quantiza-
tion. Floating-point operations cost more hardware re-
sources and longer latency than integer operations. For ex-
ample, on a Xilinx Virtex-5 FPGA, a 32-bit floating-point
multiply-accumulate operation costs 5 DSP48E slices and
17 clock cycles to complete, while a 16-bit fixed-point mul-
tiply-accumulate operation costs only 1 DSP48E slice and 1
clock cycle [9]. The substantially smaller area and higher
speed provide strong incentives for applying the floating-to-
fixed-point conversion.

We investigated fixed-point quantization of the SF for-
ward projector using a 61-slice test object, where each slice
is composed of 320×320 voxels. The baseline reference is
the image reconstructed using 32-bit single-precision float-
ing-point quantization after 1,000 iterations. Fig. 3 shows
the error measured in mean absolute error (MAE) and root-
mean-square error (RMSE) in Hounsfield units (HU) after

each iteration. The performance of the 32-bit floating-point
and a much shorter fixed-point quantization (16-bit image,
16-bit arithmetic, and 18-bit projection) are close. Interes-
tingly, the fixed-point quantization allows the algorithm to
converge faster initially for this image, but the floating-
point quantization eventually improves after 20 iterations.
To reach a given error criterion, e.g., an MAE of 1.5 HU,
the fixed-point quantization takes only 20 iterations and the
final RMSE is below 10 HU. These initial results suggest
that the iterative image reconstruction algorithm is robust to
quantization noise.

If we continued to reduce the word length, e.g., by us-
ing shorter than 12-bit words for image, both MAE and
RMSE would increase considerably. So we set the final
word length and quantization such that the MAE at 30 itera-
tions was within 1.2 HU. To verify the perceptual quality,
Fig. 4 shows the original image obtained by FBP along with
the reconstructed images using 32-bit floating-point quanti-
zation and the final fixed-point quantization (12-bit image,
16-bit arithmetic, and 18-bit projection), as well as the error
map. We observe no perceptual difference between the two.

4. ARCHITECTURAL DESIGN

A simple projector architecture would include image memo-

Fig. 2. Block diagram of an iterative image reconstruction algorithm.

0 10 20 30
0

1

2

3

4

5

Iteration

M
ea

n
ab

so
lu

te
 e

rr
or

 [H
U

] 32−bit floating point
16−bit fixed point
16−bit fixed (12−bit image)

0 10 20 30
0

5

10

15

20

25

Iteration

R
oo

t m
an

 s
qu

ar
e

er
ro

r [
H

U
] 32−bit floating point

16−bit fixed point
16−bit fixed (12−bit image)

 (a) (b)
Fig. 3. (a) Mean absolute error and (b) mean square error with each iteration.

1 81

1

81 800

850

900

950

1000

1050

1100

1150

1200

1 81

1

81 800

850

900

950

1000

1050

1100

1150

1200

1 81

1

81 800

850

900

950

1000

1050

1100

1150

1200

1 81

1

81 0

5

10

15

20

25

30

Fig. 4. Original FBP image (top left, only the region of interest is shown),
reconstructed image using 32-bit floating-point quantization with 30 iterations
(top right), reconstructed image using 16-bit fixed-point quantization with 30
iterations (bottom left), and absolute errors between the floating-point and the
fixed-point quantization (bottom right).

1698

ry on the input and detector memory on the output. For a
commercial CT scanner, the image and detector memory are
on the order of 100 MB to 1 GB in size. Such enormous
sizes can only be accommodated in off-chip main memory,
and inputs are selectively brought to on-chip memory (cache
memory) for processing. To improve throughput, the com-
putation needs to be parallelized, but parallel architectures
demand high memory bandwidth. We propose a memory-
efficient parallel architecture. This architecture is described
based on a 320×320×61 test object, and it could be easily
adapted to other standard object sizes.

4.1. Parallel and fully-pipelined processing

Each of the six nested loops of the forward projection algo-
rithm can be unrolled for parallel processing, but the impact
on the main memory traffic varies. Unrolling the s loop, i.e.,
parallel processing along the neighboring detector cells in
one row, takes advantage of data locality, as the neighboring
cells are normally cached together. We estimate the width,
sbin shown in Fig. 5(a), of a voxel’s projection in a given
detector row as:

,15
2/

2
0 FOVD

D
sbin

s

sd

s

x (4)

where FOV, or field of view, is the largest diameter of an
object that can be projected from all view angles, Dsd and
Ds0 are the source-to-detector distance and the source-to-
rotation-center distance shown in Fig. 1, x refers to the
object grid size, and s the detector grid size. The maximum
sbin is 15 for the test object under consideration. Following
this derivation, the s loop can be efficiently unrolled to 15
parallel computing modules.

A higher-degree parallelism can be achieved by unrol-
ling the t loop and z loop. In fact, these two loops can be
merged. The projection geometry dictates that the maximum
number of voxels in a column that project to a single detec-
tor row is Lmax = 3 for the test object, as shown in (5) and
illustrated in Fig. 5(a), while the average number of voxels
in a column that project to a single detector row is Lavg = 2.

.31
0

0
max

s

s

D
FOVD

L (5)

We exploit this geometry to merge the z and t loops. Since
Lavg = 2, the input voxels are stored in cache in pairs as
shown in Fig. 6. The input pairs of voxels are sliced and
then distributed by a rotator to two of the three shift regis-
ters for data alignment. The three shift registers accommo-
date Lmax = 3 for one t computation. A few cycles of pre-
fetch are needed to start filling the shift registers. After
completing one t computation, the voxels that are no longer
needed are shifted out from the registers and replenished
from the cache. The structure shown in Fig. 6 bridges the
geometric mismatch between the image and detector grids
and enables a fully-pipelined processing.

4.2. Memory-efficient scheduling

We could further parallelize the forward projection by un-
rolling the x and y loops, but it would cause potential mem-
ory contention because voxels in different (x, y) locations
can project to the same detector cell. To avoid potential
access conflicts, we have parallel projectors operate on (x,
y) locations that are further apart. This scheduling enables a
stream architecture with very simple memory controllers.

The contention-free scheduling inevitably increases the
output to main memory traffic. To reduce the traffic, we
take advantage of the overlap between the projections of
neighboring voxels. The (x, y) access order for each projec-
tor is decided such that the projections of voxels at consecu-
tive (x, y) locations share the maximum overlap to reduce
the cache size. Fig. 5(b) illustrates one efficient (x, y) access
order that follows the direction of the X-ray. The span of the
series of projections over s is given by:

.23
2/

5
0 FOVD

D
sbin

s

sd

s

x (6)

This span of detector memory will be accessed in
processing the strip of all the voxels at (x, y) locations along
the X-ray, as highlighted in Fig. 5(b). The average number
of (x, y) locations along a strip is on the order of several
hundred for practical objects. For the test image, this sche-
duling algorithm can reduce the output traffic to the main
memory by approximately four hundred times.

t

s

sbin s
t

s

x
yz

detector

object

 (a) (b)
Fig. 5. (a) Projection of one column of voxels onto the detector; (b) voxel access Fig. 6. Input data flow from cache to shift registers.
order following the projection ray.

1699

5. IMPLEMENTATION RESULTS

We prototyped the proposed architecture and memory sche-
duling algorithms on a Xilinx Virtex-5 XC5VLX155T
FPGA device. The device provides 128 DSP48E slices and
its 7-Mb block RAMs (BRAM) can be used as the on-chip
cache. Two DDR400 64-bit channels of the device provide
the access to 4 GB of off-chip main memory.

We designed a 5-stage pipelined architecture for the SF
forward projection as shown in Fig. 7. The design was syn-
thesized to operate at a maximum clock frequency of 200
MHz. At this frequency, each DRAM channel is able to
transfer 128 bits of data per cycle. Based on the fixed-point
quantization of 12 bits per voxel, one DRAM channel is
capable of feeding 5 parallel forward projectors, each of
which updates a maximum of 15 detector cells in parallel.

DRAM channel A provides the image inputs that are
loaded to the cache memory before processing. In the first
pipeline stage, the input voxels are fetched from the cache
to the shift registers, as described in Fig. 6. In the second
stage, the weighted sum z F2(t, ; x, y, z) f(x, y, z) is com-
puted. In the third and fourth stages, up to 15 parallel com-
puting modules are activated in parallel to compute u2(; x,
y) F1(s, ; x, y) z F2(t, ; x, y, z) f(x, y, z) for the neighbor-
ing s values, followed by the accumulation to update g(s, t,
). Each projection accesses one of the 23 BRAMs. After

completing the projection along one strip shown in Fig.
5(b), the current bank (odd bank) of 23 BRAMs is discon-
nected from the projector and connected to the DRAM
channel B for write back and loading. At the same time, the
other bank (even bank) of 23 BRAMs is connected to the
projector for the next set of projections. The odd and even
banks are accessed in a ping-pong manner. A memory con-
troller coordinates the input and output access orders.

The FPGA resource utilization is listed in Table I. The
DSP48E and BRAM utilization are high to support the
highly parallel processing and the necessary memory band-
width. At a 200 MHz clock frequency, this design can com-
plete one forward projection of a 320×320×61 test object
over 3,625 views in 6.31 seconds. The same task requires
52.5 seconds of execution time on a 2.4 GHz quad-core
microprocessor.

6. CONCLUSION

We demonstrated the feasibility of accelerating the SF for-
ward projection on FPGA. A fixed-point quantization im-
proves the computational efficiency while maintaining the
image quality. The hardware architecture can be efficiently
parallelized without hitting the memory bottleneck. A proto-
type 75-way parallel design on FPGA increases the
throughput of forward projection by almost an order of
magnitude over a quad-core microprocessor.

ACKLOWEDGEMENT

This work was supported in part by a Korea Foundation for
Advanced Studies (KFAS) Scholarship and NIH grant R01
HL 098686. The authors would like to thank Yong Long for
helpful discussions and acknowledge the equipment dona-
tion from BEEcube and Xilinx.

REFERENCES

[1] J. A. Fessler, “Statistical image reconstruction methods for
transmission tomography,” Handbook of Medical Imaging, Volume
2. Medical Image Processing and Analysis, Bellingham: SPIE,
2000, pp. 1-70.
[2] L. A. Feldkamp et al., “Practical cone beam algorithm,” J. Opt.
Soc. Am. A, vol. 1, no. 6, pp. 612-619, Jun. 1984.
[3] S. R. Deans, The Radon Transform and Some of Its Applica-
tions. New York: Wiley, 1983.
[4] Y. Long et al., “3D forward and back-projection for X-ray CT
using separable footprints,” IEEE Trans. Med. Imag., vol. 29, no.
11, pp. 1839-50, Nov. 2010.
[5] W. Bi et al., “Accelerate helical cone-beam CT with graphics
hardware,” Proc. SPIE 6913, 69132T (2008).
[6] P. B. Noel et al., “Clinical evaluation of GPU-based cone beam
computed tomography,” Proc. HP-MICCAI, 2008.
[7] F. Xu and K. Mueller, “Real-time 3D computed tomographic
reconstruction using commodity graphics hardware,” Phy. Med.
Biol., vol. 52, pp. 3405-3419, 2007.
[8] Virtex-5 FPGA Family [Online]. Available: http://www.xilinx.
com/products/virtex5/index.htm
[9] Floating-Point Operator [Online]. Available: http://www.
xilinx.com/products/ipcenter/FLOATING_PT.htm

Fig. 7. 5-stage fully-pipelined architecture for SF forward projector.

TABLE I FPGA RESOURCE UTILIZATION BASED ON
XILINX VIRTEX-5 XC5VLX155T DEVICE

 Usage Utilization
ratio

Slice register 37,939 39%
Slice LUT 35,994 37%

BRAM 192 93%
DSP48E 93 72%

1700

