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Abstract—This paper presents an energy-efficient feature ex-
traction accelerator design aimed at visual navigation. The hard-
ware-oriented algorithmic modifications such as a circular-shaped
sampling region and unified description are proposed to minimize
area and energy consumption whilemaintaining feature extraction
quality. A matched-throughput accelerator employs fully-unrolled
filters and single-stream descriptor enabled by algorithm-archi-
tecture co-optimization, which requires lower clock frequency for
the given throughput requirement and reduces hardware cost of
description processing elements. Due to the large number of FIFO
blocks, a robust low-power FIFO architecture for the ultra-low
voltage (ULV) regime is also proposed. This approach leverages
shift-latch delay elements and balanced-leakage readout tech-
nique to achieve 62% energy savings and 37% delay reduction.
We apply these techniques to a feature extraction accelerator
that can process 30 fps VGA video in real time and is fabricated
in 28 nm LP CMOS technology. The design consumes 2.7 mW
with a clock frequency of 27 MHz at 470 mV, providing
3.5× better energy efficiency than previous state-of-the-art while
extracting features from entire image.

Index Terms—Energy efficient DSP, feature extraction, first-in
first-out, near-threshold design, pipeline.

I. INTRODUCTION

I N THE LAST decade, computer vision has been widely ap-
plied to many different fields. In medical imaging such as

MRI or CT, images are analyzed using computer vision tech-
niques to realize fully or partially automatic diagnosis [1], [2].
Recent advanced surveillance camera systems not only record
video, but also provide functions including facial recognition
and motion detection [3]. Automobile manufacturers incorpo-
rate various cameras on vehicles and analyze their external envi-
ronment to improve driving safety or achieve self-driving func-
tionality [4]. Although computer vision algorithms typically re-
quire substantial computing power to process multiple frames
per second in real time, conventional applications such as those
mentioned above have rather large power budgets and hence
supporting these computational requirements has been feasible
by using multi-core systems or GPUs that consume tens of watts
[2], [4].
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Recently, mobile battery-powered systems such as cellular
phones, micro-robots and millimeter-sized sensor nodes have
gained significant attention. Due to technology scaling and the
development of new low-power techniques, these application
areas continue to flourish, incorporating more functionality with
time [5], [6]. Computer vision techniques can add significant
value to these classes of systems, providing various useful fea-
tures such as object recognition in phones or navigation and
surveillance in micro-robots. However, the tight power con-
straints of these systems prevent practical implementations of
computer vision algorithms. We therefore seek to significantly
reduce hardware cost and power consumption associated with
such algorithms.
In this paper, we propose a highly energy-efficient feature

extraction accelerator design for visual navigation of micro-au-
tonomous vehicles. The navigation algorithm must process 30
fps VGA video while consuming less than 30 mW power due to
limited power budget of miniaturized system. We first propose
a modified feature extraction algorithm that improves energy
efficiency while maintaining feature extraction quality. We then
apply architectural and circuit techniques including a robust
low-power FIFO for subthreshold operation, further reducing
power consumption. The resulting design achieves 2.7 mW
power consumption at 470 mV supply voltage when extracting
features from 640 480 VGA 30 fps video continuously at a
low clock frequency of 27 MHz. The design realizes a 3.5
energy efficiency improvement over prior work.

II. PROPOSED VISUAL FEATURE EXTRACTION ALGORITHM

A. Visual Feature Extraction

Visual feature extraction is a key step in many computer vi-
sion algorithms. Essentially it extracts useful information from a
visual source such as an image, and this information can be used
in a variety of applications including object recognition and
pose estimation. Fig. 1 shows an example of the widely-used
SIFT (scale-invariant feature transform) algorithm [7]. Feature
extraction is performed on the original image (left), and small
rectangles depict extracted features with different scales and ori-
entations. These are then compared to features already stored
in the database and finally some objects are recognized (right).
Generally feature extraction should provide scale and rotation
invariance for reliable extraction under different circumstances
or viewpoints, as shown in Fig. 2.
SURF (Speeded-Up Robust Features) is a well-known

variation of the SIFT algorithm. The authors of [8] claim it
achieves identical or even superior extraction quality while
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Fig. 1. An example of object recognition using extracted features [7].

Fig. 2. Two key constraints of feature extraction algorithms: (a) rotation and
(b) scale invariance.

reducing computational cost significantly, making it attractive
for low-power applications. SURF consists of two distinct
stages: detection and description. In the detection stage, an
input image is first processed with multiple filters at different
scales. Filter responses calculated simultaneously at different
scales provide the scale invariance property. The algorithm then
searches for interest points (local maxima) in 3-D scale-loca-
tion pyramids. Although local maxima points can be extracted
using simple digital comparators, the actual maxima point can
reside somewhere between adjacent pixels and matrix-based
equations are used to interpolate the maxima point in 3-D
space. The description stage is responsible for describing each
interest point and generating a corresponding final feature
vector. For rotation invariance, the orientation of each interest
point must be determined first. The description stage collects
filter responses around it and searches for an angle which has
largest filter responses using rotating sampling window as
depicted in Fig. 3(a). After choosing orientation, a rectangular
sampling region is rotated by that angle and filter responses
are again collected in that region (Fig. 3(b)). This guarantees
that collected responses around each interest point remain un-
changed in images rotated by any angle. The sampling region
is divided into small rectangles and a summation of sampling
responses in each sub-region constitutes each dimension of
the feature vector. Finally, this vector is normalized such that
vectors extracted from different scale images have identical
magnitude.

B. Proposed Hardware-Oriented Feature Extraction
Algorithm

We apply the SURF algorithm to our design target, a MAV
(micro air vehicle) with visual navigation shown in Fig. 4, where

Fig. 3. Original feature vector generation process consisting of (a) orientation
assignment and (b) feature vector generation [8].

feature extraction is a key function and a dominant power con-
sumer. The MAV is designed to fly and navigate in indoor en-
vironments using various sensors to recognize obstacles and a
camera for location search. Fig. 5 provides an overview of the
visual navigation system [9]. First, an on-board camera captures
30 fps VGA video, which is fed into the proposed feature ex-
traction accelerator. The feature extraction accelerator then ex-
tracts 64-dimensional SURF features that are compared to loca-
tion database storing features from previously visited locations.
If any match is found, it can be concluded that the test vehicle
has returned to a location visited before and a loop closure is
declared. Finally, this loop closure information is used in an al-
gorithm called SLAM (Simultaneous Localization andMapping
[10]). SLAM continuously monitors the environment to deter-
mine current location and generate a map. Physical sensors such
as gyroscopes, accelerometers, and lasers provide primary infor-
mation on vehicle movements, but small errors accumulate over
time and cause localization to fail at some point. Loop closure
information from previous steps is used in this SLAM algorithm
to compensate for these errors. In this class of system, feature
extraction is one of the most computationally expensive steps,
and our work therefore focuses on the design of a corresponding
accelerator.
Since MAVs can move rapidly, they must perform both accu-

rate and fast feature extraction. In addition, location monitoring
should be done continuously, however a direct implementation
on an X86 embedded processor consumes more than 1 W while
processing only a few fps (frame per second) VGA video. Re-
lated work on custom-designed hardware for similar applica-
tions also report 50 mW power consumption [11]–[14] for
processing partial images based on ROIs (Regions of Interest).
However, this system has a tight power budget of 30 mW for
digital processing due to a minimum required operation time
without recharging. This power budget includes feature extrac-
tion as well as other functions such as feature mapping and nav-
igation and arises based on the allocation of the vast majority of
power consumption to actuation assuming a 3 W-hr 15 g Li-ion
battery in a 100 g flier with 1 hour battery life.
One widely used technique to reduce power consumption in

image processing is the extraction of ROIs. A low-cost pre-pro-
cessing stage is inserted before the actual feature extraction step
to search for small regions believed to have meaningful infor-
mation or targeted objects. An input image is divided into many
smaller tiles and only a subset of these is chosen for further pro-
cessing. Although this can significantly reduce power consump-
tion, the performance of the pre-processing algorithm dictates
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Fig. 4. A target application of MAV with visual navigation.

Fig. 5. An overview of the visual navigation algorithm flow.

the overall quality of feature extraction. ROI detection should
also be trained in advance on the database containing specific
classes of objects desired to be detected. However, to enable vi-
sual navigation in unknown environments, it is impossible to
rely on specific objects to determine its current location. There-
fore, our target application compares each captured image on a
scenery basis (not individual objects), necessitating feature ex-
traction from the entire frame.
To achieve low power while performing full-frame feature

extraction, we optimize the original SURF algorithm with the
goal of an energy-efficient hardware implementation without
using an ROI-based approach. For the detector, first we use a
single-octave scale space (Fig. 6(a)). In original SURF, the de-
tection stage first builds scale pyramids to detect interest points
in different scales [8]. Basically the filter size can be continu-
ously increased until it reaches the entire image size for detec-
tion across all possible scales. However, to reduce computation
we define a new pyramid after 4 filter size increases. In the new
pyramid, both interest point search step and filter size increase
are doubled for coarse searches in a larger scale. Since the target
resolution is 640 480, only a small portion of features are ex-
tracted from larger objects or patterns and therefore reside in the
second or higher scale pyramids. We choose the first (smallest)
octave among them to extract dominant smaller features. Simu-
lation results show significant amount of feature loss in this case,
so we need to have (at least a part of) the 2nd octave to compen-
sate for the loss. However, we need to add at least 3 new filters

since the smallest and largest filters of each octave are only used
for comparisons and do not have interest points. Instead, we ex-
tend the 1st octave and employ an additional filter (size 33) that
lies between 1st and 2nd octaves to compensate for lost features.
The resulting algorithm extracts more than 94% of originally
extracted features while reducing filter power consumption by
38% compared to the original SURF algorithm with 5 octaves.
After local maxima detection, the exact original location of the
maxima is typically calculated using matrix-based arithmetic
operations. Instead, we employ a fast localization technique for
interpolation as described in Fig. 6(b).
In the description stage, a large and variable number of

interest points marked by the detector must be processed. Pre-
viously a multi-core architecture has been proposed to deal with
the variable throughput of this step [11]–[13]. As discussed in
the previous section, for each interest point two separate filter
response sampling steps are required for orientation assign-
ment and actual description, respectively. In other words, the
complete filter responses around each interest point should be
transferred to a description core responsible for describing that
point. These responses also have to be stored temporarily in
data memory within each core for later steps. This necessitates
a large buffer in each description core, which incurs a large
area and power overhead.
We therefore propose a circular-shaped sampling region that

unifies orientation assignment and description into one step as
shown in Fig. 7. The authors in [15] compare polar grid sam-
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Fig. 6. Proposed (a) single-octave scale space; and (b) fast localization tech-
niques for detector optimization.

Fig. 7. Proposed circular-shaped sampling region approach.

plings and a rectangular grid, shedding light on the possibility
of using a rotation invariant sampling region. However, to avoid
two separate sampling methods and use all available sampling
points within a circle, the proposed sampling region is still based
on the original rectangular grid. Instead, it is divided into 32
subsections and a vector representing an interest point is gen-
erated based on the summation of filter responses in each sub-
section. Since the number of points in even- and odd-numbered
subsections are different, the th angle is composed of filter re-
sponses gathered in both th and th subsections such
that all angles have the same number of sampling points. The
interest point orientation can be easily determined by the sub-
section with the largest summation value.
Since the shape and coverage of a circular-shaped sampling

region do not change when rotated by the assigned orientation,
filter responses do not need to be re-collected for actual de-
scription. Furthermore, by restricting orientation angles to dis-
crete values represented by each subsection, final feature vec-
tors can be generated by simply re-ordering vector dimensions.
Although this technique provides only discrete step rotation,
the use of 32 subsections translates to a small rotation step of
only 11.25 while providing the same feature dimensions as the
original SURF algorithm. Due to the unified description, each
description processing element does not have to store entire
filter responses and instead just accumulates them into 32-di-
mensional vectors in real time, reducing memory requirements
in each processing element by 89% and element area by 80%.
This technique also enables other hardware design simplifica-
tions that are discussed in detail in the Section III.

Since our target application uses scenery-based matching, we
tested the algorithm with actual videos captured by a robotic
test vehicle [9] rather than conventional object-oriented test-
benches. The modified SURF was tested on a database con-
sisting of 100 frames extracted from these videos. Fig. 8 demon-
strates the measured feature extraction quality metric, which is
important in visual navigation and is defined by the ratio of
the number of correctly matched features to the number of all
matched features between original and re-scaled or rotated im-
ages. Fig. 8(a) and (b) confirm that the scale and rotation in-
variance performance of the proposed and original SURF algo-
rithms are very similar. We observed that the proposed algo-
rithm provides 30% fewer valid feature match count on average
due to its use of limited filter scales. This is deemed an accept-
able tradeoff for the targeted navigation application, for which
feature match ratio was deemed more critical. To enable a larger
scale invariance range for other applications, more Gaussian fil-
ters can be added to detect and describe larger features or the
input image can be subsampled and processed through the ac-
celerator repeatedly.

III. ENERGY-EFFICIENT HARDWARE ARCHITECTURE

A. Accelerator Architecture

Voltage scaling is a widely used and effective power-saving
technique [16]–[18], but it incurs large performance penalties
that are unacceptable in high throughput systems. Feature
extraction algorithms are generally computationally expensive
and SIFT/SURF algorithms require throughput on the order of
GOPS or higher. In addition, the number of features in each
frame varies widely and hence peak performance requirements
can be much higher than typical performance. Therefore, a
feature extraction accelerator must be designed carefully to
effectively incorporate aggressive voltage scaling while also
meeting high performance requirements.
Fig. 9 shows the overall architecture of the proposed accel-

erator design. To deal with the low clock frequencies associ-
ated with deep voltage scaling, the accelerator is uniquely de-
signed to take only one pixel of input image per cycle at the low
speed of 27 MHz. In addition, the entire accelerator operates
at the same clock frequency, resulting in a matched-throughput
system. A 640 480 8-bit grayscale input image is divided into
11 subsections, as shown in Fig. 10, and they are processed suc-
cessively. Subsections are partially overlapped to allow the ac-
celerator to extract features from the entire area including bor-
ders between subsections.
Each subsection has 640 124 pixels. In each cycle, only

one pixel of the input image is fed into the proposed accel-
erator. The input image flow is first integrated in 2-D and
Gaussian box filters with different scales are applied. Filter
responses form a 3-D scale-location space and a local maxima
detector searches for the interest points in this space. Finally,
an interpolator determines the exact location of maxima using
the proposed simplified maxima detection technique. While the
detector is searching for interest points, the input image must
be delayed temporarily. Therefore, we delay the input image
using a 7067-entry FIFO at the input stage of descriptor shown
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Fig. 8. (a) Rotation; and (b) scale invariance performance comparisons.

in Fig. 9. Since the largest radius of sampling regions in the
detector and descriptor are 16 and 40 pixels, respectively, the
buffer must store 56 lines while the detector searches for local
maxima. Additional margins from pipeline and control signals
translate to a 7067-entry FIFO. Then it is integrated in 2-D
in the same way as in the detection stage. Although the input
image is integrated identically in the detector and descriptor,
the use of separate integrators actually reduces silicon area by
minimizing FIFO size. Since the original 8-bit input image
becomes 18-bit after integration due to larger dynamic range,
FIFO area is reduced by 95,000 m (56%) while overhead
from the additional integrator is only 9,700 m .
The integrated image goes through Haar wavelet filters in dif-

ferent scales, which provides the necessary filter responses for
feature description. While the interest point information from
the detector is passed to descriptor processing elements in real
time, one of the idle processing elements is assigned to each in-
terest point. Each processing element captures the Haar wavelet
filter responses around each point and generates feature vec-
tors. The proposed design uses 40 processing elements in total,
and they are power-gated when not in use. The number of pro-
cessing elements is chosen to provide more than 2 margin
compared to the maximum number of features being extracted
simultaneously at one location in actual test images. Finally, a
post processor reorders, normalizes, and rotates generated fea-
ture vectors and produces the final output. Additional hardware
techniques are applied to further optimize each component, and
these will be described in the following sections.
[19] presents an early effort to adopt a similar dataflow

and architecture. However, it is not fully matched-throughput
system and remains partially based on the use of reconfigurable
cores, which requires 3 faster clock frequency for the same
video throughput (increasing power). In addition, a large buffer
memory of 2.8 Mb (compared to 56 kb FIFO for delaying the
image in the proposed design) is required before the descriptor
due to multi-stage description, and peak performance is limited
to 890 interest points per frame.

B. Parallelized Filters and Arithmetic Blocks

Two different types of filters are used in the detector and
descriptor, but their operation is very similar and is based on
simple arithmetic operations on the integrated image. Both
Gaussian box filters and Haar wavelet filters are based on the
summation of an image, which can be easily achieved by 2-D
integrated image and simple arithmetic operations such as
addition and subtraction as shown in Fig. 11. In conventional
multi-core architectures, this can be calculated using a single
arithmetic unit and processing one (or a few using a SIMD ar-
chitecture) set of data in each cycle. However, the entire image
must be stored in a large memory and power overhead is in-
curred in accessing this large memory every cycle. In addition,
multiple operations are required to obtain filter responses at one
point and, therefore, the system must operate at a much higher
clock frequency, limiting aggressive voltage scaling. Although
each summation over a rectangular region requires only 4 data
read and 3 arithmetic operations, the current approaches still
consume significant power when applied over an entire frame.
To mitigate this, we apply a fully unrolled and parallelized ar-

chitecture to Gaussian box filters and Haar wavelet filters. First,
the input image is delayed by differing numbers of cycles using
different size FIFOs. As the input image continues to be pro-
cessed, images with varying delays appear at the FIFO outputs
and they are used for filter response calculation at this point.
Once all FIFOs are completely filled with data, three arithmetic
operations can be performed simultaneously using a 3 lower
clock frequency. In the final design, due to deeply parallelized
filter architectures one pixel of the input image is fed into the
accelerator at a fixed speed; this allows all processing including
detection and description to be done at the same low clock fre-
quency. Therefore, this architecture allows for a single clock do-
main of 27MHz over the entire accelerator and provides greater
headroom for voltage scaling compared with an X86 single core
implementation that requires 1 GHz clock frequency for a few
fps throughput. In addition, each cycle data is generated by rel-
atively small FIFOs instead of a large memory, which reduces
energy consumed in data readout as well. Different size filters
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Fig. 9. Proposed feature extraction processor architecture.

Fig. 10. Overlapped image subsections are processed successively to allow for
proper feature extraction at boundaries.

Fig. 11. Image summation in a rectangular region implemented with 3 arith-
metic operations on a 2-D integrated image.

can be easily implemented using the same architecture with ad-
justed delays.
Similarly, the 2-D image integrator can be implemented using

only two adders and one 124-entry FIFO, which produces one

Fig. 12. (a) Original and (b) proposed local maxima detection schemes. In (b),
maximum point of each row is already stored and only one comparison per row
is required.

pixel of the integrated image per cycle in real-time. A 3-D local
maxima detector applied after the Gaussian box filters searches
for local maxima in the 3 3 3 location-scale space. A total of
26 subtractions must be calculated in each cycle to determine if
a given point is larger than all neighboring points. However, the
amount of computation can be reduced significantly by reusing
previous results. In each cycle, the lower 3 pixels of each scale
are processed and the location of the maximum value among
them is attached to the lower middle pixel as an additional 2 bits.
Each target point can then be compared to only 8 pixels (maxima
of each row) rather than 26 (Fig. 12), reducing the number of
comparisons by 69%.
The proposed accelerator processes one pixel to determine if

it is a local maxima in 3-D space and it requires 5 filter responses
calculations per cycle. Since each filter performs 32 operations
for , , and calculations, the proposed architecture
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Fig. 13. (a) Conventional multi-core architecture where each core communicates through a shared data bus independently. (b) Proposed architecture where a
single response flows continuously through shared data bus and each core reads in only its required blocks.

has roughly 160 arithmetic blocks in parallel, providing a large
degree of parallelization.

C. Single Stream Descriptor

Interest points extracted by the detector are continuously
passed to the descriptor with each point assigned to an idle
processing element (PE). Based on responses of Haar wavelet
filters, the set of PEs must simultaneously process a large
number of interest points depending on the input image. There-
fore, the descriptor must offer high peak performance while
maintaining low power consumption. This is handled through
the use of many PEs, however this incurs high hardware cost,
particularly for data memory used to temporarily store filter re-
sponses around an interest point. A conventional design uses a
multi-core architecture as shown in Fig. 13(a). An independent
controller manages filter responses stored in a large central data
memory, and the entire sampling region around an interest point
should be passed to a PE once the controller makes a PE assign-
ment. When the number of interest points is high, significant
data is transferred through a shared data bus, which requires a
high-speed data bus operating at a high clock frequency [13].
Furthermore, overlapping regions sent to multiple PEs incur
further overhead. After each PE receives sampling responses
and stores them in local memory, it calculates feature vectors
through orientation assignment and the actual description step.
However, the proposed circular-shaped sampling region dis-

cussed in Section II-B unifies these two steps while removing
the need for storing responses in local memory. Based on this
algorithm-architecture co-optimization, we propose the single
stream descriptor described in Fig. 13(b). In this architecture,

filter responses continuously flow through a shared data channel
at a fixed low speed such that all processing elements see the
same data stream. Filter responses leave the filter bank and reach
all of processing elements in the same cycle. At a low operating
voltage, wire delay is negligible compared to logic delay and
filter responses are simply repeated using inverters. Since in-
terest points are assigned in advance, PEs can easily identify
the proper filter responses and capture data from the channel
at the appropriate time interval. Since entire filter responses
are transferred through a shared data channel (regardless of the
number of interest points), this channel can be realized with a
matched-throughput low speed data bus. This point removes the
need for bus synchronizer and makes it possible to run the bus in
the same low voltage domain, which removes overheads from
an additional voltage regulator. In addition, this removes redun-
dant data transmission for overlapped sampling regions, elimi-
nating unnecessary switching.

IV. LATCH-BASED LOW-POWER AND ROBUST FIFO DESIGN

The proposed accelerator architecture requires a large number
of storage elements (FIFOs) across all sub-blocks. In particular,
the 7067-entry FIFO at the input stage of the descriptor can con-
sume appreciable leakage and switching power, and both the
Gaussian box filters and Haar wavelet filters have many smaller
FIFO blocks. It is therefore critical to choose a low-power FIFO
block that also offers robust behavior at near- or sub-threshold
regime to facilitate aggressive voltage scaling. This last require-
ment is challenging as there are several known problems in
low-voltage memory design.
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Fig. 14. 10T SRAM and latch write operation failure rates from 10 k Monte-
Carlo SPICE simulations.

First, very low on-off current ratios significantly degrade
read and write margins, impeding robust operation. Second,
the impact of process variation at low voltage is magnified,
causing problems for large memory arrays where any single
storage element could fail. Conventionally, FIFOs are imple-
mented with shift registers or 6T SRAM and a cyclic address
generator [20], [21]. SRAM is an attractive solution in the
super-threshold regime due to its small area and low power
consumption. However, under aggressive voltage scaling its
operating margins nearly disappear with common failures
below some value. Furthermore, SRAM bitcell suffers
from large variability due to small device sizes and read/write
tradeoff and their relatively slow access time can become
a bottleneck at the system level in throughput-constrained
applications. Robustness issues can be overcome by adding
more transistors (e.g., 8T or 10T), at the cost of area and power,
while slow access speeds remain [22], [23]. On the other hand,
shift registers are both very fast and robust even at very low
operating voltages. However, the density is several times worse
than SRAM since each storage cell consists of two latches.
Master and slave latches switch every cycle and, therefore, a
shift register approach also consumes much higher switching
power, exacerbated by the need to propagate data in every
cycle. Fig. 14 shows write operation reliability comparisons
between a 10T bitcell (known to be among the best low voltage
SRAM bitcells) and a latch. In 10 k Monte-Carlo simulations
at 27 C the 10T cell starts to fail at 425 mV while the latch
operates without failure down to 300 mV. In this case the high
variability of the 28 nm technology limits voltage scalability of
10T SRAM, and although voltage boosting techniques could
be applied to the SRAM, this adds design complexity that is
not needed in the proposed design using latches. Furthermore,
the proposed design requires 100 FIFO blocks with 20 dif-
ferent sizes; using latch-based memory will reduce design cost
significantly.
To overcome these issues in conventional FIFO designs, we

propose a new FIFO architecture based on latches. The approach
starts with a conventional shift register and replaces all storage
cells with latches; hence this approach is called shift-latch. It
is impossible to move all data simultaneously since latches are
level-sensitive such that enabling all latches would lead to the

Fig. 15. Proposed single-lane shift latch propagating data and a bubble in op-
posite directions at each cycle.

Fig. 16. A one-output-per-cycle FIFO consisting of lanes and shared readout
circuitry.

entire path becoming transparent. However, data can be propa-
gated using a one-hot encoded enable signal that moves in the
opposite direction each cycle, as depicted in Fig. 15. Initially
only the 4th latch is enabled and the value from the previous
latch is written into this latch. As a result, both the 3rd and 4th
latches now have identical values with the 3rd latch becoming
a redundant cell, which we call a bubble. In the next cycle, the
enable signal is asserted at a location one stage earlier, i.e., the
3rd latch is enabled in Fig. 15. This latch then accepts data from
the 2nd latch, which then becomes the bubble. In the following
cycle, enable signal is staggered again and the 2nd latch is en-
abled. As a result, data moves forward and the bubble moves
backward again. Finally, the 1st latch is enabled and input data
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Fig. 17. An 8-bit 840-entry FIFO based on the proposed shift-latch architecture.

Fig. 18. (a) Worst-case scenario for leakage current affecting bitline pull-down with and without leakage compensation technique. (b) Proposed 2-transistor AND
gates.

is written to it. At the same time, data stored in the last latch is
read out through the output port and it becomes the bubble.
After cycles all data values have propagated forward by

one entry and one output is produced from the last latch, com-
pleting one period. After periods, the value initially stored
in the first latch is shifted to the last latch and can be passed to a
readout circuit. Therefore, this can be viewed as a single FIFO
lane with total FIFO depth and throughput of one
output per cycles. Hence, a conventional one output per cycle
FIFO is built by arranging identical lanes in parallel and con-
necting their enable signals diagonally (Fig. 16). In each cycle,

exactly one output is generated from different FIFOs and we can
obtain a conventional 1 output per cycle throughput by adding
additional readout circuitry to choose the appropriate output
among FIFO lanes. If we implement a same depth (delay)
FIFO using shift register, we would need flip-flops
for the same delay. Fig. 17 shows an example of an 840-entry
FIFO based on the proposed shift-latch FIFO architecture. A
cyclic address generator automatically generates the one-hot en-
coded enable signals shared across all lanes. In the final design,
each lane is activated only every other cycle to avoid overlap in
enable signals of adjacent cycles and enhance robustness (i.e.,
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Fig. 19. Simulated (a) delay, area, and (b) energy consumption of baseline and proposed FIFO designs as a function of FIFO size.

Fig. 20. Simulated energy savings in each component of a 1 k-entry FIFO.

guaranteeing non-overlapping enable signals in the low voltage
operating regime is very challenging). Even-numbered enable
signals are connected to even-numbered lanes and the same ap-
plies to odd-numbered enable signals. This FIFO has 21 latches
in each lane and 42 lanes in total and they are connected to a
shared MUX readout circuitry.
In the near- and sub-threshold regimes, significantly lower

MOSFET on-off current ratio degrades read operation reliability
and limits the number of storage cells that can be tied to a single
bitline [24]. Fig. 18(a) (upper) shows the worst-case scenario
where an activated driver tries to pull a bitline down while all
other disabled drivers exhibit pull-up leakage currents. To mit-
igate this, we propose a leakage compensation technique that
minimizes the effect of leakage current, as shown in Fig. 18(a)
(lower). Inactive cells are preset to have an equal number of ones
and zeros at the input, resulting in roughly balanced pull-up and
pull-down leakage currents on the bitline. This can be imple-
mented by adding additional AND gates before access transis-
tors to force values feeding into the readout driver to pre-deter-
mined values. To minimize this overhead, we employ two dis-
tinct 2-transistor AND gates (Fig. 18(b)), which is enabled by
guaranteed pre-charge and pre-discharge of output nodes arising

Fig. 21. Amicrophotograph of the fabricated feature extraction accelerator and
summary table.

from the sequential readout property of FIFOs. This technique
suppresses the impact of PVT variations and improves readout
delay variation ( ) by 34% with 4% speedup despite the added
AND gate delay. Although a shift register would not require a
wide MUX for readout, the proposed readout circuitry does not
contribute appreciably to total power consumption (less than 5%
of total power), allowing the proposed FIFO to be more energy
efficient than a standard shift register.
The proposed FIFO design was simulated and compared

against prior work in low power queues. The baseline design
is a latch-based memory with a logic-based readout [25], rep-
resenting one of the most energy efficient and robust designs
at low voltages. It uses a cyclic address generator and each
storage cell is accessed through a logic-based readout path for
fast and robust readout. Fig. 19 provides simulation results that
show the proposed shift-latch FIFO improves readout delay and
energy efficiency with smaller area compared to the baseline.
For a 1 k-entry FIFO, the proposed design is 37% faster, 49%
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Fig. 22. Measurement results across different operating (a) voltages and (b) temperatures.

Fig. 23. (a) A real-time feature extraction test setup and (b) a sample image marked with 1421 extracted features from measurements.

smaller, and consumes 62% less energy due to energy savings
from shared address generator and readout circuitry. Fig. 20
shows detailed energy savings in each component. Although
more energy is consumed in storage cells because of shifting
data and higher switching activity, energy savings from read
and write circuitry dominate due to the slow logarithmic in-
crease of interface size for the proposed shift-latch FIFO.

V. MEASUREMENT RESULTS

A feature extraction accelerator based on the proposed hard-
ware and algorithm techniques is fabricated in 28 nm LP CMOS
technology. Fig. 21 shows a microphotograph of the fabricated
design along with a summary table. It operates at the design
point of 470 mVwith a clock speed of 27MHz to process 30 fps
VGA video input. While continuously processing input video,
the accelerator consumes only 2.7 mW with 149.3 GOPS per-
formance, yielding a 55.3 TOPS/W energy efficiency. Fig. 22(a)
shows measurement results over a range of operating voltages.
This design can operate down to 280 mV, which represents the
deep sub-threshold regime in this process, largely due to robust
FIFO design and careful standard cell selections (selecting only
cells with stack heights less than 3). As voltage scales down,
energy efficiency starts to decrease at some point due to domi-
nating leakage power and increasing cycle time [17]. A peak ef-

ficiency of 67.2 TOPS/W is obtained at 375mV. The accelerator
design can process 4 fps at this operating point. Fig. 22(b) shows
required operating voltage for the given throughput (30 fps)
at different temperatures, which confirms less than 20% power
consumption variation from 20 C to 80 C.
Fig. 23(a) shows a test setup where the accelerator processes

video from a camera and returns extracted features in real
time. The accelerator is incorporated into the full navigation
processing flow in simulation using FPGA board, while the
remainder of the navigation algorithm is performed by a host
X86 host CPU. Fig. 23(b) presents a sample image from a
camera on the robotic test vehicle, along with 1421 features
extracted using the fabricated accelerator. Detected points near
frame edges have sampling regions overlapped with image
borders and they are ignored for reliable extraction in this case.
A part of the image in the red box has clear parallel patterns and
extracted features in this region have very similar orientations,
confirming proper feature extraction operation.
Table I provides comparisons between our work and re-

cent prior works. The proposed accelerator is targeted solely
for feature extraction and extracts features from the entire
frame in contrast to other ROI-based designs. Although it
was designed for VGA input video, the proposed accelerator
architecture does not vary with video size and it can be adjusted
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TABLE I
COMPARISON OF PRIOR WORK AND THE PROPOSED DESIGN

TABLE II
SUMMARY OF POWER SAVINGS FROM PROPOSED TECHNIQUES

to process 1280 720 HD video with 81 MHz clock frequency
and 12 mW power consumption at 600 mV. For comparison,
energy efficiency was scaled with respect to operating voltage
and technology, and OPS/W was used for comparison against
other works with different functionalities. The proposed design
achieves 3.5 better energy efficiency over prior work. Any
size of video can be divided into multiple 640 124-pixel
subsections and they can be processed independently in the
accelerator, where clock frequency and operating voltage are
selected differently to accommodate performance requirement.
The proposed algorithm and architecture optimization tech-
niques are also applicable to other feature extraction algorithms
that share similar properties, such as rotation-invariant descrip-
tion and multi-scale pyramid construction.

VI. CONCLUSIONS

This paper proposes various hardware and algorithm tech-
niques to realize a highly energy-efficient feature extraction
accelerator. Hardware-oriented algorithm optimizations reduce
hardware cost (e.g., area and power consumption) significantly
while maintaining extraction quality. The proposed accelerator
architecture is focused on maximizing the benefits of deep
voltage scaling while meeting high throughput requirements. A
new shift-latch FIFO architecture provides a practical and effi-
cient solution in the near- and sub-threshold regimes. A feature
extraction accelerator using these techniques is fabricated in
28 nm LP CMOS technology and measurement results confirm
that it processes 30 fps VGA video at supply voltages as low
as 470 mV at a low clock speed of 27 MHz. Overall the design
provides 3.5 higher energy efficiency than prior state-of-art
and offers full-frame feature extraction. Table II summarizes

power savings obtained by the proposed algorithm, architecture
and circuit techniques.
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