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Predicting Error Floors of Structured LDPC Codes:
Deterministic Bounds and Estimates
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Abstract—The error-correcting performance of low-density
parity check (LDPC) codes, when decoded using practical it-
erative decoding algorithms, is known to be close to Shannon
limits for codes with suitably large blocklengths. A substantial
limitation to the use of finite-length LDPC codes is the presence
of an error floor in the low frame error rate (FER) region. This
paper develops a deterministic method of predicting error floors,
based on high signal-to-noise ratio (SNR) asymptotics, applied
to absorbing sets within structured LDPC codes. The approach
is illustrated using a class of array-based LDPC codes, taken as
exemplars of high-performance structured LDPC codes. The re-
sults are in very good agreement with a stochastic method based
on importance sampling which, in turn, matches the hardware-
based experimental results. The importance sampling scheme
uses a mean-shifted version of the original Gaussian density,
appropriately centered between a codeword and a dominant
absorbing set, to produce an unbiased estimator of the FER with
substantial computational savings over a standard Monte Carlo
estimator. Our deterministic estimates are guaranteed to be a
lower bound to the error probability in the high SNR regime, and
extend the prediction of the error probability to as low as 10−30.
By adopting a channel-independent viewpoint, the usefulness of
these results is demonstrated for both the standard Gaussian
channel and a channel with mixture noise.

Index Terms—LDPC codes; belief propagation; hardware
emulation; error floor; importance sampling; near-codeword;
trapping set; absorbing set; pseudocodeword.

I. INTRODUCTION

THE CLASS of low-density parity check (LDPC) codes
was first introduced by Gallager [14], and has been the

focus of intensive study over the past decade (e.g., [18],
[22], [23]). An attractive feature of these codes is their
outstanding error-correction performance, even when decoded
using practical iterative algorithms; in particular, the perfor-
mance of suitably designed LDPC codes of sufficiently large
blocklength is known to be very close to Shannon limits [22].
Various analytical techniques, including density evolution [22]
and EXIT charts [26], have been developed for predicting the
performance of iteratively decoded LDPC codes. Based on
asymptotic approximations, these methods are very accurate
for large blocklengths. However, for moderate blocklengths—
i.e., those on the order of hundreds to thousands—these
methods can yield inaccurate results, and thus there remain
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various open questions regarding the performance of specific
finite-length LDPC codes.

A particular issue with structured LDPC codes of moderate
blocklength is the presence of an error floor—that is, a
significant flattening in the curve that relates signal-to-noise
ratio (SNR) to the frame error rate (FER). Many coding
applications—among them satellite communications [1], Eth-
ernet transmission [2], and data storage applications [27]—
require very low error rates, so that an important problem is
the development of practical tools for predicting error floors
and evaluating the performance of LDPC codes in the low
frame error rate region.

The main contribution of this paper is the development
of a method for predicting and understanding low error rate
performance for structured LDPC codes. We describe the
method, which exploits a channel-independent perspective
on the decoding process to establish deterministic bounds
on the error rate. The results are shown to be a lower
bound to those obtained through a stochastic method based
on importance sampling that produces quick yet accurate
estimates of the low probability of error. The error floor
is commonly attributed to the suboptimality of the iterative
decoding algorithms on graphs with cycles, and past work
has studied concepts such as near-codewords [19], trapping
sets [21], pseudocodewords [13], and elementary trapping sets
[16]. In our own previous work, we have introduced the notion
of (fully) absorbing sets as the main cause of the error floor
of structured LDPC codes. These absorbing sets are a specific
type of near-codewords [19] or trapping sets [21], and in
particular fully absorbing sets are stable under bit-flipping op-
erations. An absorbing set is a combinatorial object associated
with a code, defined independently of the particular decoding
scheme or channel noise model. Consequently, the structural
properties of absorbing sets can be studied analytically, and
their cardinalities can be computed in closed form for certain
structured LDPC codes [9]. It can be shown [8] that the factor
graphs associated with certain structured LDPC codes contain
absorbing sets which have strictly fewer bits than the minimum
codeword weight.

The performance of an iterative decoding algorithm in the
low FER region is predominantly dictated by the number and
the structure of the smallest (fully) absorbing sets, in contrast
to the performance of a maximum-likelihood decoder, which
is governed by the minimum distance codewords.

In early work on error floors, Richardson [21] developed
a fast-simulation method, based on using simulation traces of
a hardware emulator to extract trapping set candidates, and
then using an approximate integration technique to estimate
the associated error probability. This method involves compu-

0733-8716/09/$25.00 c© 2009 IEEE



DOLECEK et al.: PREDICTING ERROR FLOORS OF STRUCTURED LDPC CODES: DETERMINISTIC BOUNDS AND ESTIMATES 909

tations for a sequence of possible channel noise models, which
interpolates along a curve between the actual channel noise
and noise centered at the trapping set. Subsequent follow-up
work [5], [7], [29], [30] has applied importance sampling,
which involves drawing samples from a channel noise distri-
bution suitably “biased” towards a candidate trapping set.
The analytic method for approximating the error probability

yields lower bounds for sufficiently high SNR. This method
is based on approximating the absorbing region—namely,
the set of algorithm inputs that lead to convergence to a
given absorbing set. This absorbing region is defined in terms
of the code and the decoder, but does not depend on the
particular channel model. The channel model enters only
in assessing a type of “distance” to the absorbing region,
which we do with Chernoff-type error bounds. Once the
absorbing regions have been approximated, our method is
easily applied to any channel (without any further substantial
computation), as we illustrate by generating predictions for
both the standard additive white Gaussian noise (AWGN)
channel and also a non-standard Gaussian-mixture channel.
The Gaussian-mixture channel is practically important as well,
as it is commonly used to model noise in a channel with
fading [3], [20], [28]. The results are compared to the method
based on mean-shifted importance sampling, suitably applied
to absorbing sets of a structured LDPC code [10].
We consider the performance of various structured LDPC

codes, different quantized forms of sum-product decoding, as
well as different channel models. Section II of this paper con-
tains the relevant background on LDPC codes, absorbing sets,
and iterative decoding. The analytic method which produces
guaranteed lower bounds on the FER in the high SNR regime
is presented in Section III. The channel-independent set-up en-
ables the performance prediction for different channel models
without a need to recompute the relevant distance parameters
for each application. A brief discussion of the stochastic,
importance sampling based method we previously developed
in [10], [17] is given in Section IV. The experimental results
based on our bounding technique are presented in Section V.
The comparison with both the experimental results obtained on
a hardware emulator as well as the stochastic approach show
excellent agreement. In Section VI we conclude the paper and
propose future extensions of the work presented here.

II. BACKGROUND

A. Low-density parity check codes and absorbing sets

Letting H ∈ {0, 1}m×n be a parity check matrix; it defines
a binary code of blocklength n, corresponding to the set of all
strings x ∈ {0, 1}n that satisfy the relation Hx = 0 in modulo
two arithmetic. The term low-density refers to parity check ma-
trices in which the number of 1s per row and column remains
bounded, independent of the blocklength n and number of
checks m. A convenient graphical representation of any low-
density parity check (LDPC) code is in terms of its associated
Tanner graph [25] or factor graph [15]: it is a bipartite graph
G = (V, F, E) in which the subset V = {1, . . . , n} indexes
the code bits, the subset F = {1, . . . , m} indexes the code
checks, and the edges E = {(j, i) | H(j, i) = 1} join
checks j ∈ F to bits i ∈ V .

1 1 10 0 0 0 0 0

U U U S S S S S S

0 0 0

S(D): sat
checks

O(D): unsat
checks

D

Fig. 1. An example of a (3,3) absorbing set.

Next we define the notion of an absorbing set associated
with an LDPC code [8], [31]. For a subset D of V , let O(D)
be the set of neighboring vertices of D in F in the graph
G with odd degree with respect to D. Given an integer pair
(a, b), an (a, b) absorbing set is a subsetD of V of size a, with
O(D) of size b and with the property that each element of D
has strictly fewer neighbors in O(D) than in F\O(D). We say
that an (a, b) absorbing set D is an (a, b) fully absorbing set, if
in addition, all bit nodes in V \D have strictly more neighbors
in F\O(D) than in O(D) [8]. Therefore fully absorbing sets
are stable under the bit-flipping operations. An example of
an (a, b) fully absorbing set with a = 3, b = 3 is given in
Fig. 1. Notice that all bit nodes have strictly more satisfied
than unsatisfied checks. In the remainder of the paper, all of
the discussed absorbing sets are in fact fully absorbing sets,
and unless otherwise noted, this subclass will be implicitly
assumed.
The notion of the absorbing set is being used in this work

to disambiguate it from the definitions of objects used for
describing the error floors. The original definition of the
trapping set by Richardson [21] is semi-empirical and decoder-
dependent. Subsequent work offered an alternative definition
of a trapping set as a fixed point of the decoder [6]. A related
structure is an (a, b) elementary trapping set [7], [16], which
is defined as a trapping set for which all check nodes in
the induced subgraph have either degree one or two, and
there are exactly b degree-one check nodes. In contrast, the
absorbing set is defined as a combinatorial object, and is
decoder-independent. An absorbing set can be understood as a
special type of a trapping set [21], in which each variable node
is connected to strictly more satisfied than unsatisfied checks.
In contrast to an elementary trapping set, an absorbing set
does not impose any degree constraint on check nodes. We
utilize this specific definition of the absorbing set in the body
of this work.
Array-based LDPC code constructions [12] are a repre-

sentative class of high-performing structured LDPC codes.
These codes have subsequently been proposed for a number
of applications, including digital subscriber lines [11] and
magnetic recording [27]. It is known [8] that these codes
have absorbing sets that are strictly smaller in size than
the minimum distance of the code; moreover, results from
hardware emulation show that their low FER performance
and the error floor are indeed dominated by these absorbing
sets [31]. These codes will be used in the remainder of the
paper to conveniently illustrate the methodology developed
here.
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B. Iterative decoding

The analysis of this paper focuses on the sum-product
decoding algorithm, and binary-phase-shift-keyed (BPSK) sig-
nalling (under the mapping 0 �→ 1 and 1 �→ −1). As with other
iterative algorithms, the sum-product algorithm relies on the
exchange of messages between bit nodes and check nodes
to achieve correct bit decisions. Suppose the Tanner graph
consists of n bit nodes and m check nodes. In the first step,
bit nodes xi, i = 1, 2, . . . n, are initialized with the prior log
likelihood ratios given in (1) using the channel outputs yi,
i = 1, 2, . . . , n

�i = log
P(xi = 0|yi)
P(xi = 1|yi)

=
2yi

σ2
, (1)

where σ denotes the standard deviation of noise in this
Gaussian channel. Bit nodes first send the prior LLR messages
to the neighboring check nodes along the edges of the Tanner
graph, and the subsequent message exchange is governed by
the bit-to-check message Qi→j and the check-to-bit message
Rj→i, where N(i) refers to the neighborhood of the node i,
where

Qi→j = �i +
∑

k∈N(i)\j Rk→i and,

Rj→i =
∏

l∈N(j)\i sgn(Ql→j)Φ−1

( ∑
l∈N(j)\i Φ(|Ql→j |)

)
,

(2)
where Φ(x) : = − log

[
tanh

(
x
2

)]
for x ≥ 0. The posterior

log-likelihood ratio at each bit node is then computed as

LLRpost
i = �i +

∑
j∈N(i)

Rj→i (3)

The message passing algorithm is typically allowed to run
for a fixed number of iterations, both because convergence
is not guaranteed when many cycles are present, and due to
practical (delay) constraints. Based on the posterior LLR, a
bit-wise hard decision is made: ‘0’ if LLRpost

i ≥ 0, and ‘1’
otherwise. For practical hardware implementations, the real-
valued messages in (2)–(3) are necessarily quantized, and we
present results for various quantization schemes.
In terms of channels, we consider additive noise models, in

that the channel input xi ∈ {−1, 1}, corresponding to the ith
bit in the transmitted codeword, is received as Yi = xi + Wi,
where Wi is observation noise. We consider only memoryless
channels meaning that Wi and Wj are independent for i �= j.
In the additive white Gaussian noise (AWGN) channel, the
noiseWi is a zero-mean Gaussian signal with variance σ2. For
the Gaussian mixture model, the noise takes the form Wi =
UiVi where Vi ∼ N(0, σ2), and Ui is a binary variable, taking
value 1 with probability r, and value a > 1 with probability
1 − r.

III. DETERMINISTIC BOUNDS ON ERROR PROBABILITIES

Well-designed LDPC codes of moderate blocklength can
yield excellent performance when decoded with suboptimal
iterative message-passing algorithms. Due to analytic in-
tractability, the performance of an iteratively-decoded LDPC
code is typically reported as the (empirical) probability of error
for a certain SNR value, where the total number of decoding
errors over a set of trials is counted. For high SNR values, the
probability of error is very small, so that a very large number

of trials needs to be run in order to obtain reliable estimates.
This explosion in complexity renders such naı̈ve Monte-
Carlo approaches unfeasible for estimating low probabilities of
error. Instead, modified Monte-Carlo methods using variants
of importance sampling (IS) have been used [5], [7], [10], [29],
[30]. Applying a fast simulation method requires substantially
less computation than direct simulation, but the computation
must be re-performed each time that the channel parameters
are changed.
In this section, we describe an alternative analytical pro-

cedure that provides deterministic lower bounds on the error
probability, and has much lower computational cost than even
fast simulation techniques like importance sampling. We begin
in Section III-A by defining the absorbing region associated
with any given absorbing set and a particular decoder. Al-
though the nature of this set depends strongly on the decoder
(e.g., quantization, saturation levels, etc.), it is independent of
the channel noise model. In general, the absorbing region lies
in Rn, where n is the blocklength of the code. In Section III-B,
we describe a low-dimensional approximation to the absorbing
region that is easily computed, and illustrate it for different
absorbing sets and decoders.

A. Absorbing regions for decoders

Consider some fixed decoder (e.g., floating-point sum-
product, quantized sum-product, or a bit-flipping decoder) that
operates on an LDPC code of blocklength n. On any given
trial, the decoder is initialized with some vector � ∈ Rn,
corresponding to the log-likelihood ratios assumed at each bit
node. After each iteration (up to some maximum number),
the estimated LLRs of the decoder are thresholded, yielding
a {0, 1}n sequence that is an estimate of the transmitted
codeword. Accordingly, any decoder is characterized in terms
of its quantization levels, saturation points, and maximum
number of iterations. Given any such decoder, the associated
absorbing region R(A) of a given absorbing set A is the set
of input vectors � ∈ Rn for which the decoder outputs the
indicator vector of the absorbing set as its estimate within the
maximum number of iterations.
Two properties of this absorbing region are important. First,

it is a channel-independent quantity, since it is only a function
of the initializing LLR vector � ∈ Rn. Although we frequently
model the likelihood ratio L as being drawn from a probabilis-
tic channel, when conditioned on a particular initialization
L = �, the decoder’s behavior is purely deterministic, and
hence channel-independent. Second, it varies as features of the
decoder—quantization schemes, number of iterations, etc.—
are changed. Indeed, the relative size of the absorbing region
is a measure of its impact on a particular decoder.

B. Approximations of absorbing regions

Exact computation of the absorbing region is, unfortunately,
prohibitively expensive, since it involves testing the decoder
over an n-dimensional space. For instance, discretizing each
dimension to m locations yields the complexity O(mn). In
practice, we are forced to seek approximations to the ab-
sorbing region. Here we describe a particular low-dimensional
approximation to the absorbing region; later, we describe how
it can be exploited to obtain rigorous lower bounds on the
absorbing probability.
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To approximate the exact absorbing region, we first divide
the bit nodes of the absorbing set into groups of nodes with
the same number of satisfied and unsatisfied checks when all
bit nodes in the absorbing set are incorrect. Here and in the
remainder, the notation (s : u) indicates that a bit node in
an absorbing set is connected to s satisfied and u unsatisfied
checks, and we then say that the bit node is of type (s : u).
For example, the (8, 6) absorbing set in the (2209, 1978) array
code, shown in Fig. 2b, is made up of six variable nodes of
type (4 : 1) and two variable nodes of type (5 : 0). Each of
these groups of nodes is associated with an axis. All bit nodes
are initially assigned value ’1’ (the all-zeros codeword under
BPSK). In the two-dimensional case, the region is found by
trying all combinations of shifts for the two groups of nodes,
where each axis ranges from the absorbing set (centered at −1,
which corresponds to a shift of −2) to the all-zeros codeword
(centered at +1, which corresponds to no shift), separated by
increments of size 0.01. The decoder is run for 50 iterations,
and if the hard decision at the end of these iterations is the
absorbing set, then we include this combination of shifts of
the absorbing set nodes in a set S. The approximation to the
projection of the absorbing region, discretized to this level of
granularity, is this set S of points that decode to the absorbing
set. Its calculation requires running the decoder a total of
(201)2 times, one for each point in the discretization.

Figure 3 illustrates some of the approximations of the
projections of the absorbing regions, in the sense above, for
different decoders and different absorbing sets. Each panel is
a two-dimensional plot, with the upper right (+1, +1) point
corresponding to receiving the all-zeros codeword (without
any noise), and the lower left (−1,−1) centered on the ab-
sorbing set. The marked contours correspond to the boundary
between not decoding to and decoding to the appropriate
absorbing set (towards lower left). Panel (a) shows regions
for the (4, 8) absorbing set, which has the structure shown in
Fig. 2a, taken from the Tanner graph of the (2209, 1978) array-
based LDPC code, for three different quantized forms of sum-
product (details of the quantization choices are in [31]). An
(x.y) fixed-point quantization scheme uses x bits to represent
the integer portion of the number and y bits to represent
the fractional portion. The four variable nodes in the (4, 8)
absorbing set are all of the type (3 : 2), so the four nodes
are randomly divided into two pairs in order to show a two-
dimensional plot, which highlights the symmetry of variable
nodes of the same type and thus supports the method of
grouping nodes of one type into one axis. Note how the size
of the approximation to the projection of the absorbing region
shrinks as the quantization is improved.

The effect of better quantization is also seen in panel (b),
which shows the approximations of the projection of the
absorbing region for the (8, 6) absorbing set of the same code
under three different quantization schemes. The effect of a
finer quantization scheme is more pronounced when the bits
in the absorbing set have only marginally more neighboring
satisfied versus unsatisfied checks since the additional bits
used to represent the messages can more easily help favorable
messages overpower the unfavorable messages, as is the case
for the (4, 8) absorbing set.

C. Lower bounds on absorbing probabilities

Although the absorbing region is a channel-independent
quantity, the probability of falling within it depends strongly
on the channel. We now discuss a method for obtaining lower
bounds on this probability, one which uses the approximate
absorbing regions defined in the previous section. At first,
these approximate regions may seem like poor surrogates
to the full n-dimensional absorbing region, since they only
consider a very limited number of bits. However, as we prove
here, these approximate regions capture the decay in error
probability as the SNR increases.
We begin by defining an alternative “channel” under which

the probability of landing in the full absorbing region is
the same as landing in the approximate absorbing region.
In particular, for a fixed absorbing set A, let QA denote
the joint distribution over received sequences (Y1, . . . , Yn) in
which Yi ∼ N(1, σ2) for all i ∈ A, and Yi = 1 for all
i /∈ A. As before, we let L = 2

σ2 Y denote the associated
log likelihood ratios, corresponding to the decoder input. Our
method is based on the fact that it is straightforward to
compute QA[L ∈ R(A)], since the distribution QA involves
randomness only on the absorbing set.
The following result shows for any given class Aa,b of

absorbing sets, the probability QA[L ∈ R(A)], combined with
total number card(Aa,b) of such absorbing sets, can be used to
lower bound the error probability. Recalling that we are using
quantized algorithms, we let Imax be the interval of numbers
that are quantized to Mq , the maximum quantization level in
the decoder.
Theorem 1 (Lower bounds on error probability): For any

noise variance σ2 such that 2
σ2 ∈ Imax and any class Aa,b

of absorbing sets, the probability of error under the AWGN
channel is lower bounded as

P[E(L)] ≥ (1 − oσ(1)) card(Aa,b) QA[L ∈ R(A)], (4)

where A is any member of the absorbing class Aa,b, and oσ(1)
denotes a term that converges to zero as σ2 → 0.

Proof: The overall error probability P[E(L)] is lower
bounded by the probability P[EA(L)] = ∪A∈Aa,b

P[L ∈ R(A)]
of decoding incorrectly to some absorbing set A ∈ A. The
events in this union are disjoint, so that we have

P[E(L)] ≥ P[EA(L)] =
∑

A∈A P[L ∈ R(A)]
= card(Aa,b) P[L ∈ R(A)],

(5)
where the final equality holds since, by exchangeability (in-
variance to permutations) of the distribution P, the absorption
probability is independent of the particular absorbing set
considered. Consequently, it suffices to lower bound P[L ∈
R(A)]. Next we observe that QA[L ∈ R(A)] = P[L ∈
R(A) | Li ∈ Imax, ∀i /∈ A], which follows from the
assumption that 2

σ2 ∈ Imax, and Li = 2/σ2 for all i /∈ A.
Consequently, we have the lower bound

P[L ∈ R(A)]
≥ P[L ∈ R(A) | Li ∈ Imax, ∀i /∈ A] P[Li ∈ Imax, ∀i /∈ A]
= QA[L ∈ R(A)] P[Li ∈ Imax, ∀i /∈ A].

(6)
To complete the proof, we need to show that P[Li ∈
Imax, ∀i /∈ A] = 1 − oσ(1) as σ → 0. Under the distri-
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(a) (b)

Fig. 2. These plots show the structure of absorbing sets in the (2209, 1978) array code, where (a) shows a (4, 8) absorbing set, and (b) shows an (8, 6)
absorbing set.
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Fig. 3. Subsets of the signal space regions for which the decoder converges to the absorbing set. These plots show particular projections of these absorbing
regions. (a) Absorbing region for a (4, 8) absorbing set in the (2209, 1978) array code. The plot shows three different levels of quantization: (4.2), (4.4),
and (4.5) fixed-point quantization [31]. Note how the absorbing region contracts as the quantization scheme improves. (b) Absorbing region for a (8, 6)
absorbing set in the (2209, 1978) array code. Here the benefits of improved quantization schemes are only minor.

bution P, the random variable Li = 2
σ2 Yi has a N( 2

σ2 , 4
σ2 )

distribution. Letting Mq be the upper quantization level, we
have

1 − P[Li ∈ Imax, ∀i /∈ A]
≤ P[Li ≥ Mq for some i /∈ A] ≤ (n − |A|) P[Li ≥ Mq],

(7)
where the last step applies union bound. Applying Gaussian
tail bounds [24], we conclude that

1 − P[Li ∈ Imax, ∀i /∈ A]
≤ 2(n − |A|) exp(−σ2

8 ( 2
σ2 − Mq)2)

≤ 2(n − |A|) exp(Mq/2) exp(− 1
2σ2 )

= oσ(1)

(8)

as claimed.
Remark: An examination of the proof shows the same result
applies more generally to non-Gaussian channels. All that
is required is that the probability P[Li ∈ Imax, ∀i /∈ A]
converge to one as the SNR parameter is taken to infinity. We
pursue this idea in application to a time-varying channel later.
We now discuss different methods to approximate or lower

bound QA[L ∈ R(A)], which generally cannot be easily
computed directly since R(A) may not have a simply defined
shape. To find a lower bound for QA[L ∈ R(A)], we can
find a simple inner bound to the approximate absorbing
region and compute the probability of falling into this simple
region. For example, for the (4, 8) absorbing set under (4.2)
quantization, we see from Fig. 3 that a natural inner bound

R̂(A) to the approximate absorbing region is a box from
(−.22,−.22), the point closest to (1, 1); that is, the region
defined by the intersection of the halfspaces x ≤ −.22
and y ≤ −.22, where x corresponds to the horizontal axis
and y corresponds to the vertical axis. The computation of
QA[L ∈ R̂(A)] is straightforward, since R̂(A) is the region
where all four bit nodes in the absorbing set have values
less than or equal to −.22. Therefore, QA[L ∈ R̂(A)] =
P(Yi ≤ −.22)4, where Yi ∼ N(1, σ2) represents the value
of a bit node in the absorbing set, so in the AWGN case
QA[L ∈ R̂(A)]= Φ(−.22−1

σ )4, where Φ is the CDF of a
standard normal random variable. Since R̂(A) is contained
in R(A), QA[L ∈ R̂(A)] ≤ QA[L ∈ R(A)].
For the approximate absorbing region of the (8, 6) absorbing

set, a box would provide only a loose inner bound, and
therefore we instead use the intersection H of two half-spaces.
Two lines can form a good inner approximation of the border
of the absorbing region, so H is contained in the absorbing
region and closely approximates the absorbing region. Each
axis is scaled by the square root of the number of nodes
it represents (so for the (8, 6) absorbing set, the x-axis is
scaled by

√
6 and the y-axis is scaled by

√
2) to ensure

that the minimum distance from the all-zeros codeword to
the absorbing region is correctly factoring in the number of
nodes grouped to each axis. We then find QA[L ∈ H] by
numerically integrating the joint pdf of the noise in the channel
(two independent Gaussian random variables in the AWGN
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case or two independent Gaussian mixture random variables
in the mixture noise case) over H. Since H is an inner bound
to R(A), QA[L ∈ H] ≤ QA[L ∈ R(A)].
To estimate QA[L ∈ R(A)] rather than lower bounding the

probability, we find the probability of L falling in a simple
region that approximatesR(A) (but is not contained in R(A),
which is required in the lower bound case). For example,
for the (8, 6) absorbing set, we can find a halfspace Hest =
{z|aT z ≥ dmin} with ||a||2 = 1, where dmin is the minimum
distance from (1, 1) to R(A). Since this halfspace is an ap-
proximation for R(A), QA[L ∈ Hest] ≈ QA[L ∈ R(A)]. For
the AWGN channel, QA[L ∈ Hest] = P(aT (X1, ..., X8)T ≥
dmin) = Φ(−dmin

σ ), where Xi ∼ N(0, σ2), for i = 1, ..., 8
represents the AWGN noise at the absorbing set bit nodes.
Experimental results demonstrating the tightness of these

estimates and bounds for various absorbing sets in different
codes under several quantization schemes in the AWGN
channel and the mixture channel are shown in Section V.
Moreover, this same approach can also be applied to com-

pute analytical approximations for other channels, which could
be used to model time-varying behavior or model uncertainty.
Consider a mixture channel, in which the noise on per-symbol
basis is either N(0, σ2) with probability 1/2 (“good” channel
state), orN(0, 4σ2) with probability 1/2 (“bad” channel state).

D. A heuristic argument for accuracy of error probability
calculations under QA

In this section we sketch a heuristic argument for the
accuracy of error probability calculations under QA.
Let n be the number of bits in the code and A a class of

absorbing sets which dominate the error events when the all-
zeros codeword is transmitted. We will assume that no set in
A is contained in another in A. Y1, . . . , Yn are i.i.d. N(1, σ2).
L1, . . . , Ln are i.i.d. N( 2

σ2 , 4
σ2 ). Here Li = 2

σ2 Yi. Fix A ∈ A.
We couple the distribution QA to the true noise distribution
by defining L̄1, . . . , L̄n as

L̄i =
{

2
σ2 if i /∈ A
Li if i ∈ A .

(9)

We will assume that what the sum-product algorithm does
with the log-likelihood input (l1, . . . , ln) that results from the
transmission of the all-zeros codeword is to decode to the
maximizing vertex of the polytope that is convex hull of the
vectors (1, . . . , 1) (corresponding to decoding to the all-zeros
codeword) and the vectors ((−1, i ∈ B), (1, i /∈ B)), B ∈ A,
corresponding respectively to decoding to the absorbing set B.
This heuristic is motivated by the assumption that the class A
of absorbing sets dominates the error events.
Under this heuristic, the “true” probability of “error by

decoding to the absorbing set A when the all-zeros codeword
is transmitted” can be written as

π := P(−∑
i∈B Li +

∑
i∈Bc Li ≤ −∑

i∈A Li +
∑

i∈Ac Li ,
∀ B ∈ A, B �= A and

∑
i Li ≤ −∑

i∈A Li +
∑

i∈Ac Li)
= P(

∑
i∈Bc∩A Li ≤

∑
i∈B∩Ac Li ,

∀ B ∈ A, B �= A and
∑

i∈A Li ≤ 0)
= P(

∑
i∈A Li ≤ 0)P(

∑
i∈Bc∩A Li ≤

∑
i∈B∩Ac Li ,

∀ B ∈ A, B �= A | ∑
i∈A Li ≤ 0) .

(10)

Similarly, writing π̄ for the “true” probability of “error by
decoding to A when the all zeros codeword is transmitted over
A and the log-likelihoods outside A are pinned to 2

σ2 ”, which
would be the probability of such error under QA, we have

π̄ = P(
∑

i∈A Li ≤ 0)×
P(

∑
i∈Bc∩A Li ≤ 2

σ2 | B ∩ Ac |
for all B ∈ A, B �= A | ∑

i∈A Li ≤ 0) .
(11)

Note that we continue to write P for probabilities because we
have coupled QA to P by pinning down the log-likelihoods
outside A.
We now argue that in each of the expressions for π and π̄

above the conditional probability asymptotically approaches 1
as σ2 → 0. This shows that π̄ can serve as an upper bound
to π within any desired factor 1 + δ. It also asymptotically
serves as a lower bound for π within any desired constant
factor 1 − δ.
For P(

∑
i∈Bc∩A Li ≤

∑
i∈B∩Ac Li for all B ∈ A, B �= A |∑

i∈A Li ≤ 0) consider
P(

∑
i∈Bc∩A Li ≤ ∑

i∈B∩Ac Li | ∑
i Li∈A ≤ 0) for any

B ∈ A, B �= A. The conditioning is irrelevant for the term∑
i∈B∩Ac Li which is Gaussian centered at 2

σ2 | B ∩ Ac |,
while the conditioning makes the term

∑
i∈Bc∩A Li have con-

ditional mean negative1, so the claim that P(
∑

i∈Bc∩A Li ≤∑
i∈B∩Ac Li | ∑

i∈A Li ≤ 0) converges to 1 as σ2 → 0
should only involve routine variance estimates.
For P(

∑
i∈Bc∩A Li ≤ 2

σ2 | B ∩ Ac |
for all B ∈ A, B �= A | ∑

i∈A Li ≤ 0) consider
P(

∑
i∈Bc∩A Li ≤ 2

σ2 | B ∩ Ac | | ∑
i∈A Li ≤ 0)

for any B ∈ A, B �= A. By assumption | B ∩ Ac |> 0,
and we again have that the conditioning makes the term∑

i∈Bc∩A Li have conditional mean negative, so the claim
that P(

∑
i∈Bc∩A Li ≤ 2

σ2 | B ∩ Ac | | ∑
i∈A Li ≤ 0)

converges to 1 as σ2 → 0 should again only involve routine
variance estimates.

IV. COMPARISON WITH STOCHASTIC SIMULATION

A. Importance Sampling

Importance sampling (IS) is a particular type of Monte
Carlo method which uses statistical sampling to approximate
analytic expressions of probabilities. The basic idea is to
perform simulation under a tilted distribution so as to make
the event of interest more likely and hence reduce the compu-
tational cost; the averages are then re-weighted to compensate
for the tilting. Supposing without loss of generality that the
all-zeros codeword is transmitted, let Y (1), . . . , Y (M) be a set
of M trials, each Y (i) ∈ Rn sampled in an i.i.d. manner from
a biased distribution fbias. Consider a particular absorbing set
Aa,b of type (a, b) and let R(A) be its associated absorbing
region—that is, the set of decoder inputs Y ∈ Rn for which
the decoder converges to the absorbing set. The associated
IS estimate of the absorbing probability p(Aa,b) : = P[Y ∈
R(Aa,b)] is given by

p̂IS(Aa,b) : =
1
M

M∑
i=1

Ierr(Y (i) ∈ R(Aa,b))w(Y (i)), (12)

1Each conditional expectation E[Li|
P

i∈A Li] equals 1
|A|

P
i∈A Li so

for any B: E[
P

i∈Bc∩A Li|
P

i∈A Li] equals
|Bc∩A|

|A|
P

i∈A Li .
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where Ierr is a 0−1-valued indicator function for whether the
decoder converges to the given absorbing set on trial Y (i), and
w(Y (i)) = f(Y (i))

fbias(Y (i))
is the appropriate weighting function to

produce an unbiased estimate [4].

B. Estimates by biasing towards absorbing sets

Suppose that we have a procedure for generating an esti-
mate p̂IS(Aa,b) of the probability of error associated with a
particular (a, b) absorbing set. Due to the symmetry of the
code and channel, the probability of error of any fixed (a, b)
absorbing set Aa,b is equal to that of any other exemplar
having the same absorbing set structure. Since the associated
events are disjoint, the error probability p(all Aa,b) associated
with all (a, b) absorbing sets of the given structure is equal
to p(all Aa,b) = card(Aa,b)p(Aa,b) where card(Aa,b) is the
total number of (a, b) absorbing sets of the same structure,
and p(Aa,b) is the probability of the decoder converging
to any single absorbing set of that structure. Using this
decomposition, the associated IS estimate of p(all Aa,b) is
given by

p̂IS(all Aa,b) : = card(Aa,b) p̂IS(Aa,b) (13)

where p̂IS(Aa,b) is the IS estimate of p(Aa,b) from equa-
tion (12). For array-based LDPC codes, the total number of
(a, b) absorbing sets of a given structure, card(Aa,b), can be
found using analytical methods [8]. The basic idea in [8] is
to use the structure of the parity check matrix to establish a
system of equations that reflects the relationship among the
nodes in the absorbing set and their neighboring check nodes.
The set of solutions to this system of equations then produces
the total count of the absorbing sets of a particular type. In
codes with different or limited structure, absorbing sets have
been identified through hardware emulation [21].

The final step is to note that in general, the event of
error on any absorbing set of any type is equal to a disjoint
union over all (a, b) of all possible types (a, b) of absorbing
sets—that is, the overall error probability can be written as
p =

∑
(a,b) p(all Aa,b), where the sum ranges over all integer

pairs (a, b) that lead to absorbing sets, and for each such
(a, b) ranges over all types of (a, b) absorbing sets. This
decomposition leads to the final IS-based estimate of the
overall probability of error:

p̂IS =
∑
a,b

p̂IS(all Aa,b) =
∑
a,b

card(Aa,b) p̂IS(Aa,b). (14)

In certain cases, the error floor is dominated by a particular
isomorphic sub-class of (a∗, b∗) absorbing sets, so that the
overall probability of error is dominated by the contribution
p(all Aa∗,b∗). In other cases, it is necessary to take into
account more than one absorbing set class.

In the case of the all-zeros codeword being transmitted in a
BPSK-modulated Gaussian channel, the original density f is
an n-variate Gaussian N(�1n, σ2In×n). A suitable choice for
fbias is the mean-shifted Gaussian N(ν(μ), σ2In×n), where
ν(μ)k = 1 − μ for elements inside the absorbing set, and
ν(μ)k = 1 otherwise. With this choice, the IS weight w is
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Fig. 4. IS result, deterministic estimate, and deterministic lower bound of
abs. probability for the (8, 6) abs. sets of the (2209, 1978) array-based LDPC
code in the standard AWGN channel under (a) (4.2) fixed-point quantization
(b) (4.4) fixed-point quantization. In (c), IS result and deterministic lower
bound of abs. probability for the (8, 6) abs. sets of the same code in a mixture
channel (noise given by N(0, σ2) with probability 1

2
, and N(0, 4σ2) with

probability 1
2
).

given by

w(Y (i)|μ, σ2) =
exp(− 1

2σ2 [
∑a

k=1(Y
(i)
k − 1)2])

exp(− 1
2σ2 [

∑a
k=1(Y

(i)
k − (1 − μ))2])

,

(15)
where in the notation Y

(i)
k , i denotes the index of the sampling
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w(Y (i)|μ, σ2) =

∏
k∈V (A)

r exp
(

−(Y
(i)

k −1)2

2σ2

)
+ 1−r

a exp
(

−(Y
(i)

k −1)2

2a2σ2

)

r exp
(

−(Y
(i)

k
−(1−μ))2

2σ2

)
+ 1−r

a exp
(

−(Y
(i)

k
−(1−μ))2

2a2σ2

) (16)

run and k ranges over an enumeration of the nodes in the
absorbing set. Likewise, for the noise associated with the
mixture Gaussian channel, cf. Subsection II-B, the importance
sampling weight is (16) where V (A) is the set of nodes in the
absorbing set A.
The paper [10] provides further discussion on different

choices for biasing densities, including variance scaling and
various mean-shift choices.
In order to evaluate the accuracy of the importance sam-

pling error curves, we calculate 95% confidence intervals for
points on the curves. The standard scale for comparing FER
curves is log10(p̂IS) and log10(p) versus SNR; accordingly,
we first find the variance of log10(p̂IS). The variance of the
estimator p̂IS is given by var(p̂IS) = E[(p̂IS)2] − p2. A way
to compute an approximate confidence interval based on the
delta-method [24] and Chebyshev’s inequality is developed
in [17].

V. EXPERIMENTAL RESULTS

We now present experimental results in the AWGN channel
and a mixture channel, comparing the deterministic bounds
and estimates with importance sampling and hardware emula-
tion curves, for various absorbing sets, codes, and quantization
schemes.
We illustrate the deterministic estimate and the deterministic

lower bound obtained by our procedure for (8, 6) absorbing
sets of the (2209, 1978) array-based LDPC code in the AWGN
channel under different quantization schemes in Fig. 4. The
figure also gives an example of our lower bound results
for a Gaussian mixture channel. The deterministic estimates
show close agreement with the IS curves and, as predicted
theoretically, the deterministic bounds are lower bounds for
the IS curves.
In Fig. 5, we show the deterministic lower bound described

previously, scaled by the cardinality of the (4,8) absorbing
sets in the code, along with the scaled importance sampling
results (with the green points representing the 95% confidence
interval for each of the points on the importance sampling
curve) and the hardware emulation FER curve for both the
AWGN channel and a mixture channel. The plots show that
for both channels, the deterministic bound appears to lie very
close to the importance sampling and hardware results and
lower bounds the IS curves for high SNR values. Note that
with importance sampling and the deterministic bounds, we
are able to extend the error probability curve much farther
than with hardware emulation. The deterministic bounds give
a vast improvement in computational cost over importance
sampling and hardware emulation, as the only step where any
substantial computation is required is in finding the absorbing
regions, and the time required for this step is only a fraction
of the time needed to generate one point on the importance
sampling or hardware emulation curves.

We demonstrate our techniques on a different code
((2209, 2024) array-based LDPC code) in both the AWGN
channel and a Gaussian mixture channel in Fig. 6, which
shows the hardware emulation FER curve, the importance
sampling results (scaled by the cardinality of the (6,4) absorb-
ing sets in the code, and with the 95% confidence intervals for
each point shown by a dotted pair), and a scaled deterministic
estimate. The deterministic estimate approximates the impor-
tance sampling curve very well and the deterministic bound
becomes a lower bound in the high SNR region while still
closely following the slope of the importance sampling curve.

VI. CONCLUSION

LDPC codes have recently generated a lot of interest due
to their excellent performance. While the infinite blocklength
regime is better understood, less is known about the per-
formance of LDPC codes for finite blocklengths. Since the
performance of finite blocklength LDPC codes for low FER
rates cannot be estimated reasonably fast using software based
Monte Carlo simulations, and there is a lack of finite-length
theoretical analysis, the deployment of LDPC codes has so far
been somewhat limited.
Our method produces deterministic estimates, based on

computing projections of absorbing regions and then using
asymptotics to estimate associated error probabilities. These
deterministic estimates are guaranteed to lower bound the true
error probability in the high SNR regime. We have put forth
a channel-independent viewpoint which enables efficiently
estimating the probability of error for various channel models;
the technique is demonstrated for both a pure Gaussian model
and a mixture model.
Moreover, our method was compared against the experi-

mental results collected on a hardware emulator as well as
experimental results obtained using an importance sampling
based approach. The results showed a very close agreement
with both sets of experiments, thereby confirming the validity
and the computational powers of the proposed technique.
An interesting future direction is whether techniques similar
to those here can yield matching upper bounds on error
probabilities.
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