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Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Email: {dolecek, zyzhang, wainwrig, ananth, bora}@eecs.berkeley.edu

Abstract—We present an importance sampling method for the
evaluation of the low frame error rate (FER) performance of
LDPC codes under iterative decoding. It relies on a combinatorial
characterization of absorbing sets, which are the dominant cause
of decoder failure in the low FER region. The biased density
in the importance sampling scheme is a mean-shifted version
of the original Gaussian density, which is suitably centered
between a codeword and a dominant absorbing set. This choice
of biased density yields an unbiased estimator for the FER with a
variance lower by several orders of magnitude than the standard
Monte Carlo estimator. Using this importance sampling scheme
in software, we obtain good agreement with the experimental
results obtained from a fast hardware emulator of the decoder.

I. INTRODUCTION
Low-density parity check (LDPC) codes are a class of

binary linear codes defined by very sparse factor graphs that
yield excellent error-correction performance when decoded
iteratively using message passing algorithms. Density evolu-
tion [1] accurately characterizes their performance for large
blocklengths. However, for moderate blocklengths—i.e., those
on the order of hundreds to thousands—the density evolution
method can yield inaccurate results, and thus current under-
standing of the finite length LDPC codes remains incomplete.
In this moderate blocklength regime, many structured LDPC
codes exhibit an error floor, corresponding to a significant
flattening in the curve that relates signal to noise ratio (SNR) to
the frame error rate (FER). Consequently, despite the appeal of
these codes for many high data rate communications and data
storage applications, their wide-scale deployment has been
hindered by incomplete understanding of finite-length effects
and error floors. Better understanding of the performance
of finite-length LDPC codes in the low BER/FER regime
has both theoretical as well as practical implications. From
a theoretical standpoint, it provides a deeper understanding
of the convergence of the message passing algorithms. For
practical storage and wireline applications, such predictions
provide a useful engineering tool in estimating performance
and designing LDPC codes.
Error-floor behavior can be attributed to the suboptimal

nature of the message passing algorithms used for decoding
LDPC codes. In early work on error floors of LDPC codes,
MacKay and Postol [2] introduced the notion of a near-
codeword. Other related notions include trapping sets [3],

pseudocodewords [13], and elementary trapping sets [4].
Based on our previous work [5] using a hardware emulator
to explore the low FER region, we have isolated a class
of combinatorial structures that cause the decoder to fail by
converging to a non-codeword state. Due to their attractive
nature, we refer to these structures as absorbing sets. These
structures have a purely combinatorial definition in terms of
the parity check matrix defining the code, and can also be
understood as a particular type of near codeword [2] that
is guaranteed to be stable under a bit-flipping algorithm.
For many LDPC codes, the associated factor graphs contain
absorbing sets which have strictly fewer bits than the minimum
codeword weight. As a result, the performance of the decoding
algorithm in the low FER region is predominantly dictated by
the number and the structure of minimal absorbing sets, rather
than the minimum distance codewords [6], as in the case of a
maximum-likelihood decoder.
In this paper, we investigate the low FER performance of

a (2048, 1723) Reed-Solomon based LDPC codes [7] as a
representative example of high-performance LDPC codes for
which the low FER region is dominated by non-codewords.
This particular RS-LDPC code has been adopted in recent
standards, and has a number of desirable properties. In this
paper, we develop and demonstrate the effectiveness of a fast
simulation method, based on importance sampling [8], for
approximating the error probability. As we discuss in more
detail below, early work by Richardson [3] demonstrated the
effectiveness of a two-stage approach, based on a combination
of hardware emulation and software-based simulation, for
approximating the error probability. Other work [9], [10] has
directly applied importance sampling (IS), though limited to
shorter blocklength codes and higher FERs than those con-
sidered here. For the RS-LDPC code, we first show how it is
possible to exactly enumerate all relevant classes of absorbing
sets that are dominant in the low FER regime. We then exploit
this characterization of these absorbing sets to develop an
efficient IS method for evaluating the probability of error in the
low FER regime. The agreement with the experimental results
obtained from the hardware emulator demonstrates the power
of the proposed technique, and suggests that performance
evaluation using the importance sampling methods at even
lower BER/FER levels yields reasonable predictions. The
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computational advantage of the importance sampling methods
is demonstrated via their relative efficiencies— namely, the
reduction in the sample variance of our IS-based estimators
relative to the sample variance of a naive Monte Carlo esti-
mators, which exceeds tens of millions.
The first paper (that we are aware of) that proposed a

method for predicting deep BER behavior of message-passing
decoding algorithms is by Richardson [3]. This method con-
sisted of two stages: first identifying a class of (empirically
defined) trapping sets via hardware emulation, and then ap-
proximating its associated error probability by simulating over
a sequence of channel noises biased towards the individual
trapping set. In contrast, our work is based on graph substruc-
tures that have a combinatorial characterization in terms of
the Tanner graph, which we refer to as absorbing sets. We
then approximate the error probability associated with a given
absorbing set by performing importance sampling at a single
mean-shifted distribution. In codes with sufficient structure
that low weight absorbing sets can be analytically determined
and counted [6], our approach could circumvent the need to
empirically identify candidate trapping sets. Our simulation
results in the example considered here show sufficiently close
agreement to our hardware emulations to argue for the value
of our approach. In this example the lowest weight absorbing
set was determined by emulation, and the count of the number
of such sets by analysis.
The remainder of the paper is organized as follows. In Sec-

tion II, we provide background on Reed-Solomon based LDPC
codes and absorbing sets. Section III describes the Monte
Carlo and importance sampling methods, and the specific IS-
based estimator used in this work. Section IV contains results
of the low FER rate performance using importance sampling.
Lastly, Section V summarizes the results and proposes future
extensions.

II. BACKGROUND
We begin with background on RS-LDPC codes, as well as

on the notion of absorbing sets.

A. RS-LDPC codes
Reed-Solomon based LDPC codes (RS-LDPC) [7] are reg-

ular, structured LDPC codes, with the girth being at least 6.
The parity check matrix of this code family can be viewed as
consisting of a two-dimensional array of permutation matrices
of equal size. For the row degree ρ and the column degree γ,
the construction is based on stacking up γ cosets of a one-
dimensional subcode that is itself determined by a weight ρ
codeword of a dimension 2 shortened Reed-Solomon code,
followed by appropriately mapping these symbols into binary
row vectors. For the details of the construction, please see
Section III in the paper [7].
The focus of this paper is the (2048,1723) RS-LDPC code,

which has column degree 6, row degree 32, and each compo-
nent permutation submatrix is of size 64 × 64. This particular
RS-LDPC has been adopted in the IEEE 802.3an 10GBASE-
T standard. The standard supports 10 Gb/s Ethernet over 100
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Fig. 1: An example of a (3,3) absorbing set.

meters of CAT-6a UTP (unshielded twisted-pair) cable. The
high frequency transmission is severely impaired by insertion
loss, cross talk, and interferences due to the cable channel.
These challenges present a stringent requirement on the perfor-
mance of the transceiver design. The (2048, 1723) RS-LDPC
code is selected specifically to provide sufficient coding gain
to allow for a bit error rate (BER) performance of 10−12 or
better [11]. This code is designed to contain no cycles of length
4 in the associated Tanner graph. It also features a structured
parity check matrix, amenable for a high throughput, parallel
decoder implementation. A lower bound on the the minimum
distance of this code is 8 by construction, though the actual
minimum distance is believed to be much higher. However, in
our previous hardware-based emulations [5], all error events
recorded in the low FER region were due to non-codeword
configurations. More specifically, the decoder never converged
to a non transmitted codeword. and all recorded errors were
caused a single class of combinatorial substructures.

B. Absorbing sets

As established in our previous experimental and theoretical
work [5], [6], certain structures in the Tanner graph associated
with a parity check matrix of an LDPC code cause the
decoder to converge to a non-codeword state. We termed these
structures absorbing sets, which are defined more formally as
follows:
Let G = (V, F,E) be a bipartite graph with the vertex set

V ∪ F , where V and F are disjoint, and with the edge set
E, such that there exists an edge e(i, j) ∈ E if and only
if i ∈ V and j ∈ F . One can associate a bipartite graph
GH = (V, F,E) with a parity check matrix H , such that the
set V corresponds to the columns of H , the set F corresponds
to the rows of H , and E = {e(i, j)|H(j, i) = 1}. Such a
graph GH is commonly referred to as the Tanner graph of the
parity check matrix H of a code. Elements of V are called
“bit nodes” and elements of F are called “check nodes”. For
the subset D of V we let ND denote the set of check nodes
neighboring the elements of D.
For a subset D of V , let E(D) (resp. O(D)) be the set of

neighboring vertices of D in F in the graph G with even (resp.
odd) degree with respect to D. Given an integer pair (a, b),
an (a, b) absorbing set is a subset D of V of size a, with
O(D) of size b and with the property that each element of D
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has strictly fewer neighbors in O(D) than in F\O(D). We
say that an (a, b) absorbing set D is an (a, b) fully absorbing
set, if in addition, all bit nodes in V \D have strictly more
neighbors in F\O(D) than in O(D) [6].
Thus, absorbing sets correspond to a particular type of near-

codeword, distinguished by the additional requirement of each
bit having strictly more satisfied than unsatisfied checks. An
example of an (a, b) fully absorbing set with a = b = 3 is
given in Fig. 1. For the (2048, 1723) RS-LDPC code, the
dominant (fully) absorbing sets are (8,8) absorbing sets. An
example of such a configuration is given in Figure 2. The
bits outside of the (fully) absorbing sets, though omitted from
the figure for clarity, are also assumed to have strictly more
satisfied than unsatisfied checks.

III. MONTE CARLO AND IMPORTANCE SAMPLING
Suitably designed LDPC codes of moderate blocklength

yield excellent performance when decoded with suboptimal
iterative message-passing algorithms. The performance of an
iteratively decoded LDPC code is typically reported as the
(empirical) probability of error for a certain SNR value. For
high SNR values, this empirical probability is very small and
thus a large number of trials needs to be executed in order to
estimate it reliably.

A. Some intuition
To provide some intuition for the typical number of samples

required, suppose that p is the true probability of a decoding
error at a certain SNR level. A naive Monte Carlo simulation
entails running the decoder on N independent channel real-
izations, and recording the output of each trial i = 1, . . . , N
with a Bernoulli indicator variable

Zi : =

{
1 if decoder fails on trial i

0 otherwise.

It is assumed that the decoding error in the ith trial occurs
whenever the decoder does not converge to the transmitted
codeword in the fixed number of iterations. These Bernoulli
indicator variables then yield the naive Monte Carlo estimate

p̂MC : =
1

N

N∑
i=1

Zi. (1)

The Monte Carlo estimator is unbiased and has variance
var(p̂MC) = 1

N

(
p̂MC − p̂2

MC

)
.

In order to characterize the quality of p̂MC as an estimator
of p, we require that the relative error be small with high
probability, or equivalently that the tail probability

P

[∣∣∣∣ p̂MC − p

p

∣∣∣∣ > ε

]
(2)

should be small for an appropriate ε > 0. Some algebra yields
that

P

[∣∣∣∣ p̂MC − p

p

∣∣∣∣ > ε

]
= P

[
1

N

N∑
i=1

Zi − p√
p (1 − p)

> ε

√
p

1 − p

]
.
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Fig. 3. Examples of biasing densities (top: mean shift,
bottom: variance increase).

Since Zi, 1 ≤ i ≤ N are i.i.d. Bernoulli random variables, we
may invoke the central limit theorem to approximate this prob-
ability as the Gaussian tail function P[|Y | > y], where Y is a
standard normal random variable and y = ε

√
N p/(1 − p). As

a concrete example, if we require that for tolerance ε = 0.2
the tail probability (2) be at most 0.05, corresponding to a
95% confidence interval, then we need y ≈ 2, and thus N ≈
100(1−p)/p. Consequently, in order to estimate a probability
of error that is around 10−8 up to relative error ε = 0.2, on
the order of 1010 trials are needed. Such a requirement poses
a significant computational burden on available resources.
The motivation underlying importance sampling is to appro-

priately modify the original density such that the infrequent
errors become more likely. For a Gaussian density one may
choose to shift the mean or to scale the variance, as shown
in the top and bottom panels of Figure 3 respectively. In both
cases the probability of the event in the tail part (marked with
an upward arrow in the Figures) of the original distribution
significantly increases. The biasing density should be chosen
in such a way that the variance associated with its estimator
provides a substantial improvement over the variance of a
naive Monte Carlo estimator. Specifically, the ratio of these
two quantities indicates the reduction in the number of trials
needed to achieve the same confidence of the estimate of the
probability of error.
Supposing that one draws samples according to the biasing

density fbias instead of the original density, the importance
sampling estimator is computed as

p̂IS =
1

N

N∑
i=1

Ziwi, (3)
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Fig. 2. An example of a (8,8) absorbing set for the (2048, 1723) RS-LDPC code. Each of the 8 bits in the set are connected to 4
satisfied checks, and 1 unsatisfied check.

where the importance sampling weight w(xi) =
f(xi)/fbias(xi) reweights the contribution of the ith

trial so that the estimator is unbiased (E[p̂IS ] = p). Moreover,
the IS variance is given by

var(p̂IS) =
1

N

(
1

N

N∑
i=1

(Ziwi)
2
− p̂2

IS

)
.

B. Error probabilities via mean-shifted importance sampling
We propose to employ a biasing density fbias that makes

the decoder converge to an absorbing set more frequently. As
observed in our previous work [5] on the (2048, 1723) RS-
LDPC code, all errors in the low BER region are due to the
absorbing sets of the (8, 8) type. We are concerned with the
transmission over an AWGN channel using BPSK modulation
with mapping 0 → +1 and 1 → −1. Due to symmetry, we
assume that the all-zeros codeword is transmitted. We choose
fbias to be a mean-shifted version of the original density f ,
which (assuming that the all-zeroes codeword was transmitted)
is a Gaussian density with mean [1 1 . . . 1] and the variance
σ2In×n. Since (8, 8) absorbing sets dominate the low FER
region, we set the mean shift to be μ in the bits belonging to
a particular (8, 8) absorbing set, and zero for the remaining
bits. As a result, the importance sampling reweighting function
w(·) takes the form

w(x;μ, σ2) :=
e−

1

2σ2 [
�

8

j=1
(xkj

−1)2]

e−
1

2σ2 [
�

8

j=1
(xkj

−(1−μ))2]
(4)

where k1 through k8 are indices of the 8 bits participating in
the (8, 8) absorbing set.
Importance sampling is most effective when the density is

neither underbiased nor overbiased, meaning that a reasonable
choice for the mean-shift μ is one which causes the decoder to
return the correct all-zeros codeword and to the targeted (8, 8)
absorbing sets with roughly equal probability. In our work,
we empirically determined this point is chosen to be roughly
μ = 1.2. Note that the contrast with maximum likelihood
decoding where μ = 1 defines the hyperplane separating
decoding regions of two competing codewords. Figure 4 lists
the ratio of the decoding errors over the total number of trials
for different mean shifts. When the total number of trials is
fixed and relatively low, choosing the mean shift value of

Mean Shift Ratio
0.8 0.0134
1.0 0.1712
1.2 0.6292
1.6 0.9976
1.8 0.9999

Fig. 4. Ratio of absorbing set errors and total number of trials
for the 6-bit decoder.

μ = 0.8 or less produces very infrequent decoding errors.
Likewise, for the the mean shift of μ = 1.6 or higher, the
decoder almost always makes an error, and coupled with
very low weighting terms w(x) uniformly underestimates the
probability of error. For the middle region where μ is between
1.0 and 1.4, the simulation results described in the next section
changed only negligibly with μ.
Consider the set S of the bit nodes in which the codeword

and the neighboring absorbing set disagree, and which par-
ticipate in unsatisfied checks in this absorbing set. Since the
decoder aims to have all checks satisfied, the values at these
nodes in S would have to be strongly incorrect, i.e. close to
the absorbing set in the n-dimensional space, for their values
not to be overcome by the neighboring unsatisfied checks. The
more of the unsatisfied checks there are in the absorbing set,
the smaller the decoding region of that set is, since the values
associated with the elements of S need to be reasonably close
to the absorbing set values to resist the messages sent from a
large set of unsatisfied checks. Since for the (8,8) set, there is
one unsatisfied check per the bit node in the absorbing set out
of the total of 6 neighboring checks, the relative size of the
decoding region around this absorbing set is then somewhat
smaller than the one associated with the nearest codeword
in the direction of the coordinate which has value 0 for the
codeword and 1 for the absorbing set.
While a variance-scaled Gaussian (see Fig. 3) may also be

considered as a candidate biasing density, choosing this density
does not lead to satisfactory results. For smaller variance scal-
ings, the relative number of observed errors is quite small, so
that a much larger number of trials are required for estimates
of accuracy comparable to the mean-shifted estimator. As a
concrete numerical illustration, we ran both the mean-shifted
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importance sampler and and the variance-expanded importance
sampler for N = 105 trials each, grouped into 10 sets of
104 trials each. While the sample means for the mean-shifted
importance sampler were all within an order of magnitude, the
sample means for the variance-expansion importance sampler
varied widely over 6 orders of magnitude. In addition, the
spread of the weighting terms w(·)’s for the variance-expanded
importance sampler were exponentially larger than for its
mean-shifted counterpart. On the other hand, if very high
factor of variance expansion is used so as to obtain a non-
negligible fraction of decoding errors, practical aspects of the
decoder implementations can lead to numerical instabilities. In
addition, for practical fixed-point implementations, the input
saturation applied before the iterative decoding process further
diminishes the usefulness of large variance expansion.

IV. EXPERIMENTAL RESULTS
Since all (8, 8) absorbing sets have the same unlabelled

configuration, it suffices to choose a fixed representative of this
class of absorbing sets. Accordingly, in the low FER regime,
we may approximate the probability of error as

P[error;σ2] ≈ M P(8, 8;σ2) (5)

where M is the total number of (8, 8) absorbing sets, and
P(8, 8;σ2) is the probability of decoding incorrectly to any
particular (8, 8) absorbing set with channel noise σ2. This ap-
proximation is reasonable, since the FPGA results established
that the (8, 8) absorbing sets are the dominant cause of errors
in the low FER regime. In order to evaluate this approximation,
we estimated the absorbing set error probability P(8, 8;σ2) by
applying importance sampling based on a mean shift μ = 1.2
applied to only the 8 bits that participated in this particular
absorbing set. For this experiment, we choose bits with the
index set {492, 497, 983, 988, 1572, 1596, 1880, 1904} as the
representative (8, 8) absorbing set. As to the number of
absorbing sets, for this RS-LDPC code, we did an exact
evaluation M = 11, 168, by first reducing the total starting
number of choices to consider, namely

(
2048

8

)
, to a smaller set

by imposing the constraints the bit nodes in the absorbing
set have to satisfy (e.g. a bit in the absorbing set has to
be a neighbor of a neighboring check of another bit node
in the absorbing set). We then counted the total number of
smaller configurations (whose number is on the order of tens
of thousands, a significant reduction from the starting count
which itself exceeds 1021) that need to be embedded within
one such absorbing set due to these relative constraints of the
nodes in the absorbing set. From these smaller configurations,
and by exploiting connectivity of the absorbing set nodes, the
total count of the (8,8) absorbing sets follows.

A. Comparison for 6-bit decoder and for 9-bit decoders
In this section we compare the importance sampling meth-

ods previously described with the experimental results ob-
tained from the FPGA-based hardware emulator [5] for two
different quantization schemes. One scheme employs message
quantization of 6 bits (4 for the integer and 2 for the fractional
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Fig. 5. Mean-shift IS bound and hardware results: 6-bit
decoder.
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Fig. 6. Mean-shift IS bound and hardware results: 9-bit
decoder.

part), and the other quantizes messages to 9 bits (4 for the
integer and 5 for the fractional parts). For both schemes we use
the mean shift based importance sampling applied to the bits in
the representative absorbing set to estimate the FER. The mean
shift amount is 1.2 and a total of 10000 trials are executed at
each SNR point, in 0.1 dB increments. We then approximate
the overall FER according to the expression (5). The emulator
curves and their importance sampling counterparts are plotted
in Figures 5 and 6. Note the agreement in the slopes between
the two sets of curves. We also compute the simulation gain
γ obtained by the proposed approach relative to naive Monte
Carlo, defined as [12]

γ : =
var(p̂IS)

var(p̂MC)
.

This gain corresponds to the reduction in the number of trials
that need to be performed using importance sampling in order
to reach the same confidence as the Monte Carlo simulation.
The resulting simulation gains are listed in Figures 7 and 8
for the 6-bit and 9-bit decoders respectively, along with the
sample variance of the importance sampling estimator.
The above results demonstrate that even a simple prediction

is useful in estimating the performance of a code in the low
FER region. Moreover, since the simulation gain increases
with the increase in SNR, the computational benefits of using
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SNR Sample Variance Simulation Gain
4.6 9.64E-25 4.6E6
4.8 2.29E-26 1.9E7
5.0 3.29E-27 2.77E7
5.2 1.18E-28 7.58E8

Fig. 7. Simulation gains for the 6-bit decoder based on mean-
shift

SNR Sample Variance Simulation Gain
5.2 3.7E-28 4.0E8
5.4 4.4E-29 6.72E8
5.6 4.07E-31 3.12E9

Fig. 8. Simulation gains for the 9-bit decoder based on the
mean-shift.

the proposed importance sampling based prediction increases
with increased SNR/lower FER.
We now discuss the effects of the implementation choices

on the decoding region. As observed from Figures 5 and 6, the
error floor improves from a 6-bit decoder implementation to a
9-bit decoder implementation in hardware emulations. These
additional 3 bits permit more quantization levels to better
distinguish messages during the message passing. Specifically,
the soft messages in this 6-bit decoder suffer from more
severe message saturations (clipping) than in its 9-bit decoder
counterpart. In the high-SNR error floor regime, the clipping
effect is more pronounced on strong “good” messages. These
good messages do not have a strong enough representation,
thereby leading to an absorbing state where good messages can
be overcome by the sheer number of bad messages. As a result,
the decoder is more easily pulled into the absorbing state under
the 6-bit quantization than under the 9-bit quantization. This
effect can be also seen from the observation that under the
same mean shift, the relative number of errors for the 6-bit
quantization scheme is uniformly higher than for the 9-bit
scheme, as seen by comparing Tables 4 and 9. (Note that both
simulations are based on N = 104 trials at SNR 5.4 dB.)

V. CONCLUDING REMARKS

LDPC codes have recently generated a lot of interest due
to their excellent performance. While the infinite blocklength
regime is better understood, less is known about the per-
formance of LDPC codes for finite blocklengths. Since the
performance of finite blocklength LDPC codes for low FER
rates cannot be estimated reasonably fast using software based
Monte Carlo simulations, along with the lack of finite-length
theoretical analysis, the deployment of LDPC has so far been

Mean Shift Ratio
0.8 0.0060
1.0 0.1002
1.2 0.4944
1.6 0.9890

Fig. 9. Ratio of absorbing set errors and total number of trials
for the 9-bit decoder.

somewhat limited.
In this paper, we presented a technique for estimating

probability of decoding error of LDPC codes in the low
FER/BER regime. The proposed method utilizes importance
sampling to quickly produce the estimate of the performance.
With appropriately biased densities, the runtime speed-up is on
the order of millions. In conjunction with the description and
count of dominant absorbing errors, the proposed technique
provides accurate estimates of the probability of error in the
low FER regime. Results obtained on a hardware emulator
are consistent with the proposed technique, and thus suggest
the promise of using the proposed approach at even lower
FER/BER levels.
As to future directions, we plan to extend the proposed

methodology to other LDPC codes with different absorbing set
configurations and their distributions as well as to investigate
how the decoding regions associated with the codewords and
the absorbing sets scale as a function of the decoder choices,
specifically including the min-sum algorithm as a less complex
version of the message passing decoding.
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