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Abstract-This paper focuses on methods for a systematic 
modification of the parity check matrix of regular LDPC codes 
for improved performance in the low BER region (i.e., the error 
800r). A judicious elimination of dominant absorbing sets strictly 
improves the absorbing set spectrum and thereby improves the 
code performance. This absorbing set elimination is accomplished 
without compromising code properties and parameters such as 
the girth, node degree, and the structure of the parity check 
matrix. For a representative class of practical codes we substan­
tiate theoretical analysis with experimental results obtained in the 
low BER region. Our results demonstrate at least an order of 
magnitude improvement of the error 800r relative to the original 
code designs. Given that the conventional code parameters remain 
intact, the new code can easily be implemented on the existing 
software or hardware platforms employing high-throughput, 
compact architectures. As such, the proposed approach provides 
a step towards the improved code design that is compatible with 
practical implementation constraints. 

I. INTRODUCTION 

Low-density parity-check (LDPC) codes are defined on 
sparse graphs, and are known to perform extremely well 
in the moderate bit-error-rate (BER) region. In the lower 
BER region, the signal-to-noise ratio (SNR) to BER curve 
changes its slope resulting in a so-called error-floor. This 
performance degradation is attributed to the suboptimality of 
iterative decoding algorithms on graphs with cycles. Typically, 
the decoder enters a non-codeword steady state from which it 
cannot escape. 

Several important works studied such non-codeword ob­
jects, including stopping sets [3], near-codewords [14], trap­
ping sets [19], and absorbing sets [28]. In particular, stopping 
sets are well suited for the analysis on the binary erasure 
channels [17]. Absorbing sets can be viewed as combinatorial 
counterparts of the stopping sets for channels with additive 
noise. Specifically, an absorbing set is a special type of a near­
codeword or a trapping set that is guaranteed to be stable under 
a bit-flipping decoder. 

Previous work [4], [20] studied structural properties of 
dominant absorbing sets for a representative class of practical 
regular LDPC codes. Concurrently, absorbing sets were also 
experimentally verified on a hardware emulator [28], [30] to 
govern the low BER region performance for several represen­
tative LDPC code families. Recent results in [1], [10], [18], 
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[24] provided insights into the trapping set spectrum of other 
important classes of codes. 

One promising direction for improving the performance and 
alleviating the error floors of finite-length sparse graph codes is 
to focus on practical aspects of iterative decoding algorithms. 
Various implementation components of the decoding algorithm 
have already been successfully analyzed and improved, in­
cluding more efficient quantization of messages [26], [30], 
better message-exchange scheduling algorithms [2], [9], better 
iteration averaging schemes [11], [22], and the automation of 
postprocessing for escaping convergent absorbing sets [29]. 

The convergent non-codewords (i.e., absorbing sets) are in 
fact a structural property of the parity-check matrix of the 
code. This paper focuses on the systematic improvement of the 
parity-check matrix rather than the decoding algorithm. The 
resulting improved parity-check matrices may be seamlessly 
combined with the improved decoding algorithms discussed 
above. 

A recent line of work [6], [8], [12] investigates techniques 
to improve the absorbing set (or trapping set) spectrum by 
introducing redundant or independent checks. An approach of 
selecting circulant submatrices for better performance via girth 
increase was proposed in [15]. In contrast, this paper focuses 
on the combinatorial properties of the absorbing sets and the 
provable improvement of the absorbing set spectrum via a 
systematic code modification that is valid over the whole code 
family. A distinguishing feature of the proposed approach is 
that it preserves original code properties such as the structure, 
rate, girth, and node degrees. Preservation of these properties 
facilitates practical realizations of high-throughput compact 
hardware architectures of LDPC codes and their decoding 
algorithms. 

Section II presents the relevant background. Section ill 

studies a representative structured code family. By analyzing 
the combinatorial properties of the smallest (lowest-weight) 
absorbing sets, we propose a systematic method for elimi­
nating the smallest absorbing sets, which often dominate the 
error-floor performance. Elimination of the smallest absorbing 
sets induces benefit across the absorbing-set spectrum since 
the smallest absorbing sets are also components of many 
larger-weight absorbing sets that themselves cannot be eas­
ily eliminated by improving the decoding algorithm alone. 
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Fig. l. Depiction of a (4, 8) absorbing set. Black circles are bit nodes in 
the absorbing set, white squares are their satisfied checks, and black squares 
are their unsatisfied checks. 

This process is accomplished while keeping desirable code 
properties intact. Section IV provides experimental results 
demonstrating consistent performance improvement for several 
choices of practical decoding algorithms and code instances. 
Section V delivers the conclusions. 

II. BACKGROUND 

This section reviews absorbing sets, [4], [28] and describes 
a class of high-performance LOpe codes that serves as our 
illustrative case study. 

Absorbing sets: Using the standard notation, let G H = 

(V, F, E) be the bipartite graph (Tanner graph) describing the 
parity-check matrix H, such that the set V corresponds to the 
columns of H, the set F corresponds to the rows of H, and 
E = {e(i,j)IH(j,i) = I}. 

For a subset D of V, let O(D) be the set of neighboring 
vertices of D in F with odd degree with respect to D. For 
the integer pair (a, b), an (a, b) absorbing set is a subset D of 
V of size a, with O(D) of size b, and with the property that 
each element of D has strictly fewer neighbors in O(D) than 
in F \ O(D). 

Moreover, if all variable nodes in V \ D have strictly fewer 
neighbors in O(D) than in F\ O(D), an (a, b) absorbing set is 
called an (a,b) fully absorbing set. An important property of 
fully absorbing sets is that they are stable under the bit-flipping 
operations. A (4, 8) absorbing set is illustrated in Figure 1. 
(Here, the node labels are in the context of a particular code 
family, as explained next.) 

Circulant-based LDPC codes: LOpe codes built from cir­
culant matrices are particularly amenable for high-throughput 
applications and compact hardware design [23], [30]. These 
codes can be described as follows: 

Given integers rand c, a mapping rule f(i,j) : (i,j) -+ N 
and a p x p permutation matrix (1 of the form 
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we form the (rp) x (cp) parity check matrix H;:, as 

Hr,c _ 
p.J -

uf(o,O) U!(O,l) U!(O,2) u!(O,c-l) 
U!(l,O) U!(l,l) U!(l,2) U!(l,c-l) 
Uf(2,O) U!(2,l) U!(2,2) U!(2,c-l) 

u!(r-l,O) u!(r-l,l) u!(r-l,2) u!(r-l,c-l) 
(2) 

We assume that (f(i!,jl) -f(il,12) + f(i2,12) -f(i2,jl)) =/:. 
o mod p for 0::; iI, i2 ::; r-l, il =/:. i2 and 0::; j!'12 ::; c-l, 
jl =/:. 12 so that the girth of the code is at least 6. 

Examples of codes that have the above descriptions include 
array-based LOpe codes [7] (with f(i,j) = i . j, and c is 
set to p, the size of (1), quasi-cyclic (QC) LOpe codes [21] 
(with f (i, j) = aj bi where a and b are nonzero elements of 
GF(p) having multiplicative orders o(a) = c and o(b) = r), 
and constructions discussed in [13]. 

It is convenient to label bit nodes and check nodes as 
follows: label each bit node in G H with the unique label (j, k) 
that describes the corresponding column of H;:j, and label 
each check node in G H with a label i if the corresponding 
row of H;:j belongs to the row group i. For the illustration 
of the labeling, see Figure 1. 

The following convenient properties follow from the fact 
that the parity check matrix H;:j is a two-dimensional array of 
permutation matrices, and they play a key role in establishing 
combinatorial properties necessarily satisfied by the absorbing 
sets of interest. 

Bit Consistency: For a bit node, all its incident check nodes, 
labeled iS1 through is." must have distinct labels, Le., these 
check nodes are in distinct row groups. • 

Check Consistency: All bit nodes, say (j!, kl) through 
(jp, kp), participating in the same check node must have 
distinct j£ values, Le., they are all in distinct column groups. 
• 

III. eASE STUDY: ARRAY-BASED CODE 

We now consider the H;:L array-based LOpe codes [7] as 
an instance of high-performance practical LOpe codes with 
hardware-friendly structure. As a concrete example, we focus 
on the bit degree r = 5 (the analysis for other choices of r 
follows similarly, and is in fact somewhat simpler for r < 5). 

A previous result [5] proves that (4,8) absorbing sets are 
the smallest possible for a general r = 5 code family. We 
first show in Lemma 1 that (4, 8) absorbing sets indeed exist 
for this r = 5 array-based code family. This theoretical 
result is also consistent with previous experimental results 
of a sum-product decoding algorithm built in software and 
on a hardware emulator [30] for which it was shown that 
decoding errors due to (4,8) absorbing sets dominate the low 
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BER region. This error floor region is detennined by non­
codewords (absorbing sets) whose weight is strictly smaller 
than the minimum distance of the code [27]. We then propose 
a method for the systematic elimination of these absorbing 
sets that also reshapes the absorbing set spectrum for better 
perfonnance. 

Lemma 1: (4,8) (fully) absorbing sets exist in the Tanner 
code described by the parity check matrix H;:�, and their 
number scales as 8(p3) .  

Proof: The proof follows techniques developed in [4], so 
we only outline the main steps. 

Due to the cardinality of the absorbing set, bit nodes and 
check nodes must necessarily be arranged as in Figure 1, and 
we may then label the bit nodes with labels (jI, kl) through 
(j4, k4) , their satisfied checks with labels il through i6 and 
their unsatisfied checks with labels i7 through il4, as in the 
figure. 

It then follows that under the bit consistency constraints 
applied to the bit nodes in this candidate (4,8) absorb­
ing set, there are only two possible non-isomorphic check 
labelings: one using only four distinct labels (out of five 
available) and one using all five distinct labels for the satisfied 
checks il through i6. Without loss of generality, we may 
assign (iI, i2, i3, i4, i5, i6) to be either (x,y,x,y,z,w) for 
{x, y, z, w} C {a, 1,2,3, 4} (assignment 1) or (x, t, w, y, z, z) 
for {x,y,z,w,t} = {0,1,2,3,4} (assignment 2). 

Setting up a system of equations relating the bit node labels 
and the check node labels in a candidate (4, 8) absorbing set, 
after some calculations utilizing bit and check consistency con­
straints, the following necessary conditions for the existence 
of a (4,8) absorbing set result: 

(z - x)(w - y) + (z - y)(w - x) == ° mod p , (3) 

for assignment 1, and 

(z- w)(x- t)(y- z)- (y- w)(x- z)(z- t) == ° mod p, (4) 

for assignment 2. 
In the fonner case, in fact one can show there are no 

solution sets for prime p large enough (p > 17). For 
the latter case there are 8 solution sets (x, y, z, w, t) E 

{(4,3,2,0,1),(4,1,2,0,3),(3,4,2,1,0),(3,0,2,1,4), 
(1,4,2,3,0),(1,0,2,3,4),(0,3,2,4,1),(0,1,2,4,3)} that 

always evaluate to zero on the left-hand side of equation (4). 
These numerical solutions are in fact symmetric so that once 
the labels of the check nodes are selected (cf. Figure 1), 
the bit node labels (pairs (jt, kl) through (j4, k4» can be 
selected in 8(p3) ways, thereby completely characterizing 
the absorbing set of interest. 

Moreover, such an (4,8) absorbing set is always a (4,8) 
fully absorbing set since otherwise there would exist a bit 
node (j5, k5) outside the absorbing set incident to at least 
three of the checks labeled i7 through il4. Such a configuration 
would either violate the girth constraint, or it would imply the 
existence of a new configuration spanning four bit nodes (these 
being the node (j5, k5) and three bit nodes from the starting 
(4,8) absorbing set). These four bit nodes would necessarily 
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be connected such that their common constraint is given in (3), 
previously shown to not hold for large enough p. • 

The following lemma discusses how a different choice of 
the mapping rule f(i, j) can be made such that neither of the 
necessary conditions (3) and (4) for the existence of (4, 8) 
absorbing sets is fulfilled. 

Lemma 2: There are no (4,8) absorbing sets in the Tanner 
code described by the parity check matrix H!:j(i,j , for 
prime p large enough and f( i, j) = a( i) . j for (i, a(i) ) E 

{(O,O), (1,1),(2,3),(3,8), (4, 19)}. 
Proof: It is sufficient to assign values to a( i) such that 

the selected labels for the check nodes il through i6 do not 
satisfy equations (3) and (4). Let b( i) be the set of all pairwise 
differences of the elements of a( i) . First, by construction they 
are all distinct. Second, all of the products taken mod p of 
two elements of b( i) are distinct as are all of the products 
taken mod p of three elements of b(i) . These conditions 
are sufficient to ensure that the congruential constraints (3) 
and (4) do not hold for prime p large enough 1. • 

Remark 1: In fact, there are other choices for a(i) that 
guarantee that no (4,8) absorbing sets exist in the Tanner 
code described by the parity check matrix H!:j(i,j) with 
f(i, j) = a(i) . j by ensuring that the equations (3) and (4) 
do not hold. Another such example for f(i, j) = a(i) . j is 
for (i, a(i) ) E {(O,O), (1,1), (2,2), (3,4), (4,6)}, where it is 
sufficient for the prime p to be greater than 23. While not 
all pairwise differences and their products of the elements of 
a( i) are distinct as in the previous case, one can verify that 
the necessary subset of such combinations is, thereby ensuring 
the non-existence of (4,8) absorbing sets. • 

We will return to the topic of choices for a( i) in Section IV 
where we compare the perfonnance of the original and the 
modified codes. 

The following result shows how the elimination of the 
smallest tenn in the absorbing set spectrum also helps reduce 
the cardinality of other contributing tenns in the absorbing set 
spectrum. 

Lemma 3: The transfonnation of f(i, j) 
i . j into f(i, j) a(i) j for (i, a(i) ) E 

{(O, 0), (1, 1), (2, 3), (3,8), (4, 19)} strictly reduces the 
number of (6,8) absorbing sets for p large enough. 
Proof outline: We provide an outline of the proof. More details 
can be found in [25]. We first consider the case where there 
exists a satisfied check (unsatisfied check) incident to bit nodes 
in the absorbing set of degree at least 4 (at least 3). By the 
girth constraint the only possibility is if 3 out of 6 bit nodes 
share an unsatisfied check (itself of degree 3) and the other 3 
out of 6 bit nodes also share an unsatisfied check (also itself of 
degree 3). Each bit node has an additional unsatisfied check. 
Using combinatorial arguments and the bit consistency and 
check consistency conditions (cf. Section II) it follows that 
this configuration is in fact not possible for either f (i, j) for 
p large enough. 

1 In fact, p can be any prime larger than 23 except for the set 
{37, 41, 59, 61, 67, 73, 89, 101, 163, 223, 263, 271, 277, 317, 337, 1361}, 
itself easily identified by numerical substitutions for labels in (3) and (4). 
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There are five non-isomorphic candidate (6,8) absorbing 
sets, in which all satisfied checks (unsatisfied checks) incident 
to bit nodes in the absorbing set have degree 2 (degree 1). 
Out of these five configurations, with some analytical work, 
three can be eliminated for p large enough using combinatorial 
arguments and the bit consistency and check consistency 
conditions applied to either choice of f(i, j) . The remaining 
two configurations have the cardinality 8(p3) in the original 
code, and interestingly, both contain a (4,8) absorbing set as 
a subset. These are therefore completely eliminated by the 
transformation on f(i, j) . 

Since no new (6,8) absorbing sets are introduced, and since 
the number of existing (6,8) absorbing sets is reduced (and in 
fact entirely eliminated for p large enough), the transformation 
strictly improves this component in the abs. set spectrum. • 

Remark 2: The same conclusion as in Lemma 3 holds for the 
performance improvement under the mapping f(i, j) = a(i) -j 
where (i, a(i) ) E {(O,O), (1, 1),(2,2), (3,4), (4,6)}, given in 
Remark 1. The details are also in [25]. • 
Observe that the proposed modification preserves the girth 
of the code. That is, there exists a length-6 cycle passing 
through checks in the first three row groups in both the original 
and the modified code, and no length-4 cycles are introduced 
during the transformation. Therefore, short cycles that are the 
underlying building blocks of the (dominant) absorbing sets 
are still present. What we have in fact achieved is breaking 
apart the troublesome superpositions of such short cycles 
rather than breaking apart all of the short cycles themselves. 
This enables us to maintain desirable structural symmetry of 
the party check matrix. 

IV. EXPERIMENTAL RESULTS 

In this section we experimentally demonstrate performance 
improvement with the proposed modifications that is consis­
tently valid across various choices of decoding algorithms and 
implementations. 

In simulations, we use 200 iterations and a Q4.2 fixed­
point quantization, 4 bits to the left of the radix point to 
represent integer values and 2 bits to the right of the radix 
point to represent fractional values. We simulate sum-product 
algorithm [30] and soft-xor algorithm [16] for different codes. 

In Figure 2(a) we compare the performance of the 
(2209,1978) original code and the modified code. Both codes 
fit the description of the parity check matrix as in (2) with the 
following parameters: check node degree = 47, bit node degree 
= 5, and f(i, j) = a(i) . j. The original code uses a(i) = i 
and the modified code uses a( i) proposed in Lemma 2. 

For all choices of simulated decoding algorithms, the fol­
lowing is observed: a significant fraction of decoding errors 
under the original code is due to the (4,8) absorbing sets, 
whereas under the modified codes there are no such errors. 
Moreover, the total number of errors decreases as the overall 
number of higher-order error terms in the absorbing set 
spectrum decreases. 

For illustration purposes, another pair of codes are con­
trasted in Figure 2(b), and with the modified mapping from 
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Fig. 2. Performance comparison of the original and modified LDPe codes. 

Remark 2. Again, the performance improvement (albeit less 
than in the previous example as the considered code is shorter) 
is achieved by the systematic elimination of the (4,8) absorb­
ing sets that in turn also reduces other contributing elements 
in the absorbing set spectrum. 

For a more convincing experimental proof, we programmed 
a sum-product decoder on an FPGA platform to decode the 
original (2209,1978) array-based LDPC code as well as its 
two optimized versions, discussed in Lemma 1 and Remark 1, 
respectively. Since the structure of the array code is preserved 
in the modified versions, the decoder is reused with no added 
complexity. A substantial simulation speedup via the FPGA 
platform allows us to extend the BER curve down to 10-11, 
as shown in Figure 2(a). 

The error profiles are shown in Tables I, II, and III for 
comparison. Consistent with the software-based simulation 
and the theoretical analysis, (4,8) absorbing sets dominate the 
error floor of the original array code. In both modified array 
codes, having virtually same performance (see Fig. 2), the 
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TABLE I 

TABLE II 

TABLE III 
HARDWARE ERROR PROFILES FOR THE ORIGINAL (2209, 1978) CODE 

(TABLE I), AND THE TWO MODIFIED CODES (TABLE II AND III). MORE 
INPUT FRAMES WERE EMULATED FOR HIGHER SNR LEVELS. THE 

NUMBER OF ERRORS COLLECTED IS DIVIDED BY THE TOTAL NUMBER OF 
FRAMES (NO. RUNS) TO PRODUCE FIGURE 2 DATA. TOTAL NUMBER OF 

COLLECTED ABSORBING SET ERRORS IS DENOTED A.S. 

(4,8) absorbing sets are completely eliminated and the BER 
curve is lowered by one order of magnitude Another noticeable 
effect is the reduction of the number of (6,8) absorbing set 
errors after the code modification, which is attributed to the 
elimination of the (4,8) substructures. 

V. CONCLUSION 

In this paper we studied methods to improve regular LDPC 

code designs under iterative decoding. By taking into account 
the combinatorial characterization of absorbing sets, as domi­
nant fixed points of practical iterative decoding algorithms, we 
provided methods to improve the absorbing set spectrum of 
the code while keeping other desirable code properties (such 
as the node degrees and the parity check matrix structure) 
intact. Theoretical findings were substantiated by experimental 
results showing good improvement in the low BER region for 
a class of structured LDPC codes. A useful feature of the 
proposed approach from the implementation standpoint is that 
it can be easily combined with better decoding algorithms for 
the maximum improvement of the overall performance. Future 
work involves extending the analysis to irregular codes. 
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