
Analysis of Absorbing Sets for Array-Based LDPC
Codes

Lara Dolecek, Zhengya Zhang, Venkat Anantharam, Martin Wainwright, Borivoje Nikolić
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Abstract— Low density parity check codes (LDPC) are known
to perform very well under iterative decoding. However, these
codes also exhibit a change in the slope of the bit error rate
(BER) vs. signal to noise ratio (SNR) curve in the very low BER
region. In our earlier work using hardware emulation in this
deep BER regime we argue that this behavior can be attributed
to specific structures within the Tanner graph associated with
an LDPC code, called absorbing sets. In this paper we provide
a detailed theoretical analysis of absorbing sets for array-based
LDPC codes Cp,γ . Specifically, we identify and enumerate all
the smallest absorbing sets for these array-based LDPC codes
with γ = 2, 3, 4 with standard parity check matrix. Experiments
carried out on the emulation platform show excellent agreement
with our theoretical results.

I. INTRODUCTION

Low density parity check (LDPC) codes are known to
perform very well under iterative decoding based on message
passing algorithms. However, as reported in previous work
[6], [7], these codes often exhibit an error floor phenomenon,
whereby the bit error rate (BER) vs. signal to noise ratio (SNR)
curve shows a significant decrease in the slope in the very low
BER region. For many applications it is imperative to reach
the very low BER region without incurring a major increase in
SNR. This region, however, is out of the reach of pure software
simulations, and consequently the limitations of a given LDPC
code under message-passing decoding in the very low BER
region are largely unknown. In recent work we have begun
to attack this bottleneck using a hardware emulation platform
built from FPGAs [10].

The goal of this paper is to shed light on the behavior of
array-based LDPC codes under iterative decoding in the very
low BER regime. In order to explain and analyze the dominant
causes of decoding failures we introduced the notion of an
absorbing set in our earlier work [10]. These absorbing sets are
related to (but not entirely equivalent to) previously introduced
combinatorial structures, including stopping sets [1], trapping
sets [7], near codewords [6] and pseudo-codewords [4]. Here
we study in detail the structure of such sets for a class of high
rate array-based LDPC codes. We prove the non-existence of
certain candidate absorbing sets, and for the smallest sized ab-
sorbing sets we characterize their combinatorial structure and
cardinalities. Furthermore, all error events captured through
the simulations on a hardware emulator in the very low BER
regime are attributed to absorbing sets, thus further confirming
the importance of studying these objects.

The remainder of the paper is organized as follows. We
begin in the following section with a brief overview of the
array-based LDPC codes Cp,γ , and then formally introduce
the concept of absorbing sets. In Section II we provide a
detailed study of the absorbing sets for the column weights
γ = 2, 3 and 4 for the standard parity check matrices Hp,γ

of such codes, and enumerate all such sets of smallest size.
The experimental data is introduced in Section IV, and is put
within the context of earlier theoretical results. In Section V
we summarize the paper and propose future extensions of the
work described here.

II. BACKGROUND

A. Array-based LDPC codes

Array based LDPC codes [3] are regular LDPC codes
parameterized by a pair of integers (γ, p), such that γ ≤ p, p
is an odd prime, with a parity check matrix Hp,γ given by

Hp,γ =




I I I . . . I
I σ σ2 . . . σp−1

I σ2 σ4 . . . σ2(p−1)

...
...

... . . .
...

I σγ−1 σ(γ−1)2 . . . σ(γ−1)(p−1)




(1)

where σ denotes a p × p permutation matrix of the form

σ =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0




. (2)

We use Cp,γ to denote the binary linear code with the parity
check matrix (1).

As demonstrated in [3], array-based LDPC codes have very
good performance. They have been proposed for a number
of applications, including digital subscriber lines [2] and
magnetic recording [8].

In our earlier experimental work [10], we have observed
that certain structures in the Tanner graph of the parity check
matrix of the code are the limiting factor in the iterative
decoding of several structured LDPC codes, including array-
based codes. Motivated by the empirical findings, we formally
defined these configurations, which we call absorbing sets.
Here we study them in detail for array-based LDPC codes
Cp,γ for γ = 2, 3, 4, for the standard parity check matrix Hp,γ .
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Fig. 1. An example of a (4,4) absorbing set

B. Absorbing Sets

Let G = (V, F,E) be a bipartite graph with the vertex set
V ∪F , where V and F are disjoint, and with the edge set E,
such that there exists an edge e(i, j) ∈ E iff i ∈ V and j ∈ F .
One can associate a bipartite graph GH = (V, F,E) with a
parity check matrix H , such that the set V corresponds to the
columns of H , the set F corresponds to the rows of H , and
E = {e(i, j)|H(j, i) = 1}. Such a graph GH is commonly
referred to as the Tanner graph of the parity check matrix H of
a code, [5]. Elements of V are called “bit nodes” and elements
of F are called “check nodes”. The Tanner graph associated
with Hp,γ does not have any cycles of length 4, and thus the
girth is at least 6 [9]. For the subset D of V we let ND denote
the set of check nodes neighboring the elements of D.

For a subset D of V , let E(D) (resp. O(D)) be the set of
neighboring vertices of D in F in the graph G with even (resp.
odd) degree with respect to D. Given an integer pair (a, b),
an (a, b) absorbing set is a subset D of V of size a, with
O(D) of size b and with the property that each element of D
has strictly fewer neighbors in O(D) than in F\O(D). We
say that an (a, b) absorbing set D is an (a, b) fully absorbing
set, if in addition, all bit nodes in V \D have strictly more
neighbors in F\O(D) than in O(D).

An example of an (a, b) absorbing set with a = 4, b = 4
is given in Fig. 1, where full circles constitute the set D, full
squares constitute the set O(D), empty squares constitute the
set E(D), E(D,O(D)) is given by solid lines, and E(D, E(D)
is given by dashed lines. Observe that each element in D has
more even-degree than odd-degree neighbors. All check nodes
not in the picture are denoted by empty squares. For this set
to be a fully absorbing set, every bit node not in the figure
should also have strictly more empty squares than full squares
as neighbors.

Note that D ⊆ V is a fully absorbing set iff for all
v ∈ D, wt(HxD∆v) > wt(HxD) = b, where D∆v denotes
the symmetric difference between D and {v}, wt(y) is the
Hamming weight of a binary string y, and xD is a binary
string with support D.

We have introduced the notion of absorbing sets to qual-
itatively describe the convergent non-codeword state of the
message passing algorithms, when the transmission channel
is additive white gaussian noise (AWGN). In the asymptotic
limit given by the bit flipping algorithm, the configuration
described as a fully absorbing set is stable, since each bit node
receives strictly more messages from the neighboring checks
that reinforce its value than messages that suggest the opposite

bit value.
In particular, a fully absorbing set can be viewed as a near

codeword as defined in [6], though the reverse is not true,
since a near codeword does not necessarily describe a stable
configuration. The trapping set definition introduced in [7] also
does not explicitly capture the convergent behavior since it
refers to the union of all bits that are not eventually correct,
and thus permits a situation in which the decoder oscillates
among a finite number of states. Although stopping sets [1]
also describe stable configurations, they are defined in the
context of a binary erasure channel, and cannot be directly
applied to an AWGN channel.

III. THEORETICAL RESULTS

Our goal is to describe minimal absorbing sets and minimal
fully absorbing sets (a, b) of the Tanner graph of the parity
check matrix Hp,γ , for γ = 2, 3, 4, where the minimality refers
to the smallest possible a, and where b is the smallest possible
for the given a.

We use the following notation throughout the paper. For
Hp,γ viewed as a two-dimensional array of matrices, we let j
for 0 ≤ j ≤ p− 1 be the column-wise index in Hp,γ and call
it the column group j, and we let i for 0 ≤ i ≤ γ − 1 be the
row-wise index in Hp,γ and we call it the row group (or the
label) i. Let Gp,γ be the Tanner graph associated with Hp,γ (bit
nodes and check nodes in Gp,γ represent columns and rows
in Hp,γ , respectively). Each bit node � in Gp,γ is uniquely
indexed by (j�, k�) where j� denotes the column group of the
corresponding column, and k�, 0 ≤ k� ≤ p − 1, denotes the
index of that column within the column group j� it belongs
to. Each check node in Gp,γ receives a label i if it belongs
to the row group i. Multiple check nodes can have the same
label.

We note that the structure of the parity check matrix imposes
the following conditions on the neighboring bit nodes and
check nodes:

Vertex Consistency: For a bit node, all its incident check
nodes, labelled is1 through isγ

must have distinct labels, i.e.
these check nodes are in distinct row groups.

Edge Consistency: All bit nodes, say (jd1 , kd1) through
(jdp

, kdp
), participating in the same check node must have

distinct j� values, i.e. they are all in distinct column groups.
Both conditions follow from the fact that the parity check

matrix Hp,γ of Cp,γ consists of a 2-dimensional array of
circulant matrices of equal size.

Our main results can be summarized as follows: Let Gp,γ

be the Tanner graph associated with the parity check matrix
Hp,γ of the array-based LDPC code Cp,γ .

Theorem 1: Minimality
(a) For the Gp,2 family, all minimal absorbing sets are

minimal fully absorbing sets and are of size (4, 0).
(b) For the Gp,3 family, the minimal absorbing sets are of

size (3, 3), and the minimal fully absorbing sets are of size
(4, 2).

(c) For the Gp,4 family, and for p > 19, all minimal fully
absorbing sets are minimal absorbing sets, and are of size
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(j1,k1) (j2,k2) (j3,k3) (j4,k4)

1 1 00

Fig. 2. (Labelled) candidate (4,0) absorbing set

(6, 4). �
Theorem 2: Scaling
(a) Suppose γ = 2 and p > 3. The number of minimal

(fully) absorbing sets in Gp,γ grows with block length n (n =
p2 is the number of columns in Hp,γ) as O(n2).

(b) Suppose that either γ = 3 and p > 3 or γ = 4 and
p > 19. Then the number of minimal absorbing sets as well
as the number of minimal fully absorbing sets in Hp,γ grows
with block length n = p2 as O(n3/2). �

The following three subsections provide proofs of these
claims, where we separately treat each of the values of γ.

A. Absorbing sets of Hp,2

The code Cγ,2 has uniform bit degree 2, and is thus a
cycle code. Even though such codes are known to be poor,
we include the analysis for the sake of completeness. We start
by proving the statement in Theorem 1(a).

Let Gp,2 = (V, F,E) denote the Tanner graph of Hp,2. Let
D be an (a, b) absorbing set in Gp,2. Each bit node in D
has degree 2 in Gp,2 and is required to have strictly more
neighbors in E(D) than in O(D). This implies that O(D) is
empty. The absorbing set is of type (a, 0). It is thus a fully
absorbing set, and is in fact a codeword.

Since the matrix Hp,2 has top row consisting of identity
matrices, the codewords of Cp,2 are of even weight. Moreover,
a > 2 since no two columns of Hp,2 sum to zero. Thus a ≥ 4.

Let (j1, k1), (j2, k2), (j3, k3) and (j4, k4) be the bit nodes
participating in a (4, 0) absorbing set, which must necessarily
be as in Fig. 2, since there are no cycles of length 4. Consider
the matrix M ,

M = (σ0j1)T (σ0j2)(σ1j2)T (σ1j3)(σ0j3)T (σ0j4)(σ1j4)T (σ1j1).
(3)

This matrix M has a non-zero entry on the main diagonal, and
since it is itself a power of σ, it is necessary that M = σp�,
for some �, where � is an integer.

Moreover, since

(σ�)T = (σ�)−1 (4)

it further follows that

p� = j3 − j2 + j1 − j4. (5)

Lemma 1: There is a total of p2(p − 1)2 (4, 0) (fully)
absorbing sets in the code described by Hp,2.

Fig. 3. Candidate (2,b) absorbing sets

Proof: It suffices to consider � = 1, 0,−1 in (5).
First, for � = 1, there are (s + 1)(p − s − 1) ways of

assigning values to (j1, j2, j3, j4) to make j2 + j4 = s and
j1 + j3 = p + s, for 0 ≤ s ≤ p − 2. Thus,

∑p−2
s=0(s + 1)(p −

s − 1) = p(p − 1)(p + 1)/6 is the total number of ways of
assigning values to (j1, j2, j3, j4). By symmetry, for � = −1
there are also p(p − 1)(p + 1)/6 ways of assigning values to
(j1, j2, j3, j4).

For � = 0, for each s, 0 ≤ s ≤ p − 1, there are s + 1
ways of expressing s as a sum of an ordered pair. For s odd,
each of these s + 1 ordered pairs can be assigned to (j1, j3),
and for each such assignment, s − 1 ordered pairs can be
assigned to (j2, j4) (j1 �= j2, j4 and j3 �= j2, j4 by the edge
consistency). For s even, for s assignments out of possible s+1
(excluding the pair (s/2, s/2)) of (j1, j3), s− 1 ordered pairs
can be assigned to (j2, j4). For the pair (s/2, s/2) assigned
to (j1, j3), there are s available assignments for (j2, j4). For
p − 1 ≤ s ≤ 2p − 2 the number of assignments is the same
as for 2p − 2 − s. The total number of assignments for l = 0
is 2

∑p−2
i=1,iodd(i + 1)(i − 1) + 2

∑p−3
i=2,ieven i2 + (p − 1)2 =

2p(p − 1)(p − 2)/3.
The total number of assignments for (j1, j2, j3, j4) is then

p(p−1)2, and since there are in each case p ways of assigning
values to (k1, k2, k3, k4), it follows that there are p2(p − 1)2

different (4, 0) (fully) absorbing sets. �
Corollary 1: The number of (4, 0) (fully) absorbing sets for

the code described by Hp,2 is O(n2), where n is the codeword
length.
Proof: Follows immediately from Lemma 1 and n = p2. �

For γ > 2, the results are more interesting as they
demonstrate the existence of minimal absorbing sets and
minimal fully absorbing sets (which we have observed in our
emulations to dominate the very low BER performance), for
which the number of bit nodes a is strictly smaller than the
minimum distance dmin of the code.

B. Absorbing sets of Hp,3

We now turn to the proof of Theorem 1(b).
Let Gp,3 = (V, F,E) denote the Tanner graph of Hp,3. Let

D be an (a, b) absorbing set in Gp,3. Each bit node in D
has degree 3 in Gp,3 and is required to have strictly more
neighbors in E(D) than in O(D).

Suppose a = 2. In Gp,3 an even number of edges from
D terminates in E(D). Thus either b = 0 or b = 2. These
correspond to the situations in Fig. 3. In either case there
would be a cycle of length 4 in Gp,3, which is false [9]. Thus
a ≥ 3.
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Fig. 4. Candidate (3,1) absorbing set

(j1,k1) (j2,k2) (j3,k3)

i3 i1 i2

(j1,k4)

i4 i5 i6i7

Fig. 5. Candidate (3,3) absorbing set (solid circles), with an adjacent bit
node (empty circle).

Suppose a = 3. In Gp,3 an even number of edges from D
terminates in E(D). Thus either b = 1 or b = 3. Suppose
b = 1. This must correspond to the form in Fig. 4, which
implies the existence of a cycle of length 4 in Gp,3, which is
false [9].

Thus b = 3. Further, each bit node in D would then connect
to exactly one check node in O(D) implying the unlabelled
form of Fig. 5. Note that there is a cycle of length 6.

Suppose these 3 bit nodes are indexed as (j1, k1), (j2, k2)
and (j3, k3), respectively, where j1, j2 and j3 are distinct (by
the edge consistency) and 0 ≤ j1, j2, j3 ≤ p− 1. Without loss
of generality assume that (j1, k1) and (j2, k2) share a check
in the row group i1, (j2, k2) and (j3, k3) share a check in the
row group i2, and that (j1, k1) and (j3, k3) share a check in
the row group i3, where i1, i2, i3 ∈ {0, 1, 2} and are distinct
by the vertex consistency condition. This corresponds to the
labelled representation in Fig. 5.

Consider the matrix M1 given by

M1 = (σi1j1)T (σi1j2)(σi2j2)T (σi2j3)(σi3j3)T (σi3j1). (6)

The matrix M1 has a non-zero entry on the main diagonal, and
since it is itself a power of σ, it is necessary that M1 = σp�,
for some �, where � is an integer.

It thus follows that

p� = i1(j2 − j1) + i2(j3 − j2) + i3(j1 − j3). (7)

By the symmetry of the absorbing set (see Fig. 5), we may
let i1 = 0, i2 = 1, and i3 = 2. Since the column k1 of σ2j1

and column k3 of σ2j3 have a non-zero entry in the same row,
it follows that

k1 + 2j1 ≡ k3 + 2j3 mod p. (8)

Likewise,

k1 ≡ k2 mod p, (9)

k2 + j2 ≡ k3 + j3 mod p. (10)

The existence of the solution for such a (3, 3) absorbing set
is given in Lemma 2.

Even though the (3, 3) fully absorbing set seems plausible,
care must be taken with respect to a bit node outside a can-
didate fully absorbing set when this bit node also participates
in the unsatisfied checks. As we now show, such a (3, 3) fully
absorbing set cannot exist, though the existence of a (3, 3)
absorbing set implies a (4, 2) fully absorbing set.

Suppose first that a (3, 3) fully absorbing set exists. By
definition, it is then necessary that no bit node outside of the
absorbing set participates in more than one unsatisfied check
described by the absorbing set. Since (j1, k1) and (j3, k3)
share a check, j1 �= j3. Hence for some k4, the bit node
labelled (j1, k4) connects to i6, as in Figure 5. Since i3 = 2
and i2 = 1, i6 has value 0, and k3 = k4. If the (j1, k3) bit node
does not also participate in the check i5 it would be necessary
that k3 + 2j1 �= k2 + 2j2 mod p, which is in contradiction
with (7) through (10). This eliminates a (3, 3) fully absorbing
set for this configuration. This also now implies a candidate
(4, 2) fully absorbing set with bit nodes (j1, k1), (j2, k2),
(j3, k3) and (j1, k3). The cases where the bit node (j1, k3)
shares the remaining check, which we label i7, with one of
(j1, k1), (j2, k2), or (j3, k3) can be eliminated. In the resulting
(4, 2) absorbing set, the unsatisfied checks are labelled i4 and
i7. By the vertex consistency condition, i7 = i4 = 1. Since
no bit node outside of this absorbing set can connect to both
unsatisfied checks, this (4, 2) configuration represents a fully
absorbing set.

It can be shown similarly that every (4, 2) fully absorbing
set has the shape as the unlabelled configuration in Figure 5,
and that each can be obtained from an underlying (3, 3)
absorbing set. Moreover for each underlying (3, 3) absorbing
set and for each of the three choices of the unsatisfied check
pairs, there exists exactly one way of adjoining a distinct
fourth bit node that neighbors these unsatisfied checks. Each
resulting (4, 2) fully absorbing set comes from two different
(3, 3) underlying configurations. Due to the space limitations,
proofs of these statements are omitted.

We complete the section with the following result.
Lemma 2: The total number of (3, 3) absorbing sets and

(4, 2) fully absorbing sets in the Tanner graph described by
Hp,3 is p2(p − 1), and 3p2(p − 1)/2, respectively.
Proof: It suffices to consider � = −1, 0, 1 in (7). For � = 0
and for each value of j1, 1 ≤ j1 ≤ (p − 1)/2, there are 2j1
ways of assigning values to (j1, j2, j3), and for each j1 where
(p+1)/2 ≤ j1 ≤ p−2 there are 2(p−1−j1) ways of assigning
values to (j1, j2, j3). For each assignment there are p ways to
assign values to (k1, k2, k3) to ensure the validity of (8)-(10).
In all, there is a total of p(p − 1)2/2 such assignments, each
describing a different (3, 3) absorbing set.

Likewise, for � = 1 and � = −1 there are p(p −
1)(p + 1)/4 ways in each case to assign values to bit indices
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Fig. 6. Depiction of the candidate (4,4) set

(j1, k1), (j2, k2) and (j3, k3) in the (3, 3) absorbing set. The
total number of (3, 3) absorbing sets is thus p2(p − 1).
Depending on which two of these three bit nodes the remaining
bit node (j4, k4) (in the (4, 2) fully absorbing set) shares a
(satisfied) check with, we may assign (j4, k4) in three different
ways. Note that in this way we have counted each (4, 2)
set twice. Hence there are 3p2(p − 1)/2 distinct (4, 2) fully
absorbing sets. �

Since the codeword length n is p2, the result of Lemma 2
implies Theorem 2 for γ = 3. As a comparison, the minimum
distance of the Cp,γ code is 6, [9].

C. Absorbing sets of Hp,4

In order to establish that (6, 4) (fully) absorbing sets are
minimal for Hp,4, we will first show that (a, b) absorbing sets
for a < 6 do not exist.

Let D denote an (a, b) absorbing set in Gp,4 = (V, F,E),
the Tanner graph of Hp,4. If a = 2(3) then at least 6(9) edges
from D in Gp,4 terminate in E(D), which implies the existence
of a cycle of length 4 in Gp,4, which is false [9]. Thus, a ≥ 4.

Suppose a = 4. The number of edges from D in Gp,4 that
terminate in E(D) must be 12, 14, or 16, corresponding to
the cases b = 4, 2, or 0, respectively. No check node in E(D)
can connect to all four of the bit nodes in D, else there would
need to be a cycle of length 4 in Gp,4, which is false [9].
Thus, each check node in E(D) connects to exactly two of
the bit nodes in D. There are 6 pairs of nodes in D. Thus we
must have b = 4. The following lemma establishes that such
sets do not exist for large enough prime p.

Lemma 3: For p > 7, the Tanner graph family Gp,4 does
not contain any (4, 4) absorbing sets.
Proof: No check node satisfied with respect to the absorbing
set has degree > 2, as otherwise there would exist two
bit nodes that share two distinct check nodes, which is not
possible by the girth condition [9]. Similarly, all bit nodes in
an absorbing set have distinct unsatisfied check nodes.

Since each bit node in the absorbing set shares exactly 3
satisfied check nodes with other bit nodes in the absorbing
set, we can view the absorbing set as shown in Fig. 6 where
each (labelled) vertex represents a distinct bit node and each
(labelled) edge represents a check node in which the bit nodes
associated with its endpoints participate.

By the edge consistency condition all j1 through j4 are
different. Since the column k1 of σi1j1 and column k2 of

σi1j2 have a non-zero entry in the same row, it follows that

k1 + i1j1 ≡ k2 + i1j2 mod p

Likewise, for i2 through i6 we obtain

k2 + i2j2 ≡ k3 + i2j3 mod p,

k3 + i3j3 ≡ k4 + i3j4 mod p,

k1 + i4j1 ≡ k4 + i4j4 mod p,

k1 + i5j1 ≡ k3 + i5j3 mod p, and

k2 + i6j2 ≡ k4 + i6j4 mod p.

Moreover, by imposing the vertex consistency condi-
tion and exploiting the symmetry, it suffices to consider
(i1, i2, i3, i4, i5, i6) either (x, y, x, y, z, z) or (x, y, x, y, z, w)
where x, y, z, w ∈ {0, 1, 2, 3} and are distinct.

For the case (x, y, x, y, z, z), we establish the following
conditions based on the cycles within the graph in Fig. 6:

p�1 = x(j2 − j1) + y(j3 − j2) + z(j1 − j3),
p�2 = x(j2 − j1) + z(j4 − j2) + y(j1 − j4), and

p�3 = x(j4 − j3) + y(j1 − j4) + z(j3 − j1).

for some integers �1, �2 and �3.
From this system it follows that

p�′1 = (y − z)(j3 + j4 − j1 − j2),
p�′2 = (x − z)(j2 + j3 − j1 − j4), and

p�′3 = (x − y)(j2 + j4 − j1 − j3).

for some integers �′1, �
′
2 and �′3. Since x, y, z are distinct, all

j’s would have to be the same, which contradicts the edge
consistency constraint.

For the case (x, y, x, y, z, w) we have that

p�1 = x(j2 − j1) + y(j3 − j2) + z(j1 − j3),
p�2 = x(j2 − j1) + w(j4 − j2) + y(j1 − j4), and

p�3 = x(j4 − j3) + y(j1 − j4) + z(j3 − j1).

for some integers �1, �2 and �3.
By manipulating above conditions one arrives at

(z − x)(w − y) + (z − y)(w − x) ≡ 0 mod p. (11)

It can be easily verified that this condition can not hold for
any choice of x, y, z, w, where x, y, z, w ∈ {0, 1, 2, 3} and are
distinct for p > 7. �

We next show that (5, b) absorbing sets do not exist.
Lemma 4: For p > 19, the Tanner graph family Gp,4 does

not contain any (5, b) absorbing sets.
Proof: Since each bit node in the absorbing set has at most
one neighboring unsatisfied check node, it follows that b ≤ 5.
Observe that the number of bit nodes with 3 satisfied and 1
unsatisfied check nodes is even, and thus b is even. First b > 0
by the minimum distance, dmin ≥ 8 [9] of the code. If b = 2
and all satisfied check nodes had degree 2, such an absorbing
set would contain a (4, 4) absorbing set, which by Lemma 3
does not exist. A degree-4 satisfied check node would violate
the girth condition.
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Fig. 7. Depiction of the candidate (5,4) set

We are thus left with analyzing b = 4 with all satisfied
check nodes of degree 2. The only way that such an absorbing
set could exist is if one has the configuration shown in Fig.
7, where the vertices represent bit nodes and edges represent
their satisfied check nodes.

Since i1, i2, i3 and i4 are all distinct by the vertex
consistency condition, we may assume that i1 = 0. Then
moreover, either i7 = 0 or i8 = 0 by the vertex consistency
at (j5, k5).

If i7 = 0 we let x = i2 = i8, y = i3 = i5 and z = i4 = i6
(by the vertex consistency condition) where x, y, z ∈ {1, 2, 3}
and are distinct. Note that k1 = k2 and k3 = k5. We also
obtain

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + zj2 ≡ k4 + zj4 mod p, and

k4 + xj4 ≡ k5 + xj5 mod p.

and likewise for i8 = 0 we let x = i2 = i6, y = i3 = i7
and z = i4 = i5. Note that now k1 = k2 and k4 = k5 and

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k2 + zj2 ≡ k3 + zj3 mod p,

k2 + xj2 ≡ k4 + xj4 mod p, and

k3 + yj3 ≡ k5 + yj5 mod p.

where x, y, z ∈ {1, 2, 3} and distinct.
In both cases we arrive at

xy(z − x)(z − y) − z2(x − y)2 ≡ 0 mod p, (12)

which does not have a solution for p > 19 for distinct x, y, z ∈
{1, 2, 3}. �

We can now proceed with the analysis of (6, b) absorbing
sets. Since the number of bit nodes with 3 satisfied and 1
unsatisfied check node is even, b is even. First, b = 0 is not
possible since dmin ≥ 8 [9]. The following lemma considers
b = 2.
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Fig. 8. Depiction of the candidate (6,2) set

Lemma 5: For p > 19, the Tanner graph family Gp,4 does
not contain any (6, 2) absorbing sets.

Proof: We first show that there is no check node of degree
at least 4 with respect to the bit nodes in the absorbing set.
If this were possible, there would exist at least 2 bit nodes
in the absorbing set with all check nodes satisfied and with a
shared check node of degree at least 4. They would necessarily
share another check node, which is not possible by the girth
condition [9].

We can now focus on the case where all satisfied check
nodes with respect to the absorbing set have degree 2. By
requiring that each vertex corresponding to a bit node in the
absorbing set has either 3 or 4 outgoing edges, that there are
no parallel edges and that no 3 vertices lie on the same edge,
it follows that there are 2 possible configurations, as shown in
Fig. 8.

Observe that the bottom configuration contains a (4, 4)
absorbing set which consists of (j3, k3), (j4, k4), (j5, k5), and
(j6, k6). By Lemma 3 such configuration is not possible for
p > 7.

By ensuring vertex consistency, it follows that the top con-
figuration in Fig. 3 has 2 distinct edge labellings. Specifically,
using the vertex consistency condition, we have for the top
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configuration

k1 + i1j1 ≡ k3 + i1j3 mod p,

k1 + i2j1 ≡ k4 + i2j4 mod p,

k1 + i3j1 ≡ k5 + i3j5 mod p,

k2 + i4j2 ≡ k4 + i4j4 mod p,

k2 + i5j2 ≡ k5 + i5j5 mod p,

k2 + i6j2 ≡ k6 + i6j6 mod p,

k3 + i7j3 ≡ k4 + i7j4 mod p,

k4 + i8j4 ≡ k6 + i8j6 mod p,

k5 + i9j5 ≡ k6 + i9j6 mod p,

k3 + i10j3 ≡ k6 + i10j6 mod p, and

k3 + i11j3 ≡ k5 + i11j5 mod p,

and either x = i1 = i5 = i8, y = i7 = i9, z = i2 = i6 = i11,
w = i3 = i4 = i10 or x = i1 = i4 = i9, y = i3 = i6 = i7,
z = i8 = i11, w = i2 = i5 = i10 where throughout x, y, z, w
are distinct and belong to the set {0, 1, 2, 3}.

In each case, the system of constraints reduces to one of
the following constraints:

x̃ ≡ ỹ mod p, or
x̃z̃(ỹ − z̃)(x̃ − ỹ) ≡ ±ỹ2(x̃ − z̃)2 mod p,

where {x̃, ỹ, z̃} = {x, y, z} = {1, 2, 3} and are distinct.
It can be verified that the above conditions cannot hold for

p > 19. �
Lemma 6: For all p > 5, the Tanner graph family Gp,4 has

(6, 4) (fully) absorbing sets.
Proof: Suppose first that there exists a check node of degree
4 with respect to a (6, 4) absorbing set. Let t1, t2, t3, t4 be the
bit nodes in the absorbing set participating in degree-4 check
node, and let t5 and t6 be the remaining two bit nodes in
the absorbing set. If at least one of t1, t2, t3, t4 had all check
nodes satisfied, it would be necessary that such a bit node
shares another distinct check node with some other bit node
participating in the degree-4 check node, which is impossible
by the girth [9]. Thus, all of t1, t2, t3, t4 are each connected
to 3 satisfied and 1 unsatisfied check node. Then t5 and t6 are
connected to 4 satisfied check nodes. Let ij for 1 ≤ j ≤ 4
be the labels of the check nodes connecting tj and t5. By the
vertex consistency condition at t5, they are all different. By
the vertex consistency condition at each of tj for 1 ≤ j ≤ 4
the label of their shared degree-4 check node must be different
from all ij for 1 ≤ j ≤ 4, which is impossible as there are
only 4 distinct labels available. Therefore all satisfied check
nodes neighboring bit nodes in the absorbing set have degree
2.

One can show that there are 3 possible non isomorphic
configurations, as shown in Fig. 9. By ensuring the vertex
consistency, it further follows that for each configuration there
are 8 distinct edge labellings. Let us consider the topmost
configuration. The other two configurations can be analyzed
similarly. As before, we establish a congruential constraint for
each triplet consisting of an edge and its endpoints given in
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Fig. 9. Depiction of the candidate (6,4) sets

the topmost Figure 9. For example, the edge i1 and vertices
(j1, k1) and (j3, k3) satisfy

k1 + i1j1 ≡ k3 + i1j3 mod p.

The set of constraints consists of 10 such equations, one
for each edge. For the topmost configuration, the valid
edge labellings are by the vertex consistency as follows. Let
(i1, i2, i3, i4) = (x, y, z, w), for x, y, z, w ∈ {0, 1, 2, 3} and
distinct. Then,

(i5, i6, i7, i8, i9, i10) ∈ {(y, z, x, z, x, y), (z, x, y, y, z, x),
(y, z, x, z, w, y), (y, z, x, w, x, y), (y, z, x, z, x, w),
(z, x, y, y, z, w)(z, x, y, y, w, x), (z, x, y, w, z, x)}.

For the 6-tuple (i5, i6, i7, i8, i9, i10)= (y, z, x, z, x, y) and
x = 0, the solution set formed from the 10 congruence
constraints is given in the table in Fig. 10, where q, s are any
residues mod p, and t is chosen in the residue class mod p
such that all resulting j values that depend on it are themselves
integers. All resulting values are taken mod p. Note that we
have thus established the existence of (6, 4) absorbing sets.
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j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

q q + 6t q + 4t q − 6t q + 3t q − 5t s s − 6t s s + 18t s − 6t s + 18t
q q + 3t q + t q + 3/2t q + 6t q + 11/2t s s − 6t s s − 9/2t s − 6t s − 9/2t
q q + 6t q + 3t q + 12t q + 2t q + 11t s s − 6t s s − 24t s − 6t s − 24
q q + 2t q − t q + 4t q + 6t q + 7t s s − 6t s s − 8t s − 6t s − 8t
q q + 2t q − 4t q − 2t q + 3t q − 5t s s − 6t s s + 2t s − 6t s + 2t
q q + 3t q − 3t q + 3/2t q + 2t q − 5/2t s s − 6t s s − 3/2t s − 6t s − 3/2t

Fig. 10. Several solution sets for the (6,4) configuration

The (absolute) indices of columns that correspond to the bit
nodes in the absorbing set are ki + pji for 1 ≤ i ≤ 6 and the
indices of rows that correspond to the unsatisfied check nodes
in the absorbing set are [ki + jiw]p + wp, for 3 ≤ i ≤ 6. In
particular, the solution set in row 1 holds for all p > 5.

Furthermore, for this 6-tuple all 4 unsatisfied checks in a
candidate (6, 4) absorbing set belong to the same row group
w. No bit node outside of such a set can be connected to
more than one of these unsatisfied checks, and therefore this
configuration is in fact a (6, 4) fully absorbing set. �

Using these results the proof of Theorem 1(c) now follows.
We complete our analysis of γ = 4 by proving the claim in
Theorem 2: The number of (6, 4) (fully) absorbing sets scales
as O(n3/2), where n is the codeword length.
Proof: For the topmost configuration in Fig. 9 there are 8
distinct candidate edge labellings. For each labelling there
are at most 4! = 24 ways of assigning numerical values to
labels. For each such assignment there are three parameters
(as illustrated in example in Fig. 10) that determine all of
j’s and k’s, and each parameter is chosen independently in
at most p ways (to ensure the all j’s and k’s have integer
values), yielding an upper bound which grows as O(p3). A
lower bound on the cardinality of the (6, 4) fully absorbing
sets is given by the solution set in Table 10, which also grows
as O(p3). Likewise, the number of (6, 4) (fully) absorbing sets
for the remaining two configurations grows as O(p3). Since
n = p2, the result follows. �

IV. EXPERIMENTAL RESULTS

The experiments were carried out using an LDPC code emu-
lator described in detail in [10]. The decoder was implemented
using a 4.5 (4 bits for integer and 5 bits for the fractional part)
uniform quantization. The all-zero codeword was transmitted
and the decoder was set to run for at most 200 iterations,
halting earlier if decoding to a codeword. The frame error
rate and the bit error rate for the C47,4 code are shown in
Fig. 11, along with the uncoded BER curve. In the error-floor
regime all errors were found to be due to fully absorbing sets.
A total of 25 errors were recorded at SNR = 6.4 dB, of which
18 errors were of smallest weight and all due to (6, 4) fully
absorbing sets.

V. CONCLUSION AND FUTURE WORK

This paper presented a detailed analysis of the dominant
configurations in the error-floor regime of high rate array-
based LDPC codes. We provided an explicit description of the
minimal (fully) absorbing sets and showed the non-existence
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Fig. 11. Experimental Results for C47,4

of certain candidate configurations. We also enumerated min-
imal (fully) absorbing sets and showed how their number
scales with the codeword length. Experiments on an emulation
platform were performed and were found to be in agreement
with the theoretical description of the dominant errors. We
anticipate that the techniques and analysis performed in the
current work can be fruitfully extended to a larger class of
structured LDPC codes.
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