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Abstract 

NetFlex is a multi-chiplet package (MCP) for CNN-based perception 

acceleration. With a balanced parallelism for mapping and a flexible 

scheduling, the NetFlex chiplet supports convolution, deconvolution 

and fully connected layers of different shapes, sizes and strides at high 

utilization. NetFlex adopts depth-first stream processing and an effi-

cient streaming interface in a multi-chiplet daisy chain over Advanced 

Interface Bus. A 22nm NetFlex chiplet was fabricated and measured 

to achieve 2.14TOPS/W (16b OP) at a nominal voltage of 0.89V and 

492.3MHz. A four-chiplet NetFlex MCP was built in a high-density 

fan-out wafer-level packaging to demonstrate 428FPS for depth esti-

mation and 7723FPS for pose estimation. 

Introduction 
Neural network (NN) model size and complexity growths are outpac-

ing NN chip upgrades. Making monolithic chips to keep up with the 

model evolution is costly and challenging. Instead, modular chiplets 

can be designed and reused to construct a variety of multi-chip pack-

ages (MCP) to address different NN models and tasks, as demon-

strated by Nvidia’s DNN MCP [1]. The future success of the chiplet 

approach depends on further developments of chiplets that can be ef-

ficiently reused at high utilization, standard and high-bandwidth 

chiplet interfaces, and high-density packaging. 

We apply the chiplet approach to the design of a CNN-based per-

ception accelerator (Fig. 1). A 22nm chiplet named NetFlex is de-

signed to efficiently support convolution (conv), deconvolution (de-

conv) and fully connected (FC) layers. The chiplet adopts the open 

and standard Advanced Interface Bus (AIB) interface [2], [3], provid-

ing lightweight, AXI-compatible streaming at up to 640Gb/s. Four 

NetFlex chiplets are integrated in an MCP using high-density fan-out 

wafer level packaging (HD-FOWLP) [4]. The flexible chiplet, the 

lightweight standard interface, the low-latency streaming, and the ac-

cessible HD-FOWLP substrate allow the NetFlex design to be scaled 

up to a larger size and scaled out to support other NN applications. 

Chiplet Design for Flexibility, Utilization and Efficiency 
The NetFlex chiplet includes an INT16 NN core, a dataflow control, 

an AIB interface, a digitally controlled oscillator for clock generation, 

and an UART interface for initialization (Fig. 2). The base of the NN 

core follows [5], and it is parallelized in a balanced way: 8× along XY 

(mapped to 8 PEs in a row), 16× along C (mapped to 16 PE rows in a 

sheet), and 8× along K (mapped to 8 PE sheets). In computing conv, 

the input activations (IA) are broadcast to the 8 PE sheets, and each 

PE sheet caches weights of an output channel (K). Within a PE sheet, 

the weights of 16 input channels (C) are each sent to a PE row. A PE 

row computes 8 MACs every cycle and the inputs undergo X-shifts 

followed by Y-shifts to compute 2D conv (Fig. 3a). The partial sums 

are collected along columns of a PE sheet for reduction along C. 

The NetFlex chiplet is designed for reuse, so the base NN core is 

extended to support different layer shapes, conv sizes, strides, deconv 

and FC with high utilization and efficiency. The core’s balanced par-

allelism provides a well-sized IA unit block of X×Y×C = 8×1×16 and 

a weight unit block of R×S×C×K = 1×1×16×8 for dividing most com-

mon NN layers to obtain a high mapping utilization. Temporal sched-

uling is adopted for supporting different conv sizes while maintaining 

a high utilization. Strides larger than 1 are supported by PE gating. 

The high utilization (Fig. 4a, b) leads to a lower latency. In computing 

deconv, all-zero rows in IA are removed by skipping the associated 

temporal processing steps, and element-wise zeros in the remaining 

rows are squeezed out and PEs are gated (Fig. 3b) for efficiency. 

Low-Latency Stream Processing and Chiplet Integration 

As the chiplet size and memory are limited, NetFlex adopts depth-first 

processing (Fig. 5a) in conjunction with streaming between chiplets 

to timely consume activations to reduce activation memory and la-

tency. The NetFlex chiplet employs line buffers [6], and as soon as a 

minimum number of lines of IA (e.g., 3 rows for 3×3 conv) are avail-

able, the processing can kickstart. To enable seamless streaming, the 

orders of output activations (OA) production and IA consumption are 

aligned without costly data rearrangement: a chiplet produces OA 

along output channel (K) first, then XY; and the next chiplet consumes 

IA along input channel (C) first, then XY (Fig. 5b). Compared to 

layer-by-layer, depth-first reduces the latency by over 2.7× (Fig. 4c). 

Four NetFlex chiplets are connected in a daisy chain (Fig. 6a) in 

a prototype to enable stream processing via AIB. Absent of routers, a 

daisy chain is a lightweight alternative to a mesh [1]. By linking only 

pairs of chiplets, the wires are kept short, allowing a high I/O band-

width and energy efficiency. An NetFlex chiplet uses 8 AIB channels 

(Fig. 6b) over 55µm-pitch µbumps, each channel providing up to 

80Gb/s with a 4ns transfer latency. The NetFlex MCP is built on a 5-

layer HD-FOWLP (Fig. 7a), where two layers are used for AIB rout-

ing with a 2µm width and a 2µm minimum spacing, and two layers 

for power delivery [4]. The wire lengths are equalized within a chan-

nel and kept to 4.4-5.8mm to meet the skew and frequency require-

ment. On top of AIB, we define an AXI-compatible bus interface to 

handle packing/unpacking of data to/from the AIB channels and pro-

vide a burst mode to efficiently utilize the bandwidth for streaming. 

Each AIB channel can be flexibly configured as leader or follower to 

adjust the Tx/Rx bandwidth. Additional modes including forwarding 

via a relay chiplet and bypassing a chiplet are added for flexibility. 

Chip and MCP Measurement Results 
The NetFlex chiplet was fabricated in an Intel 22nm FinFET Low 

Power technology (Fig. 7b). The processing part occupies 7.8mm2 and 

the AIB I/Os take 3.3mm2. The chiplet is measured to consume 

499.8mW with a supply of 0.89V and a clock frequency of 492.3MHz 

in room temperature. The measurements translate to 2.14TOPS/W 

(16b OP) and 0.14TOPS/mm2. A peak efficiency of 7.19TOPS/W 

(16b OP) is measured at 0.6V at 190.3MHz (Fig. 7c). The NetFlex 

MCP measures 13.5mm×13.5mm. The HD-FOWLP MCP is molded 

to form a BGA package, and assembled on PCB (Fig. 7d). 

An end-to-end CNN-based perception model, SFM Learner [7], 

is mapped to the NetFlex MCP. The MCP provides 428FPS for depth 

estimation and 7723FPS for pose estimation using the KITTI dataset 

(416×128 frame size as in [7]). Compared to recent visual SLAM and 

DNN-SLAM approaches [5], [8] (Table I), NetFlex provides better 

adaptation and scalability, but the CNN-based approach requires more 

computation and storage. Compared to the state-of-the-art multi-

chiplet [1] and multi-chip [9] NN accelerators (Table II), NetFlex pro-

vides a competitive efficiency due to the optimized utilization and the 

efficient streaming. NetFlex’s standard interface and HD-FOWLP 

substrate will contribute to accessible chiplet and MCP designs. 
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TABLE I: COMPARISON OF NETFLEX CHIPLET WITH 

PRIOR PERCEPTION ACCELERATORS

TABLE II: COMPARISON WITH PRIOR MCP WORKS

(a) (b)

(a) (b)

(a) (b) (c)

a: IMU power excluded; b: VFE precision: N/A, BE: double precision; c: CNN 
precision 8b and BA precision 32b; d: Image crop used by [7]

a: Measured at 713.5MHz DDR for I/O and 356.7MHz for bus interface 
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Type
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and visual SLAM

CNN feature

and visual SLAM
End-to-end CNN

Technology 65nm 28nm 22nm
Area 20mm

2
10.92mm

2 7.8mm2

Memory Size 854kB 1126kB 2492kB
Voltage 1V 0.63-0.9V 0.6-0.89V

Frequency
62.5MHz

83.3MHz
90-215MHz 190.3-492.3MHz

Core Power 24mW 
a 61.75-243.6mW 57.6-499.8mW

Performance (TOPS)
0.011-0.059 (INT)

0.001-0.006 (FP64) 
b

0.329-0.879 (INT8, INT32) 
c 0.41-1.07 (INT16)

Energy Efficiency (TOPS/W)
0.42-2.46 (INT)

0.042-0.25
 
(FP64) 

b 3.6-5.34 (INT8, INT32) 
c 2.14-7.19 (INT16)

Dataset EuRoC KITTI KITTI
Image Size 752x480 640x480 416x128 d

Throughput 90FPS 80FPS
Depth net: 108FPS (1 chiplet)
Pose net: 2001FPS (1 chiplet)

VLSI 2019 [1] VLSI 2021 [9] This Work
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2
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Energy Efficiency (TOPS/W) 0.96-9.5 (INT8) 2.2 (INT8, FP16)
2.14-7.19 (INT16)

1.75-2.44 (INT16) w/ AIB a
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