
CASCADE: Connecting RRAMs to Extend Analog Dataflow In
An End-To-End In-Memory Processing Paradigm

Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang
{teyuh,weitang,botimerj,zhengya}@umich.edu

University of Michigan, Ann Arbor

ABSTRACT
Processing in memory (PIM) is a concept to enable massively par-
allel dot products while keeping one set of operands in memory.
PIM is ideal for computationally demanding deep neural networks
(DNNs) and recurrent neural networks (RNNs). Processing in resis-
tive RAM (RRAM) is particularly appealing due to RRAM’s high
density and low energy. A key limitation of PIM is the cost of multi-
bit analog-to-digital (A/D) conversions that can defeat the efficiency
and performance benefits of PIM. In this work, we demonstrate the
CASCADE architecture that connects multiply-accumulate (MAC)
RRAM arrays with buffer RRAM arrays to extend the processing in
analog and in memory: dot products are followed by partial-sum
buffering and accumulation to implement a complete DNN or RNN
layer. Design choices are made and the interface is designed to
enable a variation-tolerant, robust analog dataflow. A new mem-
ory mapping scheme named R-Mapping is devised to enable the
in-RRAM accumulation of partial sums; and an analog summation
scheme is used to reduce the number of A/D conversions required to
obtain the final sum. CASCADE is compared with recent in-RRAM
computation architectures using state-of-the-art DNN and RNN
benchmarks. The results demonstrate that CASCADE improves the
energy efficiency by 3.5× while maintaining a competitive through-
put.

CCS CONCEPTS
•Computer systems organization→Neural networks; Single
instruction, multiple data.

KEYWORDS
Process in memory, Resistive RAM, Neural network accelerator

ACM Reference Format:
Teyuh Chou, Wei Tang, Jacob Botimer, and Zhengya Zhang. 2019. CAS-
CADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-
End In-Memory Processing Paradigm. In The 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-52), October 12–16,
2019, Columbus, OH, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3352460.3358328

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358328

1 INTRODUCTION
In recent years, machine learning is becoming the dominant work-
load for the next-generation computation systems. As one of the
most important machine learning kernels, deep neural networks
(DNNs) and recurrent neural networks (RNNs) are now being
widely deployed in tasks from image analysis to speech recognition.

DNNworkloads are typically highly vectorizedwithwell-defined
dataflow patterns. A large number of digital DNN accelerators [7,
9, 10, 17, 32] have been designed to achieve high performance and
high efficiency.With the continued increase in DNN complexity and
the growing demand for faster and lower power machine learning
use cases, we see the need of power efficient chips that can be
employed in a wide range of applications including autonomous
driving and mobile devices. In such edge applications, an advanced
nonvolatile memory, such as resistive RAM (RRAM), can play an
important role thanks to its high storage density, low leakage power
and fast wake-up from sleep [13].

Beyond high-density storage, recent work started looking into
in-RRAM computation, a form of processing in memory (PIM), to
enable massively parallel dot products in an RRAM crossbar array
without moving the stored operands. The core computation of a
DNN layer can be easily mapped to an RRAM crossbar array: the
input activations of a DNN layer are applied to the wordlines (WL)
of an RRAM crossbar as voltage pulses, and the weights are stored
as conductances of the RRAM crossbar. A dot product is obtained
from the bitline (BL) of each column of the RRAM crossbar by the
physics of Ohm’s law for multiplication and Kirchhoff’s law for
accumulation. The simple and elegant in-RRAM dot product has
been projected to achieve impressive performance and efficiency
[5, 11, 21, 26, 29, 35].

In-RRAM dot product is a form of analog computation. When
used as a part of a digital system, the digital inputs to the RRAM
crossbar need to be converted to voltage pulses using digital-to-
analog converters (DACs), and the outputs of the RRAM crossbar
in the form of analog currents need to be integrated and digitized
using analog-to-digital converters (ADCs). In-RRAM computation
pushes the resolution requirement of analog computation to accom-
modate tens or hundreds of products of multi-bit WL pulses with
multi-bit RRAM conductances that are summed together. High-
resolution ADCs are required, adding a significant overhead. As
RRAM crossbar size and device resolution continue to increase, the
required ADC resolution also increases. It would not be surprising
to see that analog-to-digital (A/D) conversion will eventually domi-
nate the area and energy consumption of in-RRAM computation to
an extent that renders in-RRAM computation impractical.

A survey of recent work on in-RRAM computation highlights the
overhead of A/D conversion as a severe limitation. As a full-fledged
DNN acclerator in RRAM, ISAAC [38] employs 8-bit ADCs that

114

https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1145/3352460.3358328
https://doi.org/10.1145/3352460.3358328

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

are estimated to cost 58% of the power and 31% of the silicon area.
PRIME [12] uses sense amplifiers (SAs) instead of conventional
ADCs to reduce area. However, an SA is only capable of resolving
one bit at a time. To obtain a 6-bit digital output, the SA uses up
to 26 cycles in decision time, resulting in a long latency that is
exponentially dependent on the resolution. The SA interface limits
the throughput for demanding applications.

The second limitation of in-RRAM computation is that even a
single layer in a state-of-the-art DNN or RNN can be too large
to fit on a practical RRAM crossbar. The reason is twofold. First,
despite the rapid progress in RRAM technology development, most
RRAM crossbars demonstrated are of sizes from 64×64 to 256×256
[46], allowing up to 64 to 256 partial sums to be accumulated on
each BL. In comparison, a single point in the output feature map
(fmap) of a fully-connected (FC) layer in AlexNet [27] requires up
to 9,216 partial sum accumulations, and a single point in the output
fmap of a convolutional layer in GoogLeNet [43] requires up to
1,728 partial sum accumulations, both easily exceeding the number
of analog accumulations that can be done in a practical RRAM
crossbar. Therefore, one kernel computation needs to be separated
andmapped to multiple RRAM crossbars. The resulting partial sums
from multiple crossbars need to be digitized and accumulated in
the digital domain. Second, it is impractical to assume that a 16-bit
or even a 8-bit weight value can be reliably stored in one RRAM
cell. Multi-level cell (MLC) requires the use of more complex DACs
and ADCs, and can be more easily affected by noise and process
variation. It is more practical to map a multi-bit weight value to
multiple RRAM cells. Similarly, it is more practical to separate an
input to units of 1 or 2 bits and apply them serially to simplify the
circuitry and reduce the noise and variation uncertainty. It is also
more practical to activate a subset of WLs, instead of all WLs, in a
large RRAM crossbar. All of these practical approaches lead to more
partial sums that need to be digitized and digitally accumulated.

In essence, in-RRAM computation consists of at least three parts:
in-RRAM dot products, A/D conversion, and digital accumulation of
partial sums. Currently, only the first part is done in RRAM, while
the second and the third part are done by conventional CMOS
circuits. Besides the aforementioned overhead of high-resolution
A/D conversion, we estimate that the energy and area of digital
partial-sum accumulation can surpass in-RRAM dot products to
yield the core in-RRAM computation insignificant.

In this work, we present CASCADE, an in-RRAM computation ar-
chitecture for DNNs and RNNs, to specifically address the problems
of high-cost A/D conversion and digital partial sum accumulation
associated with the current in-RRAM computation approach. The
contributions of this work are as follows:

(1) We choose more practical and robust in-memory dot prod-
ucts by reducing effective BL resolution to ensure noise and
variation tolerance. Only low-resolution analog outputs can
be reliably cascaded. We analyze the trade-off between reso-
lution and inference accuracy, and show that only by low-
ering the BL resolution, a good accuracy can be reliably
achieved.

(2) We propose R-Mapping scheme to use a buffer RRAM to per-
form in-RRAM partial sum accumulation, replacing digital
partial sum accumulation. The analog summation bypasses

Figure 1: (a) A dot product implemented in an RRAM cross-
bar. (b) Parallel dot products implemented in an RRAM
crossbar array. The input vector is converted to voltage
pulses by DACs and the weights are stored in the RRAM
crossbar. The BL currents are sampled and held (S&H) and
converted to digital values.

the A/D conversions of low-order sums, reducing the number
of A/D conversions.

(3) We connect MAC RRAMs to buffer RRAMs by using the
transimpedance amplifiers (TIAs) as the interface to con-
vert MAC RRAMs’ BL outputs from analog current to analog
voltage that can directly feed to buffer RRAMs as inputs. Cas-
cading MAC RRAMs with buffer RRAMs not only enables
the “analog” dataflow to meet the computation requirement
of a DNN or RNN layer, but also keeps all intermediate val-
ues in analog and in memory to obtain the highest possible
energy efficiency and performance.

2 BACKGROUND
An RRAM cell is a metal-insulator-metal (MIM) device that stores
information via its programmable conductance. Typical RRAM
devices are constructed in a crossbar array to provide dense storage
to fulfill the growing demand of low-power nonvolatile memory. In
addition to storage, an RRAM crossbar array can be used to perform
parallel dot products.

Figure 1 shows examples of a dot product and parallel dot prod-
ucts using RRAM crossbars. In Figure 1(b), a 4×4 weight matrix is
stored on the RRAM crossbar as conductances. A 1×4 input vector
is sent to four DACs to be converted to read voltage pulses and
applied to the WLs of the crossbar. A read voltage pulse over an
RRAM cell’s conductance produces a current that represents the
product of the voltage input with the conductance. The currents
through RRAM cells along a column are aggregated on the BL to
complete a dot product.

As illustrated in the above example, a read voltage pulse is ap-
plied to aWL that drives a row of RRAM cells. Activatingmultiple or
all of the WLs in the RRAM crossbar enables the second dimension
of parallelism. Throughout the dot product operation, one set of
operands, e.g., the 4×4 weight matrix in the above example, is kept
in memory, saving significant time and energy in data movement.

115

CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 2: Mapping of convolution operation on an RRAM
crossbar array.

In addition to dot products, an RRAM device supports accumula-
tion in a write process. Applying consecutive write pulses, i.e., set or
reset pulses, to an RRAM cell increases or decreases its conductance
[6, 24]. The benefit of in-RRAM accumulation can be significant, as
a typical n-step digital accumulation requires n reads from memory
to fetch the temporary sum, and n writes to memory to update the
sum, which are all eliminated by in-RRAM accumulation.

2.1 Workloads and Mapping to RRAM
DNNs and RNNs have emerged to be one of the most important
machine learning workloads. A DNN consists of layers of convo-
lution (CONV), pooling, normalization, and fully-connected (FC)
layers. CONV and the FC layers are the most computation-intense
and memory-intense layers.

A CONV layer is shown in Figure 2. An input activation sized
W × H of C channels is convolved with K kernels sized R × S of
C channels to produce an output fmap sized X × Y of K channels
(X = W − R + 1 and Y = H − S + 1). The kernels (weights) are
learned through a training algorithm. A point (x ,y,k) of the output
fmap, f out (x ,y,k), is calculated as follows:

f out (x ,y,k) = σ (
C∑
c=1

R∑
r=1

S∑
s=1

f in (x + r ,y + s, c) ×wk (r , s, c)), (1)

where f in (x ,y, c) is the input activation at (x ,y, c), wk (r , s, c) is
the weight value of kth kernel at (r , s, c), and σ is the activation
function.

Each elementary step of the computation involves the product
of a pair of input activation and weight. To compute each point
in the output fmap, (1) describes three layers of loops over R, S ,
and C , involving accumulation of R × S × C partial sums. To in-
crease throughput, the three layers of loops can be unrolled or
partially unrolled. To complete one entire output fmap, there are
three additional outer loops over X , Y , and K .

An FC layer can be viewed as a special case of CONV layer with
W = R and H = S , i.e., the dimensions of the input activations and

kernels are matched. The R × S for a FC layer is typically larger
than a CONV layer. Since the dimensions of the input activations
and weights are matched, an output fmap is sized 1 × 1 × K .

To perform inference, the weights w of a CONV or a FC layer
remain static as the input activations f in are streamed in. Therefore,
it is advantageous to store the weights in RRAM, reuse the weights
as new input activations are applied. One efficient way of storing
weights in an RRAM crossbar array is shown in Figure 2, where
one R × S ×C kernel is stored in R × S ×C cells as conductances
in one column, and K kernels are stored across K columns. The
illustration in Figure 2 assumes that the RRAM array consists of
at least R × S × C rows and K columns, and each RRAM device
provides a sufficient resolution to store a weight value. Following
this mapping, R × S ×C partial sums are accumulated on one BL to
complete the computation of one point in the output fmap.

Practical RRAM arrays may not provide nearly as many rows
or columns. The R × S ×C of a layer in a state-of-the-art DNN or
RNN can easily exceed 10,000. Furthermore, a practical RRAM cell
may not provide enough distinguishing levels to store a 16-bit or
even an 8-bit weight value. The technology limitation requires a
weight value to be stored in multiple RRAM cells, and the R × S ×C
accumulations to be separated and performed on multiple BLs of
one RRAM array or multiple arrays. Each BL is digitized by an ADC
or an SA, and the final accumulation is done in the digital domain.

The underlying computation in an RNN can be mapped in the
same manner. For example, consider the long short-term memory
(LSTM) [16, 20], a kind of RNN. Given an input sequence X =
(x1,x2, ...,xT), where xt is the input at time step t , t ∈ {1, ...,T }, a
typical LSTM layer is defined as follow.

Input gate : it = σ (W i
xxt +U

i
hht−1) (2)

Forget gate : ft = σ (W
f
x xt +U

f
h ht−1) (3)

Output gate : ot = σ (W o
x xt +U

o
hht−1) (4)

Candidate memory : c̃t = tanh(W c
x xt +U

c
hht−1) (5)

Memory cell : ct = ft ⊙ ct−1 + it ⊙ c̃t (6)
Hidden state : ht = ot ⊙ tanh(ct), (7)

whereW j andU j , j = {i, f ,o, c}, are parameters learned through
a training algorithm, ⊙ denotes element-wise multiplication, σ is
the sigmoid function, and tanh is the hyperbolic tangent function.
Both σ and tanh are element-wise nonlinear activation functions.
The computation intensive part is the matrix-vector product in (2)
to (5), which can be rewritten as:

W i
x U i

x

W
f
x U

f
x

W o
x U o

x
W c
x U c

x

[
xt
ht−1

]
(8)

Using this formulation, the dot products in an LSTM can be imple-
mented in RRAM following the same approach.

2.2 In-RRAM Computation
ISAAC [38], PRIME [12] and PipeLayer [41] are three recently
published architectures for implementing DNN and RNN through
in-RRAM computation. There are also examples of in-SRAM com-
putation [3, 14, 47] and in-DRAM computation [37] that follow the

116

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

ISAAC [38] PRIME [12] PipeLayer [41] CASCADE

Input bitwidth 16 6
w/ fraction encoding 16 16

Input bits per cycle (bWL) 1 3 1 1

Weight bitwidth 16 8
w/ fraction encoding 16 16

Cell resolution (bcel l) 2 4 4 1
Array size (Nrows × Ncols) 128×128 256×256 128×128 64×64

BL resolution (bBL) 9 15 11 7

Output bitwidth 8
w/ encoding

6
w/ truncation N/A 6

w/ encoding
Output interface ADC SA Spiking integrate and fire TIA

Table 1: In-RRAMMAC architecture comparison.

same concept. A comparison of key aspects of ISAAC, PRIME and
PipeLayer is shown in Table 1.

Rowcircuitry. PRIME applies bothwidth- and level-modulation
to eachWL. A 6-bit input is converted to one of 8 voltage levels over
two pulse periods. Providing 8 precise voltage levels is challenging,
complicating the DAC circuits. ISAAC streams inputs in a bit-serial
fashion: a binary input is sent to theWL driver one bit at a time, and
a voltage pulse is produced and passed onto the WL. A 1-bit driver
is simpler to design and the read process is also better controlled.
PipeLayer also adopts ISAAC’s bit-serial input streaming.

BL resolution. In-RRAM computation can produce a high BL
resolution. PRIME uses 4 bits per RRAM cell and a 256-row RRAM
array, resulting in a BL resolution of 15 bits. The outputs are trun-
cated to 6 bits to be practical. ISAAC uses bit-serial input streaming,
stores 2 bits per cell, and uses a 128-row array to reduce the BL
resolution to 9 bits. The bit-serial input streaming is also adopted
by PipeLayer. However, PipeLayer stores 4 bits per cell, leading to
a 11-bit BL resolution.

Column circuitry. PRIME uses an SA for each BL. The SA
takes up to 2n cycles to perform 2n comparisons to produce a n-bit
output, where n is the output bitwidth. ISAAC uses an 8-bit ADC,
which can be costly in terms of power and area. The ADC is shared
among 128 BLs in an array to amortize the cost. PipeLayer uses an
integrate-and-fire component for each BL to generate spikes. The
serial integration is slow and the latency scales with 2n .

Physical implementation challenges. State-of-the-art PIM
chips demonstrate the challenges in designing peripheral circuitry
to support a high BL resolution. To be realistic, the resolution of
inputs and weights are often lowered, and only a subset of WLs
are activated. The latest PIM chips, including the ones based on
SRAM [3, 14, 47] and the ones based on RRAM [45], chose to dig-
itize only the most significant bits (MSBs) to reduce the cost of
A/D conversion. In particular, 1-bit output was used in [47]. Doing
so severely limits the application of PIM. In [8], only 9 WLs are
activated per column. Since high-resolution PIM can be affected by
process, voltage and temperature (PVT) variations [15], it is critical
to take variations and noise into account in PIM designs.

2.3 A/D Conversion for In-RRAMComputation
A/D conversion is an integral part of in-RRAM computation, and
it contributes about 60% of the power consumption based on the

latest work [38]. Common A/D conversion choices are ADC or
SA. An ADC’s complexity and power consumption depend on its
sampling rate and resolution. In-RRAM computation has a relatively
relaxed sampling rate, due to the intrinsic RC delay of WL and BL
propagation. However, in-RRAM computation can require a high
resolution that depends on the the resolution of the analog read
pulse bWL , the resolution of RRAM cell bcell , and the number
of rows that are activated in parallel Nrows . With the growing
desire of using multi-level cell (MLC) RRAM and a higher degree of
parallelism by activating more rows in parallel, the A/D resolution
is constantly raised. Since the area and energy consumption of
A/D conversion scale exponentially with the resolution [36, 38],
designing the A/D conversion for in-RRAM computation is a main
challenge.

An SA is commonly found in the peripheral circuitry of single-
level cell (SLC) memories such as SRAM or DRAM. An SA can be
viewed as a 1-bit ADC that compares BL voltage with a reference
voltage to produce a 1-bit output. An SA can serve as a multi-bit
ADC by sweeping the reference voltages, i.e., a reference voltage
ramp, and keeping track of when the SA output flips using a counter
[12]. The SA circuitry is simple and compact, but using SA for multi-
bit A/D conversion can cost a high latency of up to 2n cycles, where
n is the resolution.

3 THE CASCADE ARCHITECTURE
The CASCADE in-RRAM computation architecture targets infer-
ence in edge/IoT devices with a stringent energy and area envelope.
A CASCADE chip is made of analog processing units (APUs) that
each consists of a number of RRAM crossbar arrays, as shown in
Figure 3. An RRAM array can be tasked with performing in-memory
dot products, buffering or in-memory accumulation. CASCADE
executes a DNN or RNN model layer by layer as in [9]. The trained
weights in a layer are first loaded to the APUs from main mem-
ory. The weights and inputs are assumed to be 16 bits, and the dot
products are quantized to 16 bits.

Compared to ISAAC, PRIME or PipeLayer, CASCADE uses an
efficient analog dataflow with a TIA interface at the output of a
multiply-accumulate (MAC) RRAM to convert the analog current
to voltage. The voltage is applied to a buffer RRAM directly to
accomplish partial-sum accumulation. The results are sent to sum-
ming amplifiers and ADCs to convert to digital values, followed

117

CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 3: Illustration of the CASCADE architecture. The
bold lines indicate the proposed dataflow. The zoom-in view
shows an analog processing unit (APU).

by activation, normalization and pooling. The outputs are stored
in main memory for the next layer of processing. Cascading MAC
RRAMs with buffer RRAMs realizes the core computation of a
CONV or FC layer in analog and in RRAM. Since A/D conversion
occurs in the very end of the computation, redundant conversions
of intermediate values are saved.

3.1 Input Streaming and Weight Mapping in
MAC RRAM

In designing CASCADE, we adopt the bit-serial streaming of input
(bWL = 1) to a MAC RRAM. Each 16-bit input (η = 16) is streamed
from LSB to MSB as 16 WL pulses. A 1-bit WL driver is simpler to
design, more compact and consumes less power than a multi-bit
DAC.

The weight values are stored in a MAC RRAM using bcell bits
per cell. A 16-bit weight value (ω = 16) is mapped toω/bcell RRAM
cells. To limit the BL resolution and the impact of variation and
noise, we use 1-bit weight mapping (bcell = 1) and moderate-sized
RRAM array of 64×64 (Nrows = 64,Ncols = 64). In this way, the
BL resolution is kept to 7 bits, lower than all the previous work as
shown in Table 1. Following the encoding in [38], the BL resolution
is further reduced from 7 to 6 bits. With bit-serial input streaming
and binary weight mapping in a MAC RRAM, only two voltage
references are needed, one for read and one for write, simplifying
routing and driver circuitry.

In CASCADE, a 16-bit weight is stored in 16 cells in a row; and a
64×64 MAC RRAM stores 4 16-bit weights per row and 256 weights
in total. The 64×64 MAC RRAM can be effectively divided into 4
64×16 subsections, each subsection represents a 64×1 16-bit weight
vector. The MAC RRAM performs the dot products of a 1×64 input
bit vector with four 64×1 16-bit weight vectors at a time.

3.2 Buffering of Partial Sums in Buffer RRAM
After in-RRAM dot products, the BLs of the MAC RRAM carry
the analog partial sums associated with every bit of the weights.

Figure 4: Comparison of (a) in-RRAM MAC and digital ac-
cumulation of partial sums, and (b) in-RRAM MAC and in-
RRAM buffering and accumulation of partial sums. The
dashed lines indicate D/A and A/D boundaries. The inner
loop is highlighted in blue.

Using bit-serial input streaming, every new input bit vector pro-
duces a new set of analog partial sums that need to be aligned and
accumulated.

Partial sum accumulation is also needed due to the mapping of
wide dot products on multiple MAC RRAMs. As discussed previ-
ously, in the case of large R × S ×C , a wide dot product needs to
be separated and mapped to multiple MAC RRAMs or one MAC
RRAM through time-multiplexing. The partial sums need to be
accumulated to obtain the final result.

Digital Accumulation. In previous work [12, 38, 41], the accu-
mulation of partial sums is done in the digital domain. The dataflow
is illustrated in Figure 4, and it follows the steps below for every
input bit vector:

(1) Convert the BL outputs of a MAC RRAM to digital partial
sums using ADCs or SAs;

(2) Read out the temporary sums stored in SRAM or registers;
(3) Shift and accumulate the partial sums by S+A;
(4) Truncate the LSBs of the sum to maintain a given bitwidth;
(5) Write back the updated sum to SRAM or registers;

As illustrated in Figure 4, for a 16-bit input, the partial-sum
accumulation incurs 16 A/D conversions and data movement in
and out of SRAM or registers, which significantly worsens the
energy efficiency and performance. Some of the A/D conversions
are wasteful due to the LSB truncation in Step (4).

Analog in-RRAM Buffering and Accumulation. The CAS-
CADE architecture employs analog buffering and in-RRAM accu-
mulation by cascading a MAC RRAM with two buffer RRAMs via

118

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

Figure 5: Illustration of R-Mapping for 4-bit weights and
4-bit inputs. The inputs are serially streamed in with LSB
first. The MAC RRAM stores two sets of 4-bit weights Wa
and Wb . The arrows indicate the align and store of partial
sums through TIAs and input drivers. The partial sum Pi, j
is stored in the ith row and jth column in cycle i of the buffer
RRAM.

TIA interface, as shown in Figure 3. The dataflow is illustrated in
Figure 4, and it follows the steps below for every input bit vector:

(1) Convert the BL outputs of MAC RRAM to analog voltages
using TIAs;

(2) Align the voltages as inputs to buffer RRAMs to store the
analog partial sums;

Since the MAC RRAM’s BL resolution is 6 bits, we propose to
use 6-bit MLC RRAM [1] for the buffer RRAMs. After the serial
streaming of the 16-bit inputs are complete, the analog partial sums
stored in the buffer RRAM are accumulated before the final A/D
conversions.

To support in-RRAM accumulation of partial sums, we propose
R-Mapping scheme as illustrated in Figure 5. Consider LSB-first bit-
serial input streaming and a 64×16 subsection of a MAC-RRAM that
stores a 16-bit weight vector. First, the dot products are computed
for the input bit vector 0 and the 16-bit weight vector. The outputs
are 16 analog partial sums (one per BL). These 16 analog partial
sums are written to a buffer RRAM at address i . Next, the dot
products are computed for the input bit vector 1 and the 16-bit
weight vector. The outputs of 16 analog partial sums are left-shifted
by 1 and written to the buffer RRAM at address i + 1, as shown in
Figure 5. At the completion of the bit-serial input streaming, the
partial sums are stored in 16 rows and 31 columns of the buffer
RRAM (or 15 rows and 30 columns if the inputs are signed numbers).
The R-Mapping scheme allows the final accumulation to be done
in one read of the buffer RRAM described in Section 3.4.

In CASCADE, we assume signed inputs, and the partial sums
computed by a 64×16 subsection of a MAC RRAM are written to
15 rows and 30 columns of a buffer RRAM. We connect one 64×64
MAC RRAM to two 15×30 buffer RRAMs, as shown in Figure 3, so
each buffer RRAM stores the partial sums from two subsections of
the MAC RRAM.

Figure 6: Normalized energy consumption of digital partial-
sum accumulation and analog in-RRAM partial-sum buffer-
ing and accumulation.

Figure 6 shows the energy breakdown of the digital accumulation
of partial sums and the analog in-RRAMbuffering and accumulation.
The analog in-RRAM buffering and accumulation is estimated to
use 7.59× less energy than the digital partial-sum accumulation.
The significant savings are mainly attributed to the elimination
of repeated SRAM read and write accesses required by the digital
approach.

With analog in-RRAM buffering and accumulation, the A/D con-
version is only exercised after the final partial-sum accumulation, as
illustrated in Figure 4. In addition, the number of A/D conversions
is limited to the number bits needed for the final output, eliminating
redundant conversions of intermediate values.

Buffer RRAMWrite Consideration. A standard RRAM write
uses a relatively high voltage. It costs high energy and is the primary
reason for the limited endurance [42]. In this work, we propose to
use a lower voltage to write to buffer RRAMs, and 1T1R RRAMwith
a transistor to control the write current [39]. These lead to improved
endurance and lower energy. Low-voltage write to RRAM can be
non-deterministic [23]. In simulation, the errors and variations due
to non-deterministic write are incorporated as part of the noise
analysis in Section 3.5. We allocate one clock period for write to
avoid pipeline stalling.

3.3 TIA Interface between MAC RRAM and
Buffer RRAM

A TIA is used to convert an input current to a proportional output
voltage. A conventional TIA is constructed using an operational
transconductance amplifier (OTA) with a resistor in the feedback
connection. The conventional design can be slow in settling, and
consume a large on-current. It is also difficult to set the output
voltage range appropriate for driving the buffer RRAM.

We design a new TIA circuit as shown in Figure 7(a) to convert
MAC RRAM’s BL current to voltage, and holds the voltage for
driving the buffer RRAM. The TIA circuit operates in two phases:
sensing and transfer. In the sensing phase, SW0 and SW1 are closed
to enable a feedback loop to convert the BL current to voltage on
Camp; SW2 is open and SW3 is closed to detach Cout and precharge
it to VDD. After the sensing phase, SW0 and SW1 are open to detach
the BL from the TIA; and SW3 is open to complete the precharge. In

119

CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 7: (a) Schematic of TIA for converting an input current to a proportional output voltage; (b) simulation waveforms of
the TIA designed in a 65nm CMOS technology and the charge leakage of the output capacitor over 25ns of the buffer RRAM
write period; and (c) zoom-out view of the TIA sensing and transfer phase.

the transfer phase, SW2 is closed to allow the sampled voltage on
Camp to drive the NMOS to reproduce the BL current to discharge
Cout. After the transfer is complete, SW2 opens and the voltage is
held on Cout for driving the buffer RRAM.

Compared to the conventional TIA design, the proposed TIA
offers a faster settling time, lower energy per conversion, and flexi-
bility in setting the output voltage range for driving the next stage.
The TIA circuit is designed and simulated as shown in Figure 7(b) to
obtain realistic parameters for system evaluations. We used metal-
oxide-metal capacitor for Cout. The simulation shows that the leak-
age on Cout results in a negligible voltage drop of 756nV over the
25ns RRAM write period as shown in Figure 7(c).

3.4 Final Accumulation and A/D Conversion
Following the R-Mapping scheme, analog partial sums from one
subsection of a MAC SRAM are stored in 15 rows and 30 columns
of a buffer RRAM. After summed together, 10 A/D conversions are
needed with resolutions ranging from 6 to 10 bits.

The final accumulation is illustrated in Figure 8. The 30 BLs
can be divided into groups to efficiently obtain the output of a
required resolution. For example, if a 16-bit output is required,
the 9 BLs in the MSB group directly contribute to the required
16-bit output resolution, and they are digitized by suitable 6-bit to
10-bit ADCs. The BLs in the LSB group are connected to analog
summing amplifiers as shown in in Figure 8(b), with each BL current
appropriately scaled before summing. The analog sum of a low-
order group is fed as the input to the next high-order group. In this
way, the low-order groups are compressed to one carry-in to the
MSB group. The digital values are then added together to produce
the final sum.

With the analog accumulation scheme, the number of A/D con-
versions is reduced, and the number of digital summations is also
reduced. The low-order accumulations are done more efficiently
in the analog domain. Although analog accumulation can be less
precise than digital accumulation, it produces only a carry-in to the
MSB group and the imprecision becomes negligible.With fewer A/D
conversions, we can choose an ADC of a lower sampling frequency

to reduce the energy per conversion step [30]. Fewer number of
A/D conversions also makes it possible to share ADCs to reduce
area.

3.5 Noise Tolerance
Since the CASCADE architecture connectsMACRRAMswith buffer
RRAMs, and relies on the analog dataflow from MAC RRAMs to
buffer RRAMs, it is critical to check the variation and noise tolerance
of the end-to-end system. Analytically, we can lump the variation,
noise and non-idealities of analog circuits as effective noise on the
MAC RRAM BL, and measure the signal-to-noise ratio (SNR). The
SNR affects the classification accuracy as shown in Figure 9. In this
example, we used a 2-layer MLP as the workload. Different system
configurations require different levels of SNR. A higher SNR means
a lower margin for noise tolerance.

Suppose we aim at a 90% classification accuracy, a 6-bit BL resolu-
tion (e.g., 1 input bit/cycle, 1-bit MAC RRAM cell, and 64-row MAC
RRAM as in CASCADE) requires a minimum SNR of 25 dB, while a
11-bit BL resolution (e.g., 1 input bit/cycle, 4-bit MAC RRAM cell,
and 128-row MAC RRAM as in PipeLayer [41]) requires a minimum
SNR of 35 dB. The noise tolerance of the PipeLayer configuration
is 10 dB lower than the CASCADE configuration. The CASCADE
architecture adopts a 6-bit BL resolution to ensure the robustness
of the end-to-end analog and in-memory computation.

4 EVALUATION
We first establish the reference architectures based on ISAAC and
PRIME. We then provide an exploration of the CASCADE design
space to show the capabilities of the architecture as well as its
limitations. Finally, an instance of the CASCADE architecture is
evaluated using realistic workloads with comparisons made against
the references.

4.1 Methodology
Reference Architectures. We use two reference architectures:
1) an ADC-based architecture adapted from ISAAC [38] and an

120

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

Figure 8: (a) Illustration of the final accumulation; and (b) schematic of a summing amplifier.

Figure 9: (a) Two-layer MLP classification accuracy for dif-
ferent configurations noted by [bWL , bcell , Nrows , bBL], and
(b) AlexNet top-5 classification accuracy for CASCADE and
configurations based on ISAAC and PipeLayer.

SA-based architecture adapted from PRIME [12]. To make a fair
comparison, the architectures all employ RRAM crossbar arrays of
the same size, and all utilize bit-serial input streaming and binary
weight mapping.

Table 2 summarizes the three architectures for comparison. The
key difference is that CASCADE performs in-RRAM buffering and
accumulation, while the two reference architectures perform digital

CASCADE ADC-based SA-based

In-RRAM
dot product

Input: 16 bits, bit-serial streaming
Weight: 16 bits, binary mapping

RRAM array size: 64 × 64
Partial-sum
accumulation

Analog
in-RRAM

Digital sum
SRAM

Digital sum
SRAM

A/D
resolution 10 bits 6 bits 6 bits

A/D
activity

10 times
per 16 cycles

256 times
per 16 cycles

256 times
per 16 cycles

A/D
normalized latency 1 1 26

Number of
ADCs

7 ADCs
per 80 arrays

80 ADCs
per 80 arrays

80×64 SAs
per 80 arrays

Table 2: Configurations of the CASCADE, ADC-based and
SA-based reference architectures.

accumulation after converting the analog partial sums using ADCs
and SAs. With an efficient TIA interface and analog buffering and
accumulation, CASCADE reduces the number of A/D conversions
from 256 per 16 cycles to 10 per 16 cycles.

Component Models. Our evaluations were done using a 65nm
technology and a 65nm RRAM model from [8]. The SRAM model is
constructed based on the results obtained from a memory compiler.
We adopted most of the circuit component models from ISAAC
[38] and scaled them to 65nm. The analog components including
ADC, SA, summing amplifier and S&H were obtained from recent
literature and scaled to 65nm. In particular, we used the successive
approximation (SAR) ADC from [28], same as in ISAAC. The area
and energy of a SAR ADC and the resolution scaling follow [36].
The SA model was adapted from [31]. The summing amplifier was
from [33]. The TIA was designed in a 65nm CMOS technology
and simulated in Cadence Spectre to obtain power, latency and
variation.

121

CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm MICRO-52, October 12–16, 2019, Columbus, OH, USA

AlexNet VGG-A VGG-B VGG-C MSRA-A MSRA-B MSRA-C DeepFace NeuralTalk
11 × 11, 96/4 (1) 3 × 3, 64 (1) 3 × 3, 64 (2) 3 × 3, 64 (2) 7 × 7, 96/2 (1) 7 × 7, 96/2 (1) 7 × 7, 96/2 (1) 11 × 11, 32 (1) FC-2400
5 × 5, 256 (1) 3 × 3, 128 (1) 3 × 3, 128 (2) 3 × 3, 128 (2) 9 × 9, 16/2 (1) FC-8791
3 × 3, 384 (1) 3 × 3, 256 (2) 3 × 3, 256 (3) 3 × 3, 256 (4) 3 × 3, 256 (5) 3 × 3, 256 (6) 3 × 3, 384 (6) 9 × 9, 16 (1)
3 × 3, 384 (1) 3 × 3, 512 (2) 3 × 3, 512 (3) 3 × 3, 512 (4) 3 × 3, 512 (5) 3 × 3, 512 (6) 3 × 3, 768 (6) 7 × 7, 16/2 (1)
3 × 3, 256 (1) 3 × 3, 512 (2) 3 × 3, 512 (3) 3 × 3, 512 (4) 3 × 3, 512 (5) 3 × 3, 512 (6) 3 × 3, 896 (6) 5 × 5, 16 (1)

FC-4096 FC-4096
FC-4096 FC-4030
FC-1000

Table 3: Benchmarks for evaluation. Convolution layers are denoted as R × S,K/D (L), where R, S and K correspond to the
notations used in Figure 2, and L denotes the number of such layers.

Figure 10: Computation density across the design space. A notation, e.g., H64-T32-A7 R80, represents 80 64×64 RRAM arrays
with 32 TIAs per array and 7 ADCs shared by the arrays.

Benchmarks. We used 11 benchmarks including 10 DNNs and
1 RNN to evaluate the CASCADE architecture and compare it with
the references. The details of the DNNs and RNN are listed in
Table 3. We used ImageNet image classification dataset for AlexNet
[27], ResNet [19], 3 types of VGG [40], GoogLeNet [43], and 3
types of MSRA [18], face recognition for DeepFace [44], and image
captioning for NeuralTalk [25].

4.2 CASCADE Design Space Exploration
The CASCADE architecture is parameterized by 4 variables: 1) the
size of the RRAM array H ×H , simply denoted by H ; 2) the number
of RRAM arrays, denoted by R; 3) the number of TIAs per array,
denoted byT ; and 4) the number of ADCs, denoted byA. We assume
that the total weight storage capacity is 40KB × 80 blocks = 3.2MB
and a DDR4 I/O bandwidth of 25.6GB/s between the CASCADE
chip and external memory.

The computation density measured in GOPs/s/mm2 is shown in
Figure 10. In general, using larger RRAM arrays provides a higher
computation density due to the more dot products and accumu-
lations that can be performed in RRAM arrays at the same time.
However, the larger the array size, the higher the I/O bandwidth,
the ADC resolution, and the cost of interface circuitry, including
S&Hs, TIAs, summing amplifiers, and ADCs. The optimal number
of RRAM arrays in one APU and the optimal number of APUs
are limited by the I/O bandwidth. The peak performance of 101

GOPs/s/mm2 can be achieved by 80 64×64 RRAM arrays, 32 TIAs
per array and 7 central ADCs (denoted by H64-T32-A7 R80).

4.3 Performance and Energy Consumption
We use 80 APU blocks to evaluate the energy and performance for
comparison with the references. Each APU block contains 80 64×64
RRAM arrays with 32 TIAs per array and 7 ADCs shared by the
arrays.

Figure 11(a) shows the energy consumption of CASCADE com-
pared to the two reference architectures for the 10 DNN and 1 RNN
benchmarks. The CASCADE architecture achieves an average 3.5×
lower energy than the ADC-based architecture and 11.0× lower
energy than the SA-based architecture across all benchmarks. Fig-
ure 12 shows the energy breakdown for the three architectures to
shed light on the competitive advantages of CASCADE. The input
buffer and in-RRAM dot products consume the same amount of
energy across all three architectures. However, CASCADE’s TIA
interface consumes 77.5× lower energy than the ADC interface and
325.4× lower energy than the SA interface. The latter is due to the
long latency of the SA-based A/D conversion.

Figure 11(b) shows the throughput of CASCADE compared to
the two reference architectures for the 10 DNN and 1 RNN bench-
marks. In average, the CASCADE architecture achieves 1.86× higher
throughput than the ADC-based architecture, and 17.83× higher

122

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

Figure 11: (a) Energy consumption of CASCADE compared to reference architectures running DNN and RNN benchmarks; (b)
Throughput of CASCADE compared to reference architectures running DNN and RNN benchmarks.

Figure 12: Energy breakdown of CASCADE and two reference architectures.

throughput than the SA-based architecture due to the long latency
of A/D conversion.

In summary, CASCADE improves upon the ADC-based archi-
tecture in energy. As an example of the ADC-based architecture,
ISAAC [38] has already demonstrated improvements of 14.8×, 5.5×,
and 7.5× in throughput, energy, and computation density over Da-
DianNao [9]. The 64-chip DaDianNao has demonstrated 450.65×
speedup and 150.31× lower energy than an NVIDIA K20M GPU.
Therefore, we expect that the benefits of CASCADE will be on top
of the previously demonstrated gains over an ASIC chip or a GPU.

4.4 Extension to Spiking Neural Networks
The CASCADE architecture can be adapted to support spiking
neural networks (SNNs). The TIA output capacitor can be used as

the integration capacitor. A comparator can be added to generate
spikes if the voltage on the integration capacitor exceeds a threshold,
following the approach in [2, 4, 22, 34]. To implement a SNN, we
only need the MAC RRAMs, TIAs, and additional comparators. The
buffer RRAMs can be bypassed.

5 CONCLUSION
This work presents CASCADE, an architecture that connects MAC
RRAMs for computing dot products with buffer RRAMs for in-
RRAM buffering and accumulating partial sums through an efficient
TIA interface. Dot products and partial-sum accumulations are the
essential operations for implementing a DNN or RNN. Keeping both
parts in RRAM and in analog ensures a high energy efficiency by
removing the overhead of A/D conversion and digital accumulation.

123

CASCADE: Connecting RRAMs to Extend Analog Dataflow In An End-To-End In-Memory Processing Paradigm MICRO-52, October 12–16, 2019, Columbus, OH, USA

We demonstrate a new R-Mapping scheme to efficiently accumu-
late partial sums, and an analog summation approach to bypass
the A/D conversions of low-order bits. As a result, the CASCADE
architecture minimizes the number of A/D conversions and keeps
the A/D conversions at the very end of the entire computation. The
CASCADE architecture is pipelined to achieve a high performance,
and it consumes 3.5× lower energy than an ADC-based in-RRAM
computation architecture in processing DNN and RNN workloads.
Built on realistic RRAM technology constraints, the CASCADE
architecture offers a higher SNR margin for variation and noise
tolerance while keeping a light-weight CMOS periphery circuitry.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their inputs. The work is sup-
ported in part by NSF CCF-1900675.

REFERENCES
[1] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov. 2012. High precision tun-

ing of state for memristive devices by adaptable variation-tolerant algorithm.
Nanotechnology 23, 7, 075201.

[2] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler,
M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, and
G. W. Burr. 2018. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 7708, 60–67.

[3] A. Biswas and A. P. Chandrakasan. 2018. Conv-RAM: An energy-efficient SRAM
with embedded convolution computation for low-power CNN-based machine
learning applications. In IEEE International Solid-State Circuits Conference (ISSCC).
488–490.

[4] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B.
Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou. 2018. Neuromorphic
computing with multi-memristive synapses. Nature Communications 9, 1, 2514.

[5] G. W. Burr, R. M. Shelby, C. di Nolfo, J. W. Jang, R. S. Shenoy, P. Narayanan,
K. Virwani, E. U. Giacometti, B. Kurdi, and H. Hwang. 2014. Experimental
demonstration and tolerancing of a large-scale neural network (165,000 synapses),
using phase-changememory as the synaptic weight element. In IEEE International
Electron Devices Meeting (IEDM).

[6] P.-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, J. Seo, Y.
Cao, and S. Yu. 2015. Technology-design co-optimization of resistive cross-point
array for accelerating learning algorithms on chip. In Design, Automation & Test
in Europe Conference & Exhibition (DATE). 854–859.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. 2014. DianNao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning.
In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 269–284.

[8] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang, C.-X. Xue, E.-Y.
Yang, Y.-K. Chen, Y.-S. Chang, T.-H. Hsu, Y.-C. King, C.-J. Lin, R.-S. Liu, C.-C.
Hsieh, K.-T. Tang, and M.-F. Chang. 2018. A 65nm 1Mb nonvolatile computing-
in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary
DNN AI edge processors. In IEEE International Solid-State Circuits Conference
(ISSCC). 494–496.

[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O.
Temam. 2014. DaDianNao: A Machine-Learning Supercomputer. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. 609–622.

[10] Y.-H. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In Proceedings of the Inter-
national Symposium on Computer Architecture. 367–379.

[11] Z. Chen, B. Gao, Z. Zhou, P. Huang, H. Li, W. Ma, D. Zhu, L. Liu, X. Liu, J. Kang,
and H.-Y. Chen. 2015. Optimized learning scheme for grayscale image recognition
in a RRAM based analog neuromorphic system. In IEEE International Electron
Devices Meeting (IEDM).

[12] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME:
A novel processing-in-memory architecture for neural network computation in
ReRAM-based main memory. In Proceedings of the International Symposium on
Computer Architecture. 27–39.

[13] P.-F. Chiu, M.-F. Chang, C.-W. Wu, C.-H. Chuang, S.-S. Sheu, Y.-S. Chen, and
M.-J. Tsai. 2012. Low store energy, low VDDmin, 8T2R nonvolatile latch and
SRAM with vertical-stacked resistive memory (memristor) devices for low power
mobile applications. IEEE Journal of Solid-State Circuits 47, 6, 1483–1496.

[14] S. K. Gonugondla, M. Kang, and N. Shanbhag. 2018. A 42pJ/decision 3.12TOPS/W
robust in-memory machine learning classifier with on-chip training. In IEEE
International Solid-State Circuits Conference (ISSCC). 490–492.

[15] S. K. Gonugondla, M. Kang, and N. R. Shanbhag. 2018. A variation-tolerant
in-memory machine learning classifier via on-chip training. IEEE Journal of
Solid-State Circuits 53, 11, 3163–3173.

[16] A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing. 6645–6649.

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally. 2016. EIE:
Efficient inference engine on compressed deep neural network. In Proceedings of
the International Symposium on Computer Architecture. 243–254.

[18] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In The IEEE International
Conference on Computer Vision (ICCV). 1026–1034.

[19] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778.

[20] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural
Computation 9, 8, 1735–1780.

[21] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J.
Yang, and R. S. Williams. 2016. Dot-product engine for neuromorphic comput-
ing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. In
Proceedings of the Design Automation Conference.

[22] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis.
2013. Integration of nanoscale memristor synapses in neuromorphic computing
architectures. Nanotechnology 24, 38, 384010.

[23] G. Indiveri, E. Linn, and S. Ambrogio. 2016. ReRAM-based neuromorphic com-
puting. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to
Memristive Device Applications, 715–735.

[24] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu. 2010.
Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters
10, 4, 1297–1301.

[25] A. Karpathy and L. Fei-Fei. 2015. Deep visual-semantic alignments for generat-
ing image descriptions. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 3128–3137.

[26] Y. Kim, Y. Zhang, and P. Li. 2015. A reconfigurable digital neuromorphic processor
with memristive synaptic crossbar for cognitive computing. ACM Journal on
Emerging Technologies in Computing Systems (JETC) 11, 4.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems. 1097–1105.

[28] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brändli, M. Kossel, T.
Morf, T. M. Andersen, and Y. Leblebici. 2013. A 3.1 mW 8b 1.2 GS/s single-channel
asynchronous SAR ADC with alternate comparators for enhanced speed in 32
nm digital SOI CMOS. IEEE Journal of Solid-State Circuits 48, 12, 3049–3058.

[29] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang. 2013. Memristor-based
approximated computation. In Proceedings of the International Symposium on Low
Power Electronics and Design. 242–247.

[30] B. Murmann. 2018. ADC Performance Survey 1997-2018 (ISSCC & VLSI Sympo-
sium). [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

[31] T. Na, B. Song, J. P. Kim, S. H. Kang, and S.-O. Jung. 2017. Offset-canceling
current-sampling sense amplifier for resistive nonvolatile memory in 65 nm
CMOS. IEEE Journal of Solid-State Circuits 52, 2, 496–504.

[32] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally. 2017. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In Proceedings of the International Symposium on
Computer Architecture. 27–40.

[33] X. Peng, W. Sansen, L. Hou, J. Wang, and W. Wu. 2011. Impedance adapting
compensation for low-power multistage amplifiers. IEEE Journal of Solid-State
Circuits 46, 2, 445–451.

[34] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams. 2013. A scalable neuristor
built with Mott memristors. Nature Materials 12, 2, 114–117.

[35] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B.
Strukov. 2015. Training and operation of an integrated neuromorphic network
based on metal-oxide memristors. Nature 521, 7550, 61–64.

[36] M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn. 2011. Analysis of power
consumption and linearity in capacitive digital-to-analog converters used in
successive approximation ADCs. IEEE Transactions on Circuits and Systems I:
Regular Papers 58, 8, 1736–1748.

[37] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. 2017. Ambit: In-memory accelerator
for bulk bitwise operations using commodity DRAM technology. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. 273–287.

[38] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars. In Proceedings of the
International Symposium on Computer Architecture. 14–26.

[39] S.-S. Sheu, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen, T.-Y. Wu,
F. T. Chen, K.-L. Su, M.-J. Kao, K.-H. Cheng, and M.-J. Tsai. 2009. A 5ns fast write
multi-level non-volatile 1 K bits RRAM memory with advance write scheme. In

124

http://web.stanford.edu/~murmann/adcsurvey.html

MICRO-52, October 12–16, 2019, Columbus, OH, USA Chou et al.

IEEE Symposium on VLSI Circuits. 82–83.
[40] K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.
[41] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A pipelined ReRAM-

based accelerator for deep learning. In IEEE International Symposium on High
Performance Computer Architecture. 541–552.

[42] D. B. Strukov. 2016. Endurance-write-speed tradeoffs in nonvolatile memories.
Applied Physics A 122, 4, 302.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. 2015. Going deeper with convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1–9.

[44] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. 2014. Deepface: Closing the
gap to human-level performance in face verification. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 1701–1708.
[45] C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H. Wang, W.-C.

Wei, T.-W. Chang, T.-C. Chang, T.-Y. Huang, H.-Y. Kao, S.-Y. Wei, Y.-C. Chiu, C.-Y.
Lee, C.-C. Lo, Y.-C. King, C.-J. Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, and M.-F.
Chang. 2019. A 1Mb multibit ReRAM computing-in-memory macro with 14.6
ns parallel MAC computing time for CNN based AI edge processors. In IEEE
International Solid-State Circuits Conference (ISSCC). 388–390.

[46] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng,
L. Shi, H.-S. P. Wong, and H. Qian. 2017. Face classification using electronic
synapses. Nature Communications 8, 15199.

[47] J. Zhang, Z. Wang, and N. Verma. 2016. A machine-learning classifier imple-
mented in a standard 6T SRAM array. In IEEE Symposium on VLSI Circuits. 1–2.

125

	Abstract
	1 Introduction
	2 Background
	2.1 Workloads and Mapping to RRAM
	2.2 In-RRAM Computation
	2.3 A/D Conversion for In-RRAM Computation

	3 The CASCADE Architecture
	3.1 Input Streaming and Weight Mapping in MAC RRAM
	3.2 Buffering of Partial Sums in Buffer RRAM
	3.3 TIA Interface between MAC RRAM and Buffer RRAM
	3.4 Final Accumulation and A/D Conversion
	3.5 Noise Tolerance

	4 Evaluation
	4.1 Methodology
	4.2 CASCADE Design Space Exploration
	4.3 Performance and Energy Consumption
	4.4 Extension to Spiking Neural Networks

	5 Conclusion
	Acknowledgments
	References

