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Abstract 

PETRA is a configurable FP16 matrix multiplication and convolution 
accelerator designed to be 2.5D integrated using Advanced Interface 
Bus (AIB). PETRA is built upon four 16×16 systolic arrays, but it 
employs a configurable H-tree accumulation to improve both the la-
tency and the utilization by up to 8×. A 22nm 3.04mm2 PETRA pro-
totype provides 1.433TFLOPS in computing matrix-matrix multipli-
cation (MMM) and convolution (conv) at 0.88V, and it achieves a 
6.97TFLOPS/W peak efficiency at 0.7V. PETRA is integrated with 
an Intel Stratix 10 FPGA in a multi-chip package (MCP) to provide 
the flexibility of FPGA and the performance and efficiency of PETRA.  

Introduction 
Machine learning (ML) and communication DSP are the driving ap-
plications of the next-generation computational hardware. Dedicated 
ML and DSP ASICs have been built, but the workloads are evolving 
at a fast pace, demanding increasing flexibility. We present a config-
urable FP16 MMM and conv accelerator named PETRA that is inte-
grated with an Intel Stratix 10 FPGA over an 8-channel, 640Gb/s, sub-
pJ/b AIB (Fig. 1) [1] on an Embedded Multi-die Interconnect Bridge 
(EMIB) [2]. The heterogeneous integration provides FPGA’s flexibil-
ity to handle control flow, data arrangement and simple pre-/post-pro-
cessing, while allowing the most computation-intensive kernels to be 
offloaded to the performance- and efficiency-optimized accelerator. 

A matrix accelerator is commonly implemented in a 2D systolic 
array [3] for its regular structure and efficient data reuse. An n-by-n 
systolic array computes n2 products in parallel and the partial sums 
are accumulated in n steps. Increasing n linearly increases the accu-
mulation latency and makes it less efficient for smaller workloads. We 
present Processing Element TRee Array (PETRA) (Fig. 2) based on a 
systolic array but enhanced by an H-tree accumulation to shorten the 
latency from O(n) to O(log(n)). The tree is configurable to support 
concurrent workloads sharing an array to improve utilization. PETRA 
supports MMM; and by leveraging vertical and horizontal input shift-
ing and reuse, it efficiently computes conv. PETRA is designed in 
FP16 to extend its application to training and communication DSP that 
require a high dynamic range. Integrated with an FPGA over an effi-
cient high-bandwidth AIB interface, the heterogeneous system 
achieves both flexibility as well as performance and efficiency by ap-
portioning control to the FPGA and computation kernels to PETRA.  

Low-Latency and High-Utilization PE Tree Array 
An n-by-n systolic array is wired both vertically and horizontally (and 
sometimes diagonally) [3], one for loading inputs and one for loading 
weights. PETRA’s PE array is weight-stationary, so we keep only ver-
tical paths for both input and weight loading (Fig. 3). PETRA’s PE 
consists of a FP16 multiplier, a d-element rotating weight buffer and 
a data buffer. Partial sum accumulation is via an H-tree Pipelined Ad-
der Tree (HPAT) (Fig. 3) instead of a linear accumulation pipeline in 
a systolic array. HPAT shortens the accumulation latency to O(log(n)). 
The H-tree allows evenly distributed fan-ins that can be easily scaled 
up. Splitting multiply and add also enables a higher clock frequency. 

The upper levels of HPAT are made of a configurable adder tree 
(CAT) (Fig. 4). CAT allows partial sums to be summed in any adja-
cent combinations or forwarded to output. Hence PETRA’s PE array 
accommodates multiple concurrent matrix computations. In the pro-
totype, an 8-input CAT is implemented over a 16×16 PE array, pro-
viding options to compute up to 8 separate summations for an 8× 
higher utilization. The HPAT and CAT are scalable techniques appli-
cable to larger PE arrays for improving latency and utilization. 

Prototype Design and Mapping 
The PETRA prototype contains four 16×16 PE arrays that can run in 
parallel (Fig. 2). The I/O paths support die-to-die stream processing 
and buffered processing. The cross-array dispenser and within-array 

dispenser provide I/O distribution and facilitate data reuse. The out-
puts of PE arrays are streamed out or stored in the accumulation buffer. 

A PE stores 16 weights in its buffer, and a 16×16 PE array stores 
a weight matrix of size up to 256×16. A PE array computes one 256-
element inner product per cycle. By keeping inputs stationary and ro-
tating 16 weights in each PE, a PE array computes one (1×256) × 
(256×16) vector-matrix multiplication over 16 cycles. By loading a 
new row of 16 inputs per cycle, a PE array computes one (m×256) × 
(256×16) MMM over 16m cycles (Fig. 5). Input loading and compu-
ting are overlapped. Since the input can be streamed in, m is not lim-
ited. Larger weight matrices are divided into 256×16 submatrices to 
map onto multiple PE arrays, using the accumulation buffer to pro-
duce the MMM outputs. Smaller weight matrices can share one PE 
array. The cross-array dispenser supports multicast to PE arrays for 
input reuse and workload balancing. 

A PE array computes 2D conv by keeping weights stationary and 
shifting inputs: along the vertical paths in a PE array or the horizontal 
paths in the dispenser FIFOs (Fig. 6). For instance, to compute a 3×3 
conv, a 3×3 input tile X1 is loaded in the dispenser and shifted down 
the PE array. A 3×3 PE tile computes the inner product X1∙W, where 
W is a 3×3 kernel stored in the PE tile. In every cycle, a new row is 
loaded from the top and the input is shifted down by one row (for 
stride-1); and the 3×3 PE tile receives a new input tile Xi and computes 
Xi∙W. When the input reaches the bottom, the dispenser shifts the input 
one column to the left. The vertical and horizontal shifts enable the 
2D scanning of an input to complete conv.  

Chiplet Integration and Measurement Results 
A PETRA chiplet was designed and fabricated in an Intel 22nm Fin-
FET CMOS process with an 8-channel, 640Gb/s, sub-pJ/b AIB as the 
chiplet’s I/O interface (Fig. 7). The PETRA chiplet was integrated 
with a Stratix 10 FPGA using EMIB [2] in an MCP. An AXI-compat-
ible bus interface named University of Michigan AIB Interface 
(UMAI) is defined to encapsulate AIB’s multi-channel, free-flowing 
data transmission in address-based read and write bus transactions. In 
our implementation, one UMAI interface converts up to 8 AIB chan-
nels to a 512-b data bus interface. A UMAI bus master is instantiated 
in the FPGA while a UMAI bus slave is embedded in the PETRA 
chiplet. UMAI abstracts the die-to-die interface to an SoC-like bus, 
and hence simplifies a chiplet integration to an IP integration. 

The 3.04mm2 22nm PETRA is measured to consume 637.5mW 
at 701MHz in room temperature at the nominal supply of 0.88V, when 
all 4 PE arrays are fully utilized for random non-zero MMMs. The 
results translate to a power efficiency of 2.25TFLOPS/W (FP16) and 
a compute density of 0.472TFLOPS/mm2 (Fig. 8). The peak power 
efficiency of 6.97TFLOPS/W is measured at 0.7V. PETRA provides 
a competitive FP16 power efficiency and compute density compared 
to state-of-the-art DNN accelerators [3]-[7] (Table 1), some of which 
are in more advanced process nodes [6], [7]. PETRA’s latency is no-
tably lower. The performance of sample workloads is listed in Fig. 8. 
PETRA is the first configurable matrix accelerator designed for an 
FPGA-based MCP that leverages heterogeneous integration and an 
advanced interface to enable new ML and DSP applications. 
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Fig. 2 Overall architecture of PETRA accelerator.

Fig. 3 Advantages of PETRA architecture and PE design.

Fig. 5 MMM operation flow.

Fig. 6 A 3×3 convolutional layer operation flow example.

Fig. 4 1-D and 2-D views of CAT, enabling any partial sum 
(PSUM) output combination of adjacent PSUM inputs.

Fig. 8 Frequency and power efficiency over voltage scaling 
(left) and performance on various workloads (right).

Table. 1 Comparison with the prior works.

Fig. 7 Die photo (unrelated designs are covered) and 
specifications.
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