
1 978-4-86348-780-2 ©2021 JSAP 2021 Symposium on VLSI Circuits Digest of Technical Papers

PETRA: A 22nm 6.97TFLOPS/W AIB-Enabled Configurable Matrix and
Convolution Accelerator Integrated with an Intel Stratix 10 FPGA

Sung-Gun Cho1,2, Wei Tang1, Chester Liu1, Zhengya Zhang1
1 University of Michigan, Ann Arbor, MI, USA 2 Intel Corporation, San Jose, CA, USA

Abstract

PETRA is a configurable FP16 matrix multiplication and convolution
accelerator designed to be 2.5D integrated using Advanced Interface
Bus (AIB). PETRA is built upon four 16×16 systolic arrays, but it
employs a configurable H-tree accumulation to improve both the la-
tency and the utilization by up to 8×. A 22nm 3.04mm2 PETRA pro-
totype provides 1.433TFLOPS in computing matrix-matrix multipli-
cation (MMM) and convolution (conv) at 0.88V, and it achieves a
6.97TFLOPS/W peak efficiency at 0.7V. PETRA is integrated with
an Intel Stratix 10 FPGA in a multi-chip package (MCP) to provide
the flexibility of FPGA and the performance and efficiency of PETRA.

Introduction
Machine learning (ML) and communication DSP are the driving ap-
plications of the next-generation computational hardware. Dedicated
ML and DSP ASICs have been built, but the workloads are evolving
at a fast pace, demanding increasing flexibility. We present a config-
urable FP16 MMM and conv accelerator named PETRA that is inte-
grated with an Intel Stratix 10 FPGA over an 8-channel, 640Gb/s, sub-
pJ/b AIB (Fig. 1) [1] on an Embedded Multi-die Interconnect Bridge
(EMIB) [2]. The heterogeneous integration provides FPGA’s flexibil-
ity to handle control flow, data arrangement and simple pre-/post-pro-
cessing, while allowing the most computation-intensive kernels to be
offloaded to the performance- and efficiency-optimized accelerator.

A matrix accelerator is commonly implemented in a 2D systolic
array [3] for its regular structure and efficient data reuse. An n-by-n
systolic array computes n2 products in parallel and the partial sums
are accumulated in n steps. Increasing n linearly increases the accu-
mulation latency and makes it less efficient for smaller workloads. We
present Processing Element TRee Array (PETRA) (Fig. 2) based on a
systolic array but enhanced by an H-tree accumulation to shorten the
latency from O(n) to O(log(n)). The tree is configurable to support
concurrent workloads sharing an array to improve utilization. PETRA
supports MMM; and by leveraging vertical and horizontal input shift-
ing and reuse, it efficiently computes conv. PETRA is designed in
FP16 to extend its application to training and communication DSP that
require a high dynamic range. Integrated with an FPGA over an effi-
cient high-bandwidth AIB interface, the heterogeneous system
achieves both flexibility as well as performance and efficiency by ap-
portioning control to the FPGA and computation kernels to PETRA.

Low-Latency and High-Utilization PE Tree Array
An n-by-n systolic array is wired both vertically and horizontally (and
sometimes diagonally) [3], one for loading inputs and one for loading
weights. PETRA’s PE array is weight-stationary, so we keep only ver-
tical paths for both input and weight loading (Fig. 3). PETRA’s PE
consists of a FP16 multiplier, a d-element rotating weight buffer and
a data buffer. Partial sum accumulation is via an H-tree Pipelined Ad-
der Tree (HPAT) (Fig. 3) instead of a linear accumulation pipeline in
a systolic array. HPAT shortens the accumulation latency to O(log(n)).
The H-tree allows evenly distributed fan-ins that can be easily scaled
up. Splitting multiply and add also enables a higher clock frequency.

The upper levels of HPAT are made of a configurable adder tree
(CAT) (Fig. 4). CAT allows partial sums to be summed in any adja-
cent combinations or forwarded to output. Hence PETRA’s PE array
accommodates multiple concurrent matrix computations. In the pro-
totype, an 8-input CAT is implemented over a 16×16 PE array, pro-
viding options to compute up to 8 separate summations for an 8×
higher utilization. The HPAT and CAT are scalable techniques appli-
cable to larger PE arrays for improving latency and utilization.

Prototype Design and Mapping
The PETRA prototype contains four 16×16 PE arrays that can run in
parallel (Fig. 2). The I/O paths support die-to-die stream processing
and buffered processing. The cross-array dispenser and within-array

dispenser provide I/O distribution and facilitate data reuse. The out-
puts of PE arrays are streamed out or stored in the accumulation buffer.

A PE stores 16 weights in its buffer, and a 16×16 PE array stores
a weight matrix of size up to 256×16. A PE array computes one 256-
element inner product per cycle. By keeping inputs stationary and ro-
tating 16 weights in each PE, a PE array computes one (1×256) ×
(256×16) vector-matrix multiplication over 16 cycles. By loading a
new row of 16 inputs per cycle, a PE array computes one (m×256) ×
(256×16) MMM over 16m cycles (Fig. 5). Input loading and compu-
ting are overlapped. Since the input can be streamed in, m is not lim-
ited. Larger weight matrices are divided into 256×16 submatrices to
map onto multiple PE arrays, using the accumulation buffer to pro-
duce the MMM outputs. Smaller weight matrices can share one PE
array. The cross-array dispenser supports multicast to PE arrays for
input reuse and workload balancing.

A PE array computes 2D conv by keeping weights stationary and
shifting inputs: along the vertical paths in a PE array or the horizontal
paths in the dispenser FIFOs (Fig. 6). For instance, to compute a 3×3
conv, a 3×3 input tile X1 is loaded in the dispenser and shifted down
the PE array. A 3×3 PE tile computes the inner product X1∙W, where
W is a 3×3 kernel stored in the PE tile. In every cycle, a new row is
loaded from the top and the input is shifted down by one row (for
stride-1); and the 3×3 PE tile receives a new input tile Xi and computes
Xi∙W. When the input reaches the bottom, the dispenser shifts the input
one column to the left. The vertical and horizontal shifts enable the
2D scanning of an input to complete conv.

Chiplet Integration and Measurement Results
A PETRA chiplet was designed and fabricated in an Intel 22nm Fin-
FET CMOS process with an 8-channel, 640Gb/s, sub-pJ/b AIB as the
chiplet’s I/O interface (Fig. 7). The PETRA chiplet was integrated
with a Stratix 10 FPGA using EMIB [2] in an MCP. An AXI-compat-
ible bus interface named University of Michigan AIB Interface
(UMAI) is defined to encapsulate AIB’s multi-channel, free-flowing
data transmission in address-based read and write bus transactions. In
our implementation, one UMAI interface converts up to 8 AIB chan-
nels to a 512-b data bus interface. A UMAI bus master is instantiated
in the FPGA while a UMAI bus slave is embedded in the PETRA
chiplet. UMAI abstracts the die-to-die interface to an SoC-like bus,
and hence simplifies a chiplet integration to an IP integration.

The 3.04mm2 22nm PETRA is measured to consume 637.5mW
at 701MHz in room temperature at the nominal supply of 0.88V, when
all 4 PE arrays are fully utilized for random non-zero MMMs. The
results translate to a power efficiency of 2.25TFLOPS/W (FP16) and
a compute density of 0.472TFLOPS/mm2 (Fig. 8). The peak power
efficiency of 6.97TFLOPS/W is measured at 0.7V. PETRA provides
a competitive FP16 power efficiency and compute density compared
to state-of-the-art DNN accelerators [3]-[7] (Table 1), some of which
are in more advanced process nodes [6], [7]. PETRA’s latency is no-
tably lower. The performance of sample workloads is listed in Fig. 8.
PETRA is the first configurable matrix accelerator designed for an
FPGA-based MCP that leverages heterogeneous integration and an
advanced interface to enable new ML and DSP applications.
Acknowledgements
This work was supported in part by DARPA CHIPS and ONR under grant
N00014-17-1-2992. DARPA HI3 provided chip fabrication and packaging.
We would like to thank F. Sheikh, M. Flanigan, A. Chan, T. Hoang, T. Tran,
D. Kehlet, and S. Shumarayev from Intel for advice and assistance.
References
[1] D. Greenhill, et al., ISSCC, 2017. [2] R. Mahajan, et al., ECTC, 2016.
[3] N. P. Jouppi, et al., ISCA, 2017. [4] S. Yin, et al., JSSC, 2018.
[5] J. Lee, et al., JSSC, 2019. [6] C. Lin, et al., ISSCC, 2020.
[7] J. Oh, et al., VLSI, 2020.

C9-3

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:55:10 UTC from IEEE Xplore. Restrictions apply.

2 978-4-86348-780-2 ©2021 JSAP 2021 Symposium on VLSI Circuits Digest of Technical Papers

Fig. 2 Overall architecture of PETRA accelerator.

Fig. 3 Advantages of PETRA architecture and PE design.

Fig. 5 MMM operation flow.

Fig. 6 A 3×3 convolutional layer operation flow example.

Fig. 4 1-D and 2-D views of CAT, enabling any partial sum
(PSUM) output combination of adjacent PSUM inputs.

Fig. 8 Frequency and power efficiency over voltage scaling
(left) and performance on various workloads (right).

Table. 1 Comparison with the prior works.

Fig. 7 Die photo (unrelated designs are covered) and
specifications.

Multi-Chip Package

Flexible
functionality

Softmax, Pooling,
Optimizer, Data

arrangement and
flow control, Filter
coefficients, etc.

FPGA PETRA

High-performance,
energy-efficient

computation
Matrix multiplication

– FC, FIR, etc.,
1-D/2-D convolutionHigh speed,

low energy interface

...

AIB AI
B

Via interposers

Conventional
 x  Systolic Array Data

Weight

Sum

PE

w x

FF

FF

Weight
buffer Data

buffer

Adder Tree Next PE
Summation latency:  →  

PETRA -HPAT

Sum

Data
Weight

Fig. 1 A system in a multi-chip package integrating a PETRA
accelerator chiplet and a FPGA.

0

1

2

3

4

5

6

770 1 4 5 2 3 6

70 1 4 5 2 3 6

Flattened view of CAT

Lower-level HPAT w/o configurability

Example of an adjacent PSUM combination
2-D view of CAT w/o MUXes

Loading and processing pipeline

i,13

i,9

i,5

i,1

i,14

i,10

i,6

i,2

i,15

i,11

i,7

i,3

i,16

i,12

i,8

i,4

Loading sequence
Each column for m cycles

Weight rotation
Repeat iterating over rows

Output sequence
Each element at every cycle

13,j

9,j

5,j

1,j

14,j

10,j

6,j

2,j

15,j

11,j

7,j

3,j

16,j

12,j

8,j

4,j

 = 1, … , 
 = 1, … , 

WL
DL #1

P #1
DL #2

Cycle

WL: weight loading
DL: data loading
P: processing

P #2
DL #3

PETRA Accelerator

PETRA
Core

Accu.
Buffer

Input
Buffer

UMAI
Slave

UART
/APB

AIB
/UMAI

PETRA Core

Cross-Array Dispenser

Input Buffer

UMAI
Slave

UMAI
Slave

Output
FIFO

APB
Slave

PE Tree Array
Top

PE Tree Array
Top

PE Tree Array
Top

PE Tree
Array

Dispenser

Accu
Buffer

From
FPGA

Debug
IF

4

TPU [3] Hybrid [4] UNPU [5] DLA [6] Scalable [7] This Work
Process [nm] 28 65 65 7 14 22

Die Area [mm2] 331 19.4 16 3.04 - 3.33
Core Area [mm2] 81 14.44 - 2.68 9.84 3.04

Voltage [V] 0.75 0.67 - 1.2 0.63 - 1.1 0.575 - 0.825 0.54 - 0.62 0.59 - 1.05
Frequency [MHz] 700 10 - 200 200 290 - 880 1000 – 1500 233 - 826

Power [mW] 40000 4.0 - 386 3.2 - 297 174 - 1053 - 109.0 -
1010.7

Bit Precision INT8 INT8/16 INT1-16
ASYMM-Q8,

INT8/16,
FP16

DLFP16/32 FP16

Peak Performance
91.8
TOPS
(INT8)

0.41
TOPS
(INT8)

0.346 TOPS
(INT16) -

7.372 TOPS
(INT1)

3.6 TOPS
(INT8)

0.9 TFLOPS
(FP16)

2 - 3 TFLOPS
(DLFP16)

0.476 - 1.688
TFLOPS
(FP16)

Power Efficiency
2.295

TOPS/W
(INT8)

1.06 -
5.09

TOPS/W
(INT8)

3.08 TOPS/W
(INT16) -

50.6 TOPS/W
(INT1)

3.42 - 6.83
TOPS/W

(INT8, Dense)

1.1 - 1.4
TFLOPS/W
(DLFP16)

1.67 - 6.971
TFLOPS/W

(FP16)

Area Efficiency
1.133

TOPS/mm2

(INT8)

0.0211
TOPS/mm2

(INT8)

0.0022
TOPS/mm2

(INT16)

0.2965
TFLOPS/mm2

(FP16)
1.186

TOPS/mm2

(INT8)

0.2 - 0.3
TFLOPS/mm2

(DLFP16)

0.156 - 0.555
TFLOPS/mm2

(FP16)

Latency [cycles] 256 - - - - 25

MCP
AIB/UMAI

PETRA 1PETRA 0

PETRA 3PETRA 2

CT Disp / Disp

1.
57

6m
m

2.072mm

FPGA

Technology 22nm
Core Area 3.04mm2

Precision FP16
of MULT/ADD 1024 / 1020
Total SRAM Size 144 KB

Voltage 0.7V 0.88V
Frequency 416MHz 701MHz

Power 122.1mW 637.5mW
TFLOPS 0.85 1.43

TFLOPS/W 6.97 2.25
TFLOPS/mm2 0.28 0.47

2D Convolution
Example

Bypass adder
if one of the

inputs is invalid

Dispenser

3,2...
1,2
4,1

3,3...
1,3
4,2

3,4...
1,4
4,3

4,4

Dispenser

4,2
4,1
...

1,2

4,3
4,2
...

2,2

4,4
3,4
...

1,4*

1,1

2,1

3,1

2,2

3,2

1,3

2,3

3,3

1,2

1,1

2,1

3,1

2,2

3,2

1,3

2,3

3,3

1,2 1,4

2,4

3,4

4,1 4,34,2 4,4

1 cycle after

② Horizontal shift

3,1

2,1

1,1

3,2

2,2

1,2

3,3

2,3

1,3

4,1

3,1

2,1

4,2

3,2

2,2

4,3

3,3

2,3

3,1

2,1

1,1

3,2

2,2

1,2

3,3

2,3

1,3

3,1

2,1

1,1

3,2

2,2

1,2

3,3

2,3

1,3

① Vertical shift

Application Throughput Utilization
ratio

VGG-16* 34.9 frame/s 0.87

Transformer
Multi-head
attention*

278.5 seq/s 1

MU-MIMO
match filtering
(128 antennas
and 16 users)

1.40 GS/s** 1

MU-MIMO
interference
cancellation

(16 users)

11.22 GS/s** 1

* Softmax and pooling excluded
** Giga symbols (complex) per second

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 12,2022 at 14:55:10 UTC from IEEE Xplore. Restrictions apply.

		2021-07-26T18:10:26-0400
	Preflight Ticket Signature

