
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020 1709

A 1.87-mm2 56.9-GOPS Accelerator for
Solving Partial Differential Equations
Thomas Chen , Student Member, IEEE, Jacob Botimer, Student Member, IEEE,

Teyuh Chou , Student Member, IEEE, and Zhengya Zhang , Senior Member, IEEE

Abstract— Solving partial differential equations (PDEs) require
high-precision numerical iterations that are demanding in both
computation and memory. We apply the multigrid method with
a hybrid layer update to reduce iterations and improve speed,
and to transform both fine and coarse grids to a residual
form to reduce the precision requirement. The reduced precision
enables the mapping of a high-precision PDE solver on SRAMs
that perform low-precision parallel multiply-accumulates (MACs)
in memory, reducing both energy and area. We employ a
delay-locked loop to generate well-controlled unit pulses for
driving word lines and a dual-ramp single-slope analog-to-
digital converter (ADC) to convert bitline outputs. The design
is prototyped in a 1.87-mm2 180-nm test chip made of four
320 × 64 MAC SRAMs, each supporting 128× parallel 5 b ×
5 b MACs with 32 5-b output ADCs and consuming 16.6 mW
at 200 MHz. The test chip is demonstrated to reach an error
tolerance of 10−8 in solving PDEs at a grid update rate of
1.38-G entries/s.

Index Terms— Accelerator, numerical solver, partial differen-
tial equation (PDE), precision optimization, process in memory
(PIM).

I. INTRODUCTION

MANY physical phenomena, such as heat and fluid
dynamics, are described by partial differential equa-

tions (PDEs). Most PDEs are solved numerically, by first
quantizing the solution space in a grid and then applying
iterative methods to refine the solution to a desired error
tolerance [1].

High-precision PDE solutions require fine grids and high
numerical precision, leading to a significant amount of data
that need to be processed, moved, and stored. Moreover, a PDE
solver commonly requires tens of thousands of iterations to
converge. For example, solving a 2-D Poisson equation using
a 128 × 128 grid on a graphics processing unit in a floating
point is estimated to take 15 mJ/iteration. To shrink the error
tolerance from 10−4 to 10−7 costs at least 320 J!

High-performance digital PDE solvers have been pro-
posed [2], [3], but they still require high-bandwidth
DRAM access to sustain the massive number of parallel,

Manuscript received July 28, 2019; revised October 20, 2019 and
December 18, 2019; accepted December 18, 2019. Date of publication
January 15, 2020; date of current version May 27, 2020. This article was
approved by Associate Editor Vivek De. This work was supported in part
by DARPA under Grant HR0011-17-2-0018 and in part by NSF under Grant
GRFP DGE 1256260. (Corresponding author: Thomas Chen.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: tcchen@umich.edu; botimerj@umich.edu; teyuh@umich.edu;
zhengya@umich.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2963591

high-precision compute. Analog computers [4], [5] were pro-
posed to accelerate PDE solvers by approximately compute
to reduce the IO requirement and mixed-signal approach
to speedup core computations. However, analog computers
require a large area, limiting the parallelism and efficiency
in supporting large PDE problems.

To enable a more efficient and practical PDE accelerator
design, we apply two algorithm approaches: 1) we adopt a
multigrid method that divides the PDE solver to a fine-grid
compute and a coarse-grid compute and iterates between the
two to accelerate convergence by 5–10× on average and 2) we
transform both fine-grid compute and coarse-grid compute to
a residual form, lowering the precision to 5 b for a low-error
tolerance below 10−8.

Even with faster convergence and a much reduced precision,
the implementation cost can still be high using a conventional
digital approach. Recently, process in memory (PIM) has
been proposed as a new technique that computes directly
on a large array of data in place, within memory [6], [7].
SRAM-based PIM relies on level- and/or width-modulating
word lines (WLs) of the SRAM array to encode multipliers
and activate multiple WLs in parallel [6]–[9]. The SRAM
cells’ currents in discharging the bitlines (BLs) represent
the products, and the current on each BL represents the
sum of products. Alternatively, BLs can be modulated to
encode multipliers, and BLs are joined to produce the sum of
products [10]. By partly eliminating data movement cost and
providing a high degree of parallelism, PIM holds the potential
of achieving both high performance and efficiency in tasks that
involve parallel multiply–accumulate (MAC) operations such
as classification and neural networks. Prior work has demon-
strated PIM in SRAM that achieved 633.4 pJ/classification [6]
and 1.2 nJ/classification [8], translating to 1.17 pJ/op where
an op is defined as a MAC operation.

Current SRAM-based PIM designs are limited by SRAM’s
binary storage and the overhead of multi-bit analog-to-
digital (A/D) conversion. Some designs support only binary
multiplicands [6], [9], [10], and some choose binary out-
puts [6], [9]. To reduce the number of A/D converters (ADCs),
some designs are tailored to computations in a cone structure
that requires only one or a small number of ADCs at the final
output [7], [8]. These approaches are not applicable to a PDE
solver that requires iterative multi-bit operations and solutions
to be updated in every iteration.

In this article, we combine the multigrid, residual algo-
rithm approach with the optimal mapping on 5-b MAC
SRAMs to produce a high-performance and efficient PDE

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3168-9122
https://orcid.org/0000-0001-7033-336X
https://orcid.org/0000-0001-5963-9018

1710 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020

solver accelerator [11]. A MAC SRAM supports 5 b × 5 b
MACs with full-bandwidth 5-b outputs to support a PDE
solver. We design a delay-locked loop (DLL)-based 5-b driver
that produces WL pulses down to 1/8 of a clock period with
PVT tolerance. The WL pulses are level-modulated to match
5-b multiplicands stored in SRAM. We employ a dual-ramp
single-slope (DRSS) ADC [12] that employs a coarse ramp
followed by a fine ramp to increase conversion speed and
minimize area. A 1.87-mm2 180-nm chip consisting of four
320 × 64 MAC SRAMs is demonstrated at 200 MHz, each
providing 1.38-G MAC/s and 32 5-b ADCs at a power
consumption of 16.6 mW.

The target application of this article is an embedded PDE
solver to accelerate desktop-class scientific applications that
require high-performance, high energy efficiency, and high
compute density (low cost per function). Such applications
often require the use of compute clusters. We aim to provide
a more power-efficient, high-performance accelerator solution
to this class of problems. The product volume for such
applications is not nearly as high as consumer electronics to
justify the use of state-of-the-art technology nodes. 180-nm
technology can be a suitable starting point.

Compared to the previous publication [11], we added
algorithmic reformulation, mapping of a PDE solver system
on the low-precision PIM circuits, full characterization of
the circuit components, and comparison with state-of-the-art
PDE solver chips. Compared to the previous PDE solvers in
silicon [4], [5], we demonstrate that our approach enabled
improvements of two orders of magnitude in performance and
energy efficiency and four orders of magnitude in compute
density. These improvements cannot be achieved by circuit
design alone. The key is in the co-optimization of the system
design with the circuits.

The rest of this article is organized as follows. Section II
introduces the algorithm background, Section III explains the
algorithm reformulation, and Section IV explains the map-
ping and dataflow. The prototype architecture is presented in
Section V, followed by the implementation of MAC operations
in Section VI and memory readout in Section VII. Section VIII
presents the results, and Section IX concludes this article.

II. NUMERICAL PDE SOLVER BY FINITE

DIFFERENCE METHOD (FDM)

We use the solution to 2-D Poisson’s equation, shown in (1),
to explain the PDE solver design. Poisson’s equation is widely
used in practical applications [13]

∇2u = ∂2u

∂x2 + ∂2u

∂ y2 = b (1)

where b(x, y) is given, boundary conditions are specified on
the perimeter of the domain, and the solution u(x, y) is sought.

Most PDE problems do not have analytical solutions.
Instead, numerical approaches using grid discretization is
popular. For the 2-D Poisson’s equation above, the FDM can
be applied to convert u and b into an M × N grid of step size
�x and �y along x and y, as shown in Fig. 1(a) [14]. The
discretization results in a system of M N equations

ui−1, j + ui+1, j − 2ui, j

�x2 + ui, j−1 + ui, j+1 − 2ui, j

�y2 = bi, j

2 ≤ i ≤ M − 1, 2 ≤ j ≤ N − 1 (2)

Fig. 1. (a) Illustration of a 2-D finite difference grid. (b) Rendition of
matrix A for a 7 × 7 grid.

where ui−1, j is the value of u at grid position (i −1, j), ui+1, j

is the value of u at (i + 1, j), and so on. ux,y is known on
the boundaries of the grid and unknown in the interior of the
grid. The u values can be put in an M N × 1 vector u, and
similarly, the b values are put in an M N × 1 vector b. The
system of equations (2) can be written as

Au = b (3)

where A is an M N × M N matrix that stores the weights of
u’s in (2). For a sufficiently large grid, A is highly sparse.
A rendition of matrix A for a 7 × 7 grid is shown in Fig. 1(b),
where black dots indicate nonzero entries.

A. Jacobi Iterations

Starting from the boundary conditions and initial guess of
interior points of u, the system of equations (2) can be solved
iteratively by the Jacobi method

u(n+1)
i, j = �x2

2(�x2 + �y2)

(
u(n)

i−1, j + u(n)
i+1, j

)
(4)

+ �y2

2(�x2 + �y2)

(
u(n)

i, j−1 + u(n)
i, j+1

)

− �x2�y2

2(�x2 + �y2)
bi, j

= s1
(
u(n)

i−1, j + u(n)
i+1, j

) + s2
(
u(n)

i, j−1 + u(n)
i, j+1

) + ci, j

2 ≤ i ≤ M − 1, 2 ≤ j ≤ N − 1

where the superscript (n) in u(n)
i, j indicates the value of ui, j

in iteration n. Since �x and �y are known and bi, j does not
change each iteration, s1, s2, and ci, j can be pre-computed.
Each Jacobi iteration updates all (M − 2)(N − 2) interior
u values based on their values in the previous iteration.
Using FDM, each ui, j update requires its neighboring four
points, {ui−1, j , ui+1, j , ui, j−1, ui, j+1}, called a four-point sten-
cil, as illustrated in Fig. 1(a). In the matrix form, the Jacobi
iterations can be described as

u(n+1) = Tu(n) + c (5)

where T is an M N ×M N matrix that store the stencil weights.
T essentially contains the off-diagonal entries of A, and it is
also highly sparse for a sufficiently large grid. Higher order
PDEs use higher order grids, but the same formulation applies.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: 1.87-mm2 56.9-GOPS ACCELERATOR FOR SOLVING PDEs 1711

Fig. 2. PDE iterative methods with sequential updates. (a) Gauss–Seidel
update. (b) Hybrid layer update.

B. Hybrid Layer Update Method

Using the Jacobi method, the next iteration u values are
computed based entirely on the u values from the current
iteration. Thus, the next iteration cannot start until the cur-
rent iteration is complete and saved in a buffer memory.
To reach a faster convergence and possibly remove the buffer,
the Gauss–Seidel method computes the next iteration u values
based on the latest available u values.

As shown in Fig. 2(a), the Gauss–Seidel method updates
ui, j one by one, for example, from left to right and then
top to bottom. The updated values are immediately applied
in computing the neighboring ui, j value. By always using
the latest available values, the Gauss–Seidel method converges
faster than the Jacobi method. The Gauss–Seidel method also
removes the buffer, but it introduces data dependence and
limits parallelism.

To speedup convergence without sacrificing all the par-
allelism, we employ a hybrid layer update method [15],
[16]. As shown in Fig. 2(b), the grid is divided into layers.
A layer of u values can be updated in parallel without data
dependence. Updated u values from one layer are used in
computing the updates for the next layer. For a large grid,
plenty of parallelism is available in one layer to enable parallel
processing. The layer-to-layer sequential update also provides
a faster convergence. The hybrid layer update method uses
a layer buffer, smaller than a block buffer needed for the
complete Jacobi method.

III. ALGORITHM REFORMULATION

FOR LOWER PRECISION

The baseline PDE solver applies a single grid. To reach
an accurate solution, a fine grid of fine step sizes is required.
To further speed up convergence, we adopt a multigrid method
with our proposed complete residual reformulation to enable
aggressive precision reduction to simplify the computation.

A. Complete Residual Approach

To further speed up convergence, the multigrid method
introduces an m × n (m < M , n < N) coarse grid in
addition to the fine grid [14]. Coarse-grid vertices represent
a local region of grid values. By interleaving coarse-grid with
fine-grid iterations, convergence is accelerated, thanks to faster
propagation. A coarse grid reduces the computation workload,
for example, using a 2 × 2 downsampled coarse grid reduces
the workload by 75%.

As illustrated in Fig. 3(a), the residual r is obtained after a
round of fine-grid iterations and restricted to r∗. After transi-
tioning to the coarse grid, we can solve for e∗ in A∗e∗ = r∗.

Note that the mn ×mn matrix A∗ is the downsampled version
of A. After a round of coarse-grid iterations, e∗ is interpolated
to e, and then it is used to update u to start the next round
of fine-grid iterations. The restriction and interpolation are
commonly done by pooling and averaging.

Because coarse-grid compute operates on errors e∗ and
residuals r∗, that is, the small differences between consecutive
iterations, the precision of the errors, and the residuals can
be relaxed. Realizing the potential benefit of the residual
approach, we present the complete residual approach by
extending the residual approach to fine-grid compute, as shown
in Fig. 3(b), so that the fine-grid iterations also work on errors
e and residuals r.

Note that in Fig. 3(b), after a round of fine-grid or coarse-
grid iterations, u is updated, and then the updated u is used
to compute the residuals. Since u is in full precision, com-
puting the residuals requires costly multiplications. To avoid
full-precision multiplications, we apply an equivalent form of
residual computation based on the low-precision e and e∗.
In this way, all full-precision multiplications are eliminated,
as shown in Fig. 3(c).

B. Evaluation of Algorithm Improvement

In Fig. 4, we compare the average convergence speed of
solving 2-D Poisson’s equation using the Jacobi method and
error tolerance of 10−7. A 32-b-quantized 127 × 127 grid
requires 74k iterations to reach convergence. If the single grid
is replaced by multigrids, that is, a 127 × 127 grid and a
64 × 64 grid, the convergence is shortened by more than 12×
to 6k iterations.

The complete residual approach allows the precision to be
aggressively reduced to allow a shorter bit width but at the
cost of slower convergence. For example, when the complete
residual computation is quantized to 8 b, the latency increases
by 33%. Further quantizing to 5 and 4 b results in 2.1× and
2.3× latency increase, respectively. The optimal bit width is
between 4 and 8 b. Reducing the bit width below 4 b slows
down the convergence significantly and ceases to be practical.
We choose 5 b for this article to provide margin to avoid the
steep degradation in accuracy (or increase in latency to meet
a given accuracy).

The results in Fig. 4 were obtained using the Jacobi method.
The latency can be reduced further by 31% using the hybrid
layer update method.

IV. MAPPING OF PDE SOLVER AND DATAFLOW

Following the complete residual approach shown
in Fig. 3(c), the core computation is for solving Ae = r in
the fine grid and A∗e∗ = r∗ in the coarse grid. Both Ae = r
and A∗e∗ = r∗ are solved by iterations

e(n+1) = Te(n) + c (6)

e∗(n+1) = T∗e∗(n) + c∗

where e(n+1) and e(n) are M N ×1 vectors, T is an M N × M N
matrix, e∗(n+1) and e∗(n) are mn × 1 vectors, and T∗ is an
mn×mn matrix. The matrix-vector products, Te(n) and T∗e∗(n)

take the most computation resources.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

1712 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020

Fig. 3. Residual approaches. (a) Standard residual approach applied to fine grid only. (b) Complete residual approach applied to both fine and coarse grids.
(c) Reformulated complete residual approach without high-precision multiplication.

Fig. 4. Latency of solving 2-D Poisson’s equation to reach an error tolerance
of 10−7 using a 127 × 127 single grid and 32-, 8-, 5-, 4-, 3-, and 2-b-quantized
multigrids (a 127 × 127 fine grid combined with a 64 × 64 coarse grid).

The complete residual approach allows us to quantize the
computation to 5 b, making it possible to perform the compu-
tation using MAC SRAM. Since the stencil matrices T and T∗
are highly sparse, it is wasteful to be stored in SRAM. Instead,
we store the errors e and e∗ in SRAM with each 5-b value
stored in five cells in consecutive rows, and 5-b stencil weights
are applied as WL pulses to the SRAM. The MAC outputs are
the updated errors, which are converted to 5-b digital values.

In the direct mapping, a 5M × N SRAM array can be used
to store up to an M × N grid, and the e or e∗ values are stored
in the SRAM based on their grid locations. The mapping is
illustrated in Fig. 5(a). Note that a row in Fig. 5(a) represents
five consecutive rows in memory as each 5-b operand spans
five rows. To avoid confusion, we will use “group” to refer to
a group of five rows that store 5-b operands.

As an example, to update e1,1, {e1,0, e1,2, e0,1, e2,1} need to
be read and multiplied by their respective stencil weights, and
then the partial sums are added. However, the four operands
{e1,0, e1,2, e0,1, e2,1} are not located on the same WL or BL;
thus, it is impossible to add the partial sums in PIM. The direct
mapping is also incompatible with the hybrid layer update

method due to BL access conflicts that prevent e values to be
computed in parallel.

A. MAC SRAM Organization and Mapping

To use PIM, the operands need to be aligned in memory.
We create a rotation mapping to transform Fig. 5(a) and (b):
group 0 stays in place, group 1 is right rotated by 1, group
i is right rotated by i , and so on. The rotation allows the
operands to be aligned. For example, activating groups 0
and 1 with the respective stencil weights enables the par-
allel summing of pairs of partial sums for updating e1,i ,
2≤ i ≤ M − 1.

With rotation mapping, the operands from the
odd-numbered columns are read and the results are written
to the even-numbered columns, and vice versa. Therefore,
we split the odd and even columns and store them in separate
even and odd SRAM arrays, as shown in Fig. 5(c). Each
array provides two ports: one port for read to perform MAC
operations and another port for write back. The odd and even
arrays run in parallel. The read output of the odd array is
written back to the even array, and vice versa.

After the rotation mapping, one four-point stencil is
separated into two halves. For example, the stencil
{e1,0, e1,2, e0,1, e2,1} stored in the odd SRAM array needs to
be separated to two banks: one that stores {e1,0, e0,1} and the
other that stores {e1,2, e2,1}, as shown in Fig. 5(d). The partial
sums of the two halves are summed on two BLs after activating
groups 0 and 1 for the left bank and groups 1 and 2 for the
right bank.

To sum up, an M × N grid is stored in two SRAM arrays,
each consisting of two banks of size 5M × N/4. The complete
update of a layer requires two steps across the two SRAM
arrays. For example, the update of layer 0 is done in two steps
across the two SRAM arrays: 1) groups 0 and 1 are activated
on the left bank, whereas groups 1 and 2 are activated on the

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: 1.87-mm2 56.9-GOPS ACCELERATOR FOR SOLVING PDEs 1713

Fig. 5. PDE mapping on MAC SRAM. (a) Direct mapping. (b) Rotation mapping. (c) Array splitting. (d) Bank splitting.

right bank. The respective BLs from the two banks are joined
to complete the summing, and 2) groups 1 and 2 are activated
on the left bank, whereas groups 0 and 1 are activated on the
right bank. The respective BLs are then joined to complete the
summing.

The rotation mapping and the array and bank splitting
offer a number of advantages: 1) the memory is nearly
fully utilized to support stencil computation without dupli-
cate storage; 2) simple and regular BL muxing and control;
and 3) compatible with the hybrid layer update method.
One possible drawback of the approach is the lower array
efficiency due to the splitting into smaller SRAM arrays
and banks. However, for a sufficiently large grid size that
is common in the most demanding applications, the loss of
efficiency due to banking is minimized.

We also note that in a typical PIM design, all rows of
the memory are activated at the same time to unleash the
full parallelism [6], [9], but it is at the cost of reduced BL
precision. Our approach activates a subset of rows of the
memory, that is, ten rows. It sacrifices the performance but
also reduces the BL precision and simplifies the ADC design.

B. Dataflow Mapping

The PDE solver chip architecture is designed to implement
the dataflow shown in Fig. 3(c). The dataflow’s two main
parts, fine-grid and coarse-grid computes, each consists of
three steps: iterations, residual update, and solution update,
as shown in Fig. 3(c). Each step is mapped to a module
shown in Fig. 6. The iteration module leverages MAC SRAM
to perform iterative layer update in 5 b to solve for the
errors, e or e∗. After a round of iterations, the residual update
module is called to apply the errors in updating the residuals,
r or r∗, and the solution update module is called to accumulate
5-b errors to update the full-precision u values in memory.
Fine-grid compute and coarse-grid compute are done by the
same hardware, with coarse grid utilizing a fraction of the
hardware.

V. PROTOTYPE ARCHITECTURE

A prototype PDE solver chip is designed in a 180-nm
CMOS following the architecture in Fig. 7. The iteration
module consists of four MAC SRAM arrays. A pair of arrays is
used together as the even and odd arrays to support the rotation
mapping. In the prototype design, each array consists of

Fig. 6. Top-level architecture of PDE solver.

320 × 64 8T SRAM cells that are completed with peripherals.
The 8T SRAM cell used in this chip is custom designed
following normal design rules. The cell area of the custom
8T SRAM cell is 2.63× the size of a standard 6T SRAM cell
in the 180-nm technology. If we used “push rule” (common
in memory designs), the custom 8T SRAM cell area can be
shrunk by 20% or 2.10× the size of a standard 6T SRAM
cell. Though the density of our custom 8T SRAM is lower,
the MAC SRAM is used for both storage and compute rather
than storage alone, and memory data movement is eliminated
and no separate MAC circuits are needed.

The PDE iteration module can be used to compute two
independent grids of up to 64 × 128 (5-b grid values), or
they can be joined to support a grid of up to 128 × 128
(5-b grid values). The precision is configurable from 1 b to
5 b. A separate memory is used to store the offsets c. Offset
subtraction is done at the output of each array. A buffer is
added to store the updated solutions for writing back to the
neighboring even or odd array.

A 320 × 64 MAC SRAM array is internally split into two
320 × 32 banks to be used as the left and right banks, as shown
in Fig. 8. The MAC SRAM array occupies 0.467 mm2 in
180-nm CMOS and is clocked at 200 MHz. It provides two
ports: a single read/write port for normal memory access and a
group read port for MAC operations. In the MAC mode, up to
20 WLs (i.e., four 5-b groups, two for each bank) are selected
in parallel by the group decoder. A 5-b width-modulation of
WL is controlled by a DLL, and 5-b level-modulation is done
via current mirrors. Select muxes allow the analog summation
of partial sums from the two banks. The 32 merged BLs are
digitized by 32 5-b ADCs.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

1714 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020

Fig. 7. Architectural sketch of PDE iteration module.

Fig. 8. Block diagram of MAC SRAM.

Fig. 9. Illustration of group read for MAC operations.

VI. GROUP READ AND WL PULSE GENERATION

The group read mode is illustrated in Fig. 9, showing
four stencil entries (s1, s2, s3, s4) applied to four error vectors
(e1, e2, e3, e4) stored in 20 rows of the SRAM banks for MAC
operations. The MAC operations are conducted in groups in
the following manner: 1) the group decoder turns on the access
to a group of five SRAM rows; 2) the WL pulsewidth (PW) is
selected by a 5-b stencil entry; 3) current mirrors generate
the WL voltage needed to provide 1×, 2×, 4×, 8×, and

Fig. 10. DLL design for WL pulse generation.

16× unit cell current for the analog readout of 5-b error values;
and 4) the products between the stencil entry and the error
values are accumulated on the BLs. Up to four groups are
activated at the same time to enable 128 5 b × 5 b MACs in
parallel in the MAC SRAM.

If we use the 5-ns clock period as the unit PW, a 5-b
WL pulse will take 32 clock cycles or 160 ns. To improve
performance, we use 625 ps as the unit PW, so a 5-b WL pulse
only takes 20 ns. To generate fine and well-controlled WL
pulses, we design a DLL to subdivide a 5-ns clock period to a
625-ps unit PW using an eight-stage voltage-controlled delay
line in a control loop and a pulse generator logic, as shown
in Fig. 10. The phases are continuously adjusted by tracking
the 200-MHz reference clock using the phase detector, and
errors are corrected by the control voltage of the delay line.

We allocate up to 200-mV BL swing to represent the readout
of one group. With all four groups activating at the same time,
the BL swings up to 800 mV, from 1.8 V down to 1.0 V. The
swing is limited by the one-stage pre-amplifier of the ADC.
The pre-amplifier performs offset cancellation at its output for
a lower area and power, but the input common-mode range
is more limited. Since 800-mV BL swing is digitize by a
5-b ADC, an LSB step is 25 mV. The process variation is
evaluated by Monte Carlo simulations for reading a group
of 5-b operands. Variations were added to the memory array,
the current mirrors, and the WL drivers in this simulation.
To obtain the maximum absolute variation, we used the
maximum PW of 19.375 ns (31-unit PW). The BL voltage
and its standard deviation are shown in Fig. 11. The standard
deviation of the BL voltage is shown to be limited to 18 mV.

The DLL occupies 1500 μm2 in 180 nm and consumes
950 μW. The differential nonlinearity (DNL) and the integral
nonlinearity (INL) for the DLL are evaluated for all process
corners. The DLL provides a maximum INL of sub-0.15-unit
PW, as shown in Fig. 12. The closed-loop pulse generation is
more robust than an open-loop approach [10].

VII. BL READOUT

The BL ADC needs to be compact and energy efficient to
avoid becoming a bottleneck of the design. Therefore, flash
or SAR architectures are excluded. Instead, we choose a ramp
ADC that consists of a ramp reference and a counter shared
by all columns, and a single comparator and latch per column.
The ramp architecture minimizes the area and energy, but a
5-b conversion requires 32 time steps.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: 1.87-mm2 56.9-GOPS ACCELERATOR FOR SOLVING PDEs 1715

Fig. 11. Statistics of the Monte Carlo simulations of BL voltage for a
multiplication operation (the left axis is for the average BL voltage, and the
right axis is for the standard deviation of the BL voltage. The dotted curve
shows the average BL voltage when a pulse representing the maximum input
of 31 is multiplied by the weight values stored in memory, and the triangled
curve shows the standard deviation of the BL voltage).

Fig. 12. (a) DNL and (b) INL of WL pulses generated by DLL.

We adopt a compact DRSS ADC architecture [12] that
applies a 2-b coarse-ramp comparison followed by a 3-b
fine-ramp comparison, as shown in Fig. 13. The BL voltage
is first compared with the 2-b coarse ramp to obtain the
2-b MSB, which then selects one of four 3-b fine ramps for
comparison to obtain the 3-b LSB. The dual-ramp approach
performs 5-b comparison in 22 + 23 = 12 time steps, faster
than a serial conversion architecture [10].

In implementing DRSS ADCs, a central circuit is shared by
32 columns, and it generates two ramps by a resistive DAC
and a controller that steps through the two conversion phases.
A compact column circuit consists of a pre-amplifier followed
by a regenerative comparator and latches.

The column circuit measures only 350 μm × 110 μm.
The 32 ADCs in a MAC SRAM occupy 0.044 mm2, and the
conversion costs 8.91 mW at 200 MHz. The DNL of the ADC
is kept below 0.45 b and the INL of the ADC is within 0.5 b,
as shown in Fig. 14.

Fig. 13. 5-b DRSS ADC design for BL readout.

Fig. 14. ADC (a) DNL and (b) INL.

VIII. RESULTS AND DISCUSSION

A 180-nm 11.0-mm2 PDE solver test chip was fabricated
and tested. The chip consists of a PDE solver and BIST
circuits, as shown in Fig. 15. The four MAC SRAMs in the
PDE solver core each takes 570 μm × 820 μm and dissipates
16.6 mW when performing group read at 200 MHz and room
temperature.

The ADC, DLL, and decoder/current mirror account for
62%, 12%, and 9% of the power consumption shown
in Fig. 16. When running Jacobi and the hybrid layer update
iterations, the 5-b multigrid PDE solver reaches an error
tolerance of 10−8 while speeding up convergence by 6× and
8×, respectively, over the baseline 32-b single-grid implemen-
tation, as shown in Fig. 17.

The 200-MHz MAC SRAM completes 128 5 b × 5 b MAC
operations in 18 clock cycles (four-cycle WL pulse, one-cycle
BL propagation, 12-cycle ADC, and one-cycle latching). With
four MAC SRAMs, the PDE solver chip performs 512 5 b ×
5 b MAC operations every 18 clock cycles. Following [10]
that counts an operation at each active SRAM cell as two
OPs, the performance and energy of each MAC SRAM

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

1716 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020

Fig. 15. Microphotograph of PDE solver test chip.

Fig. 16. Breakdown of MAC SRAM power.

Fig. 17. Convergence of 5-b multigrid (5-b fine grid: 127 × 127, 5-b coarse
grid: 64 × 64) using Jacobi and hybrid layer update iterations compared to
single-grid baseline implementation (32-b fine grid: 127 × 127). Results are
based on solving 2-D Poisson’s equation.

are 14.2 GOPS and 857 GOPS/W, respectively. At a lower
precision, the performance and energy efficiency can be more
than double, as shown in Fig. 18.

For reference, we synthesized a digital ASIC in the same
180-nm CMOS technology. The digital ASIC is designed to
match our chip in terms of computational capability needed
to perform the same task. The digital ASIC consists of 16 KB
of SRAM (compiled 6T SRAM macros) to store the grid
values, 128 multipliers to compute 128 products in parallel
(match the parallelism of our chip), an adder tree to sum
the products, and the necessary buffers and pipeline registers.
The synthesized ASIC has a clock frequency of 90.9 MHz.
It occupies 22.137 mm2 and consumes 3.392 W. The ASIC
is pipelined to complete one set of 128 MACs in six cycles.

Fig. 18. Measured performance and energy.

TABLE I

COMPARISON WITH PRIOR PDE ACCELERATORS (UNNORMALIZED)

The compute density of the ASIC is nearly 35× lower than
the MAC SRAM chip.

A. Comparisons of PDE Solver Chips

This design is the first PIM that targets solving PDEs. Prior
PIM designs do not meet the requirements of the PDE solver
due to limited multiplicand precision [6], [9], [10], limited
ADC resolution [6], [9], or limited number of ADCs [7], [8].

In Table I, this article is compared with recently published
silicon implementations of accelerators for solving PDEs:
an analog computer accelerator [4] and a hybrid computing
unit [5]. This article is the first to use PIM in PDE applications.
It is also the first among hardware accelerators to use a multi-
grid residual approach to reduce the core precision requirement
to 5 b. An intrinsic benefit of PIM is less data movement,
compared to the other work that relies on frequent accesses
of external DRAMs. Optimized toward dense, low-precision
compute, this article achieves a grid update rate of 1.38-G
entries/s and an energy efficiency of 20.8-M entries/s/W. The
overhead of loading from buffers and unloading to buffers in
each iteration, restriction, and interpolation between fine-grid
compute and coarse-grid compute, and the incomplete uti-
lization of the hardware in coarse-grid compute haveall been
accounted for in the measurements.

Compared to [4] in 250 nm, our 180-nm design’s per-
formance, performance per watt, and performance per unit
silicon area all are more competitive by over two orders of

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: 1.87-mm2 56.9-GOPS ACCELERATOR FOR SOLVING PDEs 1717

magnitude. Similarly, compared to [5] in 65 nm, our 180-nm
design’s performance, performance per watt, and performance
per unit silicon area are also more competitive by over two
orders of magnitude. Cowan et al. [4] used a 8-bit precision,
and Guo et al. [5] used a 16-bit precision. We opted for an
optimized multi-grid residual approach to reduce the precision
of our hardware to 5 bits, but our multi-grid 5-bit residual
design could reach the same accuracy of a 32-bit precision,
single-grid design in 5× fewer iterations, as shown in Fig. 4.

B. Technology Scaling, Porting, and Voltage Scaling

To support 5-b readout, combining four groups, and a
sufficient variation tolerance, our design requires an 800-mV
voltage headroom. 180-nm technology is a good fit for this
design. With the 180-nm technology, we show that our hard-
ware achieves two orders of magnitude higher energy effi-
ciency and four orders of magnitude higher compute density
than the 65-nm competitor [5] for the same application. This
result demonstrates that implementation in an older technology
can be competitive if it is used in a suitable way. If we scale
our design to more advanced technology with a smaller voltage
headroom and larger variations, we will need to modify the
design to reduce the number of groups to combine (lower
parallelism) and a possibility to use multiple bitlines to provide
the required precision (lower compute density). Since more
advanced technology is denser, faster, and lower power, it can
offset the sacrifice in parallelism and compute density.

Mixed-signal circuit scaling with respect to improved tech-
nology nodes is a much more complex function than digital
circuit scaling. This is especially true in a high-precision
ADC, which is limited by thermal noise [17]. However, for a
low-precision ADC, such as our 5-b DRSS ADC, the design
scales with technology. There are two factors that contribute
to the scalability: 1) about 2/3 of the ADC used in this article
comprises digital circuit elements (switches, logic gates, and
flip-flops), which scale with technology, and 2) while not
inherently digital, other elements such as comparators and
amplifiers gain implicit benefits such as less internal capacitive
loading, which can help to improve the overall efficiency.

We did two trial designs in 65 nm with halved BL swing.
Design A (this work) requires 800-mV BL swing, and the two
65-nm trial designs, Designs B and C, each uses only 400-mV
BL swing due to the reduced voltage headroom.

Due to the reduced BL swing, Design B only offers 4 b
of resolution. As shown in Fig. 4, 4-b resolution is still
sufficient for the PDE solver. The drawbacks are the reduced
design margin and 10% extra iterations to reach convergence.
We performed a trial design to estimate the area and power
of SRAM, ADC, and peripheral circuits. The SRAM design
references [8], and the ADC design references [10]. The results
show that the 65-nm Design B achieves 10.6× higher compute
density and 9.2× higher energy efficiency compared to this
article, demonstrating that the design is scalable.

Design C also uses a 400-mV BL swing, but it relaxes the
design constraints by quantizing BL output to only 3 b. 3 b is
insufficient for the PDE solver, so we use twice as many cells
to provide an effective 6-b resolution. The 3-b design relaxes

all the analog and peripheral component designs at the cost of
a larger area. We performed a trial design to estimate the area
and power of SRAM, ADC, and peripheral circuits. The results
show that the 65-nm Design C still achieves 4.7× higher
compute density and 5.3× higher energy efficiency compared
to this article, demonstrating that the design is scalable.

To port this design to another technology node, the MAC
SRAM module needs to be custom designed. However,
the memory array is regular and can be instantiated. It may be
possible to reuse a commercially available standard 8T SRAM
array but with replaced peripheral circuitry. The peripheral
circuitry, including current mirror, DLL, and ADC are custom,
but once one unit is designed, it can be instantiated. Other
than the MAC SRAM, the remaining parts of the PDE solver
can be digitally synthesized. To sum up, some effort is
required to port the custom parts of the design, but a hier-
archical, reuse approach will significantly simplify the porting
process.

Lastly, we note that PIM is analog compute, and it cannot
be voltage-scaled easily. This also applies to analog com-
pute in general. However, if the bit precision is low, analog
computation is more advantageous because of higher compute
density. PIM also removes the data movement cost, an added
bonus. If the required precision is high, conventional digital
implementation is more advantageous in terms of energy and
accuracy, and it can be voltage scaled to save power. Therefore,
there is hardly a reason to use analog compute for high
precision.

IX. CONCLUSION

Numerical PDE solvers require high-precision, iterative, and
memory-intensive computation. In this article, we adopt a
residual form of the multigrid method to reduce the precision
requirement and a hybrid layer update to reduce the compu-
tation time while providing sufficient parallelism.

The resulting PDE solver design is mapped to a 5-b
SRAM-based PIM system that consists of an iteration module,
a solution update module, and a residual update module.
Quantized grid values are mapped to SRAM following a rota-
tion mapping method for high storage utilization and efficient
parallel computation. Four 320 × 64 SRAMs perform parallel
5 b × 5 b MAC operations, with 5-b WL-level modulation and
5-b PW modulation. Each MAC SRAM output is digitized by
32 5-b DRSS ADCs.

The PDE solver is prototyped in a 11-mm2 180-nm test
chip. The chip is measured to achieve a grid update rate
of 1.38-G entries/s at 200 MHz at a power consumption
of 66.4 mW. Compared to previously published PDE solver
accelerator chips, this article demonstrates two orders of
magnitude improvement in energy efficiency and four orders
of magnitude improvement in compute density without tech-
nology normalization. The results show the promise of using
PIM in numerical PDE solver applications.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Song, Prof. W. Lu,
and Prof. M. Kushner for their advice.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

1718 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 6, JUNE 2020

REFERENCES

[1] R. S. Varga, Matrix Iterative Analysis, vol. 27, 2nd ed. Springer, 2000.
[2] Y. Huang, N. Guo, M. Seok, Y. Tsividis, and S. Sethumadhavan,

“Evaluation of an analog accelerator for linear algebra,” in Proc. Int.
Symp. Comput. Archit. (ISCA), Jun. 2016, vol. 44, no. 3, pp. 570–582.

[3] J. Kung, Y. Long, D. Kim, and S. Mukhopadhyay, “A programmable
hardware accelerator for simulating dynamical systems,” in Proc. Int.
Symp. Comput. Archit. (ISCA), 2017, pp. 403–415.

[4] G. Cowan, R. Melville, and Y. Tsividis, “A VLSI analog computer/digital
computer accelerator,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 42–53, Jan. 2006.

[5] N. Guo et al., “Energy–efficient hybrid analog/digital approximate
computation in continuous time,” IEEE J. Solid-State Circuits, vol. 51,
no. 7, pp. 1514–1524, Jul. 2016.

[6] J. Zhang, Z. Wang, and N. Verma, “In–memory computation of a
machine–learning classifier in a standard 6T SRAM array,” IEEE
J. Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[7] M. Kang, S. Gonugondla, A. Patil, and N. Shanbhag, “A 481pJ/decision
3.4M decision/s multifunctional deep in-memory inference processor
using standard 6T SRAM array,” 2016, arXiv:1610.07501. [Online].
Available: https://arxiv.org/abs/1610.07501

[8] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pJ/decision 3.12
TOPS/W robust in-memory machine learning classifier with on-chip
training,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 490–492.

[9] W.-S. Khwa et al., “A 65 nm 4 Kb algorithm-dependent computing-
in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully
parallel product-sum operation for binary dnn edge processors,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 496–498.

[10] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 488–490.

[11] T. Chen, J. Botimer, T. Chou, and Z. Zhang, “An SRAM–based accel-
erator for solving partial differential equations,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), Apr. 2019, pp. 1–4.

[12] M. F. Snoeij, P. Donegan, A. J. Theuwissen, K. A. Makinwa, and
J. H. Huijsing, “A CMOS image sensor with a column-level multiple-
ramp single-slope ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2007, pp. 506–618.

[13] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph. (TOG), vol. 22, no. 3, p. 313, Jul. 2003.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82.
Philadelphia, PA, USA: SIAM, 2003.

[15] Y. Xu, “Hybrid Jacobian and Gauss–Seidel proximal block coordinate
update methods for linearly constrained convex programming,” SIAM
J. Optim., vol. 28, no. 1, pp. 646–670, Jan. 2018.

[16] D. M. Young, Iterative Solution of Large Linear Systems. Amsterdam,
The Netherlands: Elsevier, 2014.

[17] B. Murmann, “A/D converter trends: Power dissipation, scaling and
digitally assisted architectures,” in Proc. IEEE Custom Integr. Circuits
Conf., Sep. 2008, pp. 105–112.

Thomas Chen (Student Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from the University of Michigan, Ann Arbor,
MI, USA, in 2013, 2015, and 2019, respectively.

He did an internship with Circuits Research Labo-
ratory, Intel Corporation, in 2015. His research inter-
ests are high-speed and low-power VLSI circuits and
systems.

Dr. Chen received the Rackham Merit Fellowship
from the University of Michigan in 2013 and the
NSF Graduate Research Fellowship in 2015.

Jacob Botimer (Student Member, IEEE) received
the B.S. and M.S. degrees in electrical engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2016 and 2019, respectively, where he is
currently pursuing the Ph.D. degree in electrical
engineering.

He did internships with Power Electronics Group,
Texas Instruments, Dallas, TX, USA, in 2015 and
2016. In 2019, he joined the start-up company
MemryX, Ann Arbor, where he has been working
on computer architecture and circuit design for hard-

ware accelerators. His research interests focus on in-memory computing and
2.5-D integration.

Teyuh Chou (Student Member, IEEE) received the
B.S. degree in electrical engineering from National
Central University, Taoyuan City, Taiwan, in 2013,
and the M.S. degree in electronics engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 2016. She is currently pursuing the
Ph.D. degree in electrical and computer engineering
with the University of Michigan, Ann Arbor, MI,
USA.

Her current research interests include nanoscale
neuromorphic computing systems, RRAM-based

hardware neural networks, efficient machine-learning accelerators, and
memory-centric architectures.

Zhengya Zhang (Senior Member, IEEE) received
the B.A.Sc. degree in computer engineering from
the University of Waterloo in 2003 and the M.S.
and Ph.D. degrees in electrical engineering from the
University of California at Berkeley (UC Berkeley),
Berkeley, CA, USA, in 2005 and 2009, respectively.

He has been a Faculty Member with the University
of Michigan, Ann Arbor, MI, USA, since 2009,
where he is currently an Associate Professor with
the Department of Electrical Engineering and Com-
puter Science. His current research interests include

low-power and high-performance VLSI circuits and systems for computing,
communications, and signal processing.

Dr. Zhang was a recipient of the David J. Sakrison Memorial Prize from UC
Berkeley in 2009, the National Science Foundation CAREER Award in 2011,
the Intel Early Career Faculty Award in 2013, and the University of Michigan
College of Engineering Neil Van Eenam Memorial Award in 2019. He serves
on the Technical Program Committees of the Symposium on VLSI Circuits
and the IEEE Custom Integrated Circuits Conference (CICC) since 2018.
He was an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART I: REGULAR PAPERS from 2013 to 2015 and the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–PART II: EXPRESS
BRIEFS from 2014 to 2015. He has been an Associate Editor of the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

since 2015.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:00:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

