
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019 2081

A 135-mW 1.70TOPS Sparse Video Sequence
Inference SoC for Action Classification

Thomas Chen , Student Member, IEEE, Ching-En Lee, Student Member, IEEE,

Chester Liu , Student Member, IEEE, and
Zhengya Zhang , Senior Member, IEEE

Abstract— An inference system-on-chip (SoC) is designed to
extract spatio-temporal features from videos for action classifica-
tion. The SoC contains an inference core that implements a recur-
rent neural network in three processing layers. High sparsity is
enforced in each layer of processing, reducing the complexity by
two orders of magnitude and allowing multiply accumulates to
be replaced by select accumulates. Spatio-temporal kernel and
activation compression are applied to reduce memory by 43%
and 64%, respectively. The design is demonstrated in a 2.53-mm2

40-nm CMOS chip with an OpenRISC core, providing control
and classification. With the inference core extracting spatio-
temporal features and a soft-max classifier programmed on the
OpenRISC core, the SoC classifies KTH Human Action Data Set
at a 76.7% accuracy. At 0.9 V and 250 MHz, the SoC achieves
1.70TOPS, dissipating 135 mW.

Index Terms— Action classification, inference processor, recur-
rent neural network (RNN), sparse coding, video processing.

I. INTRODUCTION

OBJECT detection in videos is employed in a wide range
of applications from the smart user interface to sur-

veillance and autonomous navigation. Due to the demanding
resolution and frame rate of videos, real-time object detection
has been a challenge. Designing real-time object detection on
embedded platforms is especially difficult due to the limited
energy source available on embedded platforms.

State-of-the-art object detection accelerators [1]–[5] have
been designed based on scale invariant feature transform
(SIFT) [6], speeded-up robust features (SURF) [7], and
deformable part models (DPM) [8] algorithms. These popular
algorithms extract 2-D features from images and compare
them with features stored in a database [6], [7] or perform
classifications [8] on the features to recognize objects. The
accelerators target real-time videos, but the base operations
(OPs) are on 2-D images.

Video sequence classification, or action classification, oper-
ates on sequences of video frames to extract activity or action

Manuscript received November 1, 2018; revised March 2, 2019; accepted
March 11, 2019. Date of publication April 24, 2019; date of current version
June 26, 2019. This work was supported in part by Defense Advanced
Research Projects Agency (DARPA), in part by the Systems On Nanoscale
Information Fabrics (SONIC) Center, in part by Intel, and in part by National
Science Foundation (NSF) under Grant GRFP DGE 1256260. This paper
was approved by Associate Editor Edith Beigne. (Corresponding author:
Thomas Chen.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122
USA (e-mail: tcchen@umich.edu; lchingen@umich.edu; cwhliu@umich.edu;
zhengya@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2907406

information from videos. Video sequence classification relies
on extracting spatio-temporal features and performing classi-
fication on the spatio-temporal features, thus it is expected to
demand more computation than the 2-D processing of videos.

Classic video sequence classification relies on engineered
features, such as cuboid [9], space-time Harris [10], and
Hessian [11]. Each feature selection is tailored to a specific
task but may not deliver the best performance for every
task. It is desirable to use automatically learned features
that are most suitable for the data. An auto-encoder is one
such approach that automatically learns sparse, shift-invariant
spatio-temporal features [12]. Sparse coding is a similar
approach that adapts an overcomplete dictionary of space-time
functions (features) to represent time-varying natural images
with high sparsity [13]. The space-time features resemble the
motion-selective receptive fields (RFs) of simple cells in the
mammalian visual cortex, suggesting that the approach may
be at work in the visual cortex [13].

In this work, we adopt a sparse coding approach called
locally competitive algorithm (LCA) [14]. LCA is formulated
as a compressed sensing method. When applied to videos,
LCA learns the spatio-temporal RFs (STRFs) and encodes
inputs using a sparse set of STRFs. As such, LCA is highly
effective in reducing the input size, allowing the most salient
STRFs to be extracted for classification.

LCA can be mapped to a spiking recurrent neural network
(RNN) [15], [16]. Implemented using iterative forward projec-
tion and backward reconstruction, a video sequence inference
processor based on spiking RNN can extract spatio-temporal
RFs (STRFs), i.e., spatio-temporal features, from videos. The
extracted STRFs can, in turn, enable action classification [17]
and motion tracking [18] tasks.

Due to the large video data size, spatio-temporal, and iter-
ative processing, the computational requirement of the video
sequence inference RNN is high. Even for relatively small-
scale processing of a 6 × 6 × 64 video slice using 192 STRFs
costs 200M multiply accumulates (MACs). To enable a prac-
tical implementation, we adopt a residual formulation of the
RNN [19] and apply an algorithm transformation by rectifying
the residuals after each inference iteration to ternary spikes
without costing classification accuracy. After the transfor-
mation, the intermediate data through the compute stages,
i.e., activations and residuals, become spikes with a sparsity
level well above 90%. The transformed algorithm leads to
a sparse, all-spiking video inference processor design that
reduces the computational complexity from 200M MACs to
4M select accumulates (SAs) per iteration, making it possible

0018-9200 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3168-9122
https://orcid.org/0000-0003-0115-9630
https://orcid.org/0000-0001-5963-9018

2082 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

to support video processing in real time at reasonable power
consumption. To reduce the large on-chip storage, we apply
non-uniform delta encoding on the highly redundant STRFs
and compressed column storage (CCS) on the highly sparse
activations to reduce their memory size by 43% and 64%,
respectively.

The design is demonstrated in a 2.53-mm2 40-nm inference
system-on-chip (SoC) that integrates a video sequence infer-
ence core and an OpenRISC core. The chip is measured to
achieve 1.70TOPS at 0.9 V and 250 MHz, dissipating 135 mW
at room temperature. With the video sequence inference core
extracting the activation response of STRFs, a soft-max clas-
sifier programmed on the OpenRISC core achieves a 76.7%
classification accuracy on the six-class KTH Human Action
Data Set [20].

The rest of this paper is organized as follows. Section II
provides an overview of the baseline inference algorithm, and
Section III shows how the algorithm is transformed into a
sparse, all-spiking formulation to reduce its implementation
cost. Section IV presents the design details of each compute
layer and memory and quantifies the performance and energy
gain. Section V shows the chip implementation and measured
results, and Section VI concludes this paper.

II. VIDEO INFERENCE ALGORITHM FORMULATION

In this paper, we adopt the LCA algorithm [14] to perform
compressed sensing of videos. LCA can be mapped to a
recurrent network of spiking leaky integrate-and-fire neurons,
where a neuron’s potential increases due to input excitation,
and decreases due to inhibition by neighboring neurons. The
LCA algorithm is described by the following equation:

�u = η[�T x − (�T � − I)a − u] (1)

a = Tλ(u)

where u is the neuron potential; �u is the potential update;
η is the update step size; � is the RFs of neurons, also known
as the dictionary; x is the input; a is the neuron activation; and
I is the identity matrix. Tλ() is a binary threshold function and
it outputs 1. If its input exceeds λ or 0 otherwise. Dictionary
� and threshold λ are trained by stochastic gradient descent,
which aims to maximize encoding accuracy and the sparsity
of neuron activations.

In performing inference on video inputs, an input is divided
to 3-D segments for processing. In (1), x is a time series of
T number of X × Y × D consecutive and overlapping video
segments, as shown in Fig. 1. The dictionary � is a collection
of N RFs, and each RF is a X ×Y ×D spatio-temporal feature,
known as STRF. u, �u, and a are collections of N neurons’
potentials, potential updates, and activations, respectively, over
T time steps. Mathematically, x is a V × T matrix, where
V = XY D; � is a V × N matrix; u, �u and a are N × T
matrices.

The inference described by (1) consists of four functional
steps.

1) Charge: Input x is projected to the feature space as
described by �T x. The projection can be understood as

Fig. 1. Illustration of video inference processing.

Fig. 2. Baseline implementation of video inference.

TABLE I

BASELINE IMPLEMENTATION COMPLEXITY OF
ONE ITERATION OF INFERENCE

encoding the input x in STRFs, i.e., extracting STRFs
from the input. The projection increases, or charges, the
neuron potential.

2) Compete: To maintain sparse activation, active neurons
suppress other neurons. The inhibition weight between a
pair of neurons is computed by correlating their STRFs,
i.e., �T �. Self-inhibition is removed by subtracting I.
The closer the two neurons’ STRFs, the stronger the
inhibition between the two neurons. Neuron activations
trigger inhibitions as described by

(
�T � − I

)
a.

3) Leak: Neuron potential decreases over time, and the
leakage is proportional to the potential.

4) Activate: Neuron potential is thresholded to generate
binary spikes.

The four steps mentioned earlier constitute one iteration
of inference. Given an input x, the inference is done by
iterating the four steps until convergence. It is common to use
a fixed number of iterations I . The baseline implementation is
outlined in Fig. 2, where the leak step is omitted for simplicity.

The implementation complexity of one iteration of inference
is analyzed and the results are listed in Table I. The dictionary
storage requires V N entries. The inhibitory weights are com-
puted by �T � − I, requiring N2V MACs. The N2 inhibitory
weights can be computed once and stored in memory.

In every iteration of inference, the charge step requires
NV T MACs. Because the two inputs �T and x to the charge

CHEN et al.: 135-mw 1.70TOPS SPARSE VIDEO SEQUENCE INFERENCE SoC FOR ACTION CLASSIFICATION 2083

TABLE II

IMPLEMENTATION COMPLEXITY OF ONE ITERATION OF INFERENCE USING
RESIDUAL APPROACH

step do not change between iterations, the charge is computed
only once per inference regardless of the number of iterations.
The compete step is driven by neuron activations, requiring
N2T MACs per iteration for I iterations.

Typically, the number of neurons (N) ranges from hundreds
and more for practical applications, and video inference can
be particularly challenging due to its large dimensionality and
real-time processing requirement. A silicon implementation
requires a large area and power.

III. SPARSE AND ALL-SPIKING INFERENCE FORMULATION

Video data are large, but it also contains high redundancy,
especially from frame to frame. The redundancy offers oppor-
tunities for significant complexity reduction in storage and
compute. The sparse coding algorithm also lends itself to an
efficient implementation by exploiting its inherent sparsity.

We formulate the algorithm such that all steps operate on
spiking inputs. As a result, expensive MACs are replaced by
efficient SAs; and OPs are skipped if no spikes are present.

A. Rectification and Sparsification

The LCA equation can be reformulated by factoring the
term �T in (1)

�u = η[�T (x − �a) + a − u] (2)

a = Tλ(u).

The reformulated inference, first proposed in [19], can be
interpreted as having four steps: residual, charge, leak, and
activate. The leak and activate steps are identical to the original
formulation. The residual and charge steps are described
below.

1) Residual: The input x is reconstructed, x̂ = �a. The
reconstruction is subtracted from the input to obtain the
residual r = x − x̂.

2) Charge: The residual is projected to the feature space,
c = �T r.

The residual form removes the storage of inhibitory weights
and replaces it by computing the weights on the fly. As a result,
the storage required is smaller, but the compute complexity
poses a challenge, as shown in Table II. To reduce complexity,
we propose to quantize the residuals. If the residuals can
be quantized to binary spikes (1, −1), the computational
complexity of the charge layer can be significantly simplified.
However, as shown in Fig. 3(a), the binary quantization has a
large impact on the classification accuracy when the activation
density is low. With 0 being the binary threshold, small

Fig. 3. Effect of (a) activation density and (b) residual density on classifi-
cation accuracy.

Fig. 4. SA implementations. (a) Select-add. (b) Skip-add.

noise values near 0 are amplified, preventing convergence and
degrading accuracy.

To fix this problem, we propose a min/max rectification to
the residuals to quantize the residuals to ternary spikes. The
residual rectification is done by applying thresholds of λr and
−λr to quantize the residuals to 1 (above λr), 0 (between
−λr and λr), and −1 (below −λr). With appropriate threshold
choices, the ternary quantization outperforms binary quantiza-
tion by a large margin and can even match the unquantized
accuracy, as shown in Fig. 3(a). The updated equation is given
in (3), where Tλr is the min/max rectification function.

�u = η[�T Tλr (x − �a) + a − u] (3)

a = Tλ(u).

A key advantage of quantizing the residuals to binary or
ternary spikes is that the multiplication by these quantized
values and accumulating the partial sums no longer requires a
MAC. Instead, a simpler SA can be used. Suppose a is binary
(0 or 1), multiplying a by b followed by accumulation can be
done using an SA that is implemented as in Fig. 4(a), where a
is used as the select input in the multiplexer to choose whether
0 (if a is 0) or b (if a is 1) is accumulated by the adder. The
accumulated sum is saved in a register. Alternatively, SA can

2084 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

TABLE III

IMPLEMENTATION COMPLEXITY OF ONE ITERATION OF INFERENCE USING
SPARSE AND ALL-SPIKING APPROACH

Fig. 5. Sparse, all-spiking implementation of video inference.

be implemented using a skip-add as shown in Fig. 4(b), where
a is used as the enable input to the adder to decide whether to
accumulate b (if a is 1) or not (if a is 0). Although the example
was shown for the binary spike case, the implementation can
be easily modified to support ternary spikes.

Similar to the residual rectification, neuron activation is
obtained by rectifying neuron potentials to produce sparse,
binary spikes. Binary spikes allow the reconstruction in the
residual step to be implemented using SAs, presenting another
opportunity for significant complexity and power reduction.

Taking advantage of both residual rectification and neuron
activation, the sparse, all-spiking approach can be imple-
mented as shown in Fig. 5. It features a lower complexity
compared to the conventional residual approach as summa-
rized in Table III, where Sa and Sr refer to the density,
or fraction of non-zero entries, in neuron activations and the
residuals, respectively. The sparser the inputs (i.e., the lower
density), the less the amount of effectual workload. However,
sparsifying the inputs (activations or residuals) can degrade
the classification accuracy. The effects are illustrated in Fig. 3.
The activation density Sa = 1% and residual density Sr = 3%
are nearly optimal for the KTH Human Action Data Set [20].
Below or above the optimal density results in under- or over-
representation of the input, and degradation in classification
accuracy.

B. Design Specification and Parameter Settings

We present a prototype video inference processor to demon-
strate the sparse, all-spiking LCA approach. The prototype
design, including the model and parameters, is based on the
KTH data set [20]. The inference processor takes video inputs
in 6 × 6 × 64 slices, and divides into 57 6 × 6 × 8 (T = 57,
V = 6 × 6 × 8 = 288) consecutive and overlapping segments
for processing.

The optimal X − Y patch size is determined by the size
of features for a data set. For the KTH data set, 6 × 6
patch size provides the best accuracy. More spatial overlap
(smaller spatial stride) produces better results. However, in the

Fig. 6. Effect of number of neurons on classification accuracy.

Fig. 7. Architectural sketch of three-layer implementation of video inference
processor.

prototype design, we chose no overlap to reduce the processing
complexity. It degrades accuracy by only 2%.

The optimal STRF depth is determined by the action
sequence duration for a data set. For the KTH data set, a larger
depth yields better accuracy. We used a depth of 8, below
which the accuracy drops by about 2% per depth reduction
of 1. Temporal overlap (small temporal stride) is essential for
guaranteeing a good accuracy, e.g., increasing the temporal
stride from 1 to 4 reduces the accuracy by more than 8%.
In the prototype design, we chose a stride of 1.

The number of neurons, i.e., the number of STRFs, is depen-
dent on the input size and it affects the classification accuracy
as shown in Fig. 6. In testing the prototype design, we employ
192 neurons (N = 192). Each neuron’s STRF is sized 6×6×8.
The STRF weights are quantized to 8 bits. Simulations show
that six to eight iterations are sufficient, beyond which the
accuracy saturates. We used eight iterations (I = 8) for
measurement in this work. Based on the STRFs extracted from
video, action classification can be performed.

To realize this prototype chip, 54-kB memory is needed
to store the dictionary. The density of neuron activations
and residuals is optimally set to Sa = 1% and Sr = 3%,
respectively. The sparse, all-spiking approach reduces the
number of OPs per inference from 200M MACs to 4M SAs,
which translates to a significant reduction in complexity and
power consumption.

IV. DESIGN OF VIDEO INFERENCE PROCESSOR

The video inference processor is made of three compute
layers: residual layer, charge layer, and activate layer as illus-
trated in Fig. 7. Each layer corresponds to one step outlined
in Section III (the leak step is absorbed as part of the charge
layer). The residual and charge layers are the workhorse of
the inference processor. The inputs to the residual layer are
sparse binary neuron spikes. The inputs to the charge layer

CHEN et al.: 135-mw 1.70TOPS SPARSE VIDEO SEQUENCE INFERENCE SoC FOR ACTION CLASSIFICATION 2085

Fig. 8. (a) Distribution of deltas between frames of STRFs. (b) Non-uniform
quantization of deltas.

are sparse residuals in the form of ternary spikes. Inputs are
streamed through the three layers and back to the residual
layer for the next iteration.

A. Dictionary Compression and Non-Uniform Quantization

The dictionary � and its transpose �T are accessed by the
residual layer and the charge layer, respectively. Since the two
layers operate concurrently in a streaming pipeline and the
dictionary elements’ access orders are different, both � and
�T are stored on-chip, requiring 108 kB of memory for the
prototype design. Due to the high access bandwidth needed for
highly parallel processing, the dictionary memory is divided
into banks, sacrificing the storage efficiency. The dictionary
memory alone is estimated to take 2 mm2 chip area in a 40-nm
CMOS technology.

In the prototype design, each dictionary element is a 6×6×8
8-bit STRF that is essentially a sequence of eight 6×6 frames.
Redundancy exists between consecutive frames, making it
possible to compress each STRF to save memory, chip size,
and power. In Fig. 8(a), we plot the distribution of the pixel-by-
pixel differences between consecutive frames of STRFs that
are learned by training on the KTH Data Set. The results show
that 95% of the pixel-by-pixel differences cover a narrow range
of only four LSBs.

The similarity between consecutive frames motivates the
delta encoding of STRFs by storing the first 6 × 6 8-bit frame
as the anchor frame, and subsequent frames as 4-bit deltas to
the previous frame. The delta encoding reduces the dictionary
storage by 43%.

Although 4 bits are sufficient to cover 95% of the deltas,
a better result requires a larger coverage. To keep deltas to 4
bits while increasing the range of coverage, we propose the
non-uniform quantization of deltas as shown in Fig. 8(b). The
non-uniform quantization is specifically tailored to the delta
distribution: smaller quantization step sizes are used at the
lower end, and increasingly larger quantization step sizes are
used toward the higher end to keep the number of quantization
steps to 15.

The delta-encoded dictionary elements need to be decom-
pressed before being used in compute. We employ a tree
generator, as shown in Fig. 9 to take the anchor frame as the
base, and sequentially add the deltas to recover the remaining
frames. With delta encoding and taking into account the over-
head of tree generator, the dictionary memory storage in our

Fig. 9. Tree generator for decompressing delta-encoded STRF.

Fig. 10. Visualization of residual compute.

prototype design, including compression and decompression,
occupies 27% less area compared to the baseline.

B. Residual Layer

The residual layer computes the reconstruction x̂ (V × T)
by multiplying � (V × N) by a (N × T). Recall that since
a consists of binary activations, the matrix multiplication is
done by SAs. The input a is provided to the residual layer
one column at a time, as the time-series output of N neurons
from the activate layer. Since activations are sparse, we use a
spike detector to skip 0 activations and provide the addresses
of the activated neurons.

The residual layer computation is illustrated in Fig. 10.
For each column of a, the spike detector looks at a block
of entries at a time and finds the address of the first entry that
is 1. Suppose in processing column i of a, the spike detector
outputs j as the first entry in column i that is 1, then column j
of � is read from memory, decompressed by the tree generator,
and accumulated by the SA array as the temporary output of
column i of x̂. We employ an array of V SAs to compute one
vector accumulation at a time. The process continues with
the spike detector providing the next non-zero entry. Upon
completion, the reconstruction is subtracted from the input x;
and the results are rectified to obtain the residuals. Since the
reconstruction is computed column by column, the residuals
are obtained column by column and provided to the charge
layer in this order.

An implementation of the residual layer is shown in Fig. 11.
The number of actual accumulations done by the SA array
is NV T Sa , with Sa being the density of 1s in a. Since V
SAs operate in parallel, the residual layer takes on average
NT Sa = 192 × 57 × 1% = 109 cycles.

C. Charge Layer

The charge layer computes the charge c by multiplying �T

(N ×V) by r (V ×T). Since r is a collection of ternary spikes
{0, −1, 1}, the matrix multiplication is also done by SAs.

2086 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 11. Residual layer design.

Fig. 12. Visualization of charge compute.

A similar architecture as the residual layer can be designed
to implement the charge layer. The input r is provided one
column at a time, as shown in Fig. 12. In processing a column
of r, a non-zero entry triggers the accumulation of a column of
�T to compute c. An array of N SAs is employed. The number
of actual accumulations done by the SA array is NV T Sr .
Since N SAs operate in parallel, the charge layer takes V T Sr

to complete. Given the prototype specification, the charge layer
takes 492 cycles.

To balance the layers, we apply temporal aggregation to
shorten the latency of the charge layer. Each column of r
represents a X ×Y ×D frame. We compress r to ra by pooling
pixels at the same (x, y) location across D frames in a time
series. If at least one of the D pixels is non-zero, pooling
will output 1 for the pixel. After pooling, each entry of ra

represents an “aggregated” pixel i (in the xy plane) across D
frames. Note that temporal aggregation does not make use of
any approximation. It essentially collects a vector of inputs
and applies parallel processing. The technique has no impact
on the encoding fidelity or classification accuracy.

Temporal aggregation enables shorter latency. As shown in
Fig. 13, ra is passed to a spike detector to output the first
entry that is non-zero. As illustrated in Fig. 12, suppose the
spike detector outputs address i (in the xy plane), the address
is used to read the D columns of �T that correspond to pixel
i , and the D r values that are associated with pixel i . The D
columns of �T are vector summed by the pool units located
inside the SA array, as shown in Fig. 13, with the D r values as
the control bits that determine whether the respective columns
are zeroed, added, or subtracted.

The aggregate processing increases the parallelism by a
factor of D. The temporal aggregation the D frames to one

Fig. 13. Charge layer design.

Fig. 14. Activate layer design.

aggregate frame increases the density of 1s in the aggregate
frame. If the D frames are completely independent, the density
S�

r increases by D. However, the D frames belong to a time
series and are highly correlated. In the prototype design, the
density increases from 3% to 5%. With temporal aggregation
and aggregate processing, the charge layer latency is reduced
to XY T S�

r = 6 × 6 × 57 × 5% = 103 cycles on average for
the prototype design.

D. Activate Layer

The activate layer accumulates potential updates �u (N×T)
to compute new neuron potentials. �u is received column
by column from the charge layer. The activate layer uses an
array of N accumulators to update one column of potentials
at a time. The potentials are thresholded to obtain binary
activations a.

The activations a (N × T) are binary and sparse.
As described in Section IV-B, a is fed to a spike detector to
locate the non-zero entries for processing in the residual layer.
The spike detector can be used to encode a in a CCS format,
referring to storing only the addresses of non-zero entries in
every column, as illustrated in Fig. 14.

Due to high sparsity, we can limit the number of non-
zero entries in a column to a small fixed number. Simulations
show that at least four non-zero activations need to be stored
to ensure a high accuracy. If only two non-zero activations
are stored, the accuracy is reduced by 10%. In the prototype
design, we allow up to eight non-zero activations to be
stored. Additional non-zero entries are dropped with negligible

CHEN et al.: 135-mw 1.70TOPS SPARSE VIDEO SEQUENCE INFERENCE SoC FOR ACTION CLASSIFICATION 2087

Fig. 15. Timing illustration.

impact on the accuracy due to the extremely low likelihood of
occurrence. CCS effectively reduces the storage by 64%.

Putting the three layers together, the timing diagram for
processing one 6 × 6 × 64 input is illustrated in Fig. 15. The
input is divided into T = 57 temporally overlapped frames
to be dispatched to the three-layer processing in series. The
processing is repeated for I = 8 iterations. Input data stream
through the layers in sequence.

E. Summary of Design Optimizations

From Sections IV-A–IV-D, we present the design techniques
based on the prototype specification. The techniques are gen-
erally applicable and not limited to the given specification.

To quantify the benefits of the design techniques, we synthe-
sized a baseline design in 40-nm CMOS, along with design
points after every step of the optimization. The results are
shown in Fig. 16. The baseline design employs a V -parallel
MAC array in the residual layer, an N-parallel MAC array
in the charge layer, and an N-parallel accumulator array in
the activate layer. The design uses dense processing without
spike detectors, and the residuals are not rectified. The baseline
design reflects a standard parallel implementation without any
sparsity or spiking optimizations. The latency of one iteration
of processing is 211k cycles. The design is estimated to occupy
2.83 mm2 and consume 168 mW.

The residual and charge layers account for the majority of
the workload. Introducing sparsity optimizations has a major
impact on the performance and the energy efficiency. In the
first step of the optimization, we take advantage of sparse
binary neuron activations to change the MAC array in the
residual layer to an SA array and use a spike detector to
skip computations when activation is 0. The area and power
increase by 1% and 4%, respectively, to support the net
increase of the spike detection overhead minus the savings
of the SA array, and the processing latency decreases by 36%.
The latency is now entirely dominated by the charge layer.

In the second step, we apply ternary rectification to the
residuals to change the MAC array to an SA array, and apply
temporal aggregation to the charge layer. The area and power
are reduced by 7% and 11%, respectively, and the latency is
reduced by 32×.

Fig. 16. (a) Area and power and (b) latency and energy after three
design optimization steps: 1) sparse activation; 2) residual rectification; and
3) compressed activations.

In the third step, we compress the activations stored in the
activate layer. The compression results in 5% area reduction
and 13% power reduction.

In total, the three optimization steps increase the throughput
by 51×, reduce the energy by 63×, and the area is reduced by
11%. Assume the KTH data set with 6×6×64 inputs and the
following parameter settings: N = 192, X ×Y ×D = 6×6×8,
temporal stride of 1, spatial stride of 6, I = 8, Sa = 1%, and
Sr = 3%. At a clock frequency of 240 MHz, the real-time
processing of 1080p HD video at 60 frames per second (fps)
requires the processing of a 6 × 6 × 64 input to be completed
in 4.16k cycles. The optimizations proposed in this paper are
crucial for meeting this latency requirement.

Finally, note that activation sparsity and ternary rectification
of residuals caused most of the accuracy loss as shown in
Fig. 3. However, these two techniques also contributed most
of the performance and energy efficiency gain, as shown in
Fig. 16.

V. PROTOTYPE IMPLEMENTATION, MEASURED

RESULTS, AND COMPARISON

We design a prototype SoC for video inference applications.
The system block diagram is shown in Fig. 17. The core
of the SoC chip is the video inference processor that is
made of three compute layers and memory to store dictionary,
neuron potentials, and input video frames for testing. The SoC
also consists of an OpenRISC processor for programming,

2088 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

TABLE IV

ACTION CLASSIFICATION RESULTS OF KTH HUMAN ACTION DATABASE

TABLE V

COMPARISON WITH PRIOR WORK

Fig. 17. System-level design of video inference processor.

control, configuration, and classification. Through the Open-
RISC processor, the video inference processor is configurable
with several settings: 64, 128, or 192 neurons (N), frame size
(X × Y) from 1 to 36, and depth (D) from 1 to 8.

The video inference SoC chip is implemented in 40-nm
CMOS, occupying 3.98 mm2. The core area measures
1.77 mm × 1.43 mm. The chip photograph is shown in Fig. 18.
The chip is tested for the KTH data set with 6 × 6 × 64
inputs and the following parameter settings: N = 192, X ×
Y × D = 6 × 6 × 8, temporal stride of 1, spatial stride of
6, I = 8, Sa = 1%, and Sr = 3%. At room temperature,
the chip is measured to achieve an effective performance of
1.70TOPS (including skipped OPs) at 0.9 V and 240 MHz.
The performance meets the 60 fps 1920 × 1080 HD video

Fig. 18. Microphotograph of the video inference SoC chip in 40-nm CMOS.

Fig. 19. Measured power and performance of the video inference SoC chip.

data rate, while dissipating 135 mW. The measured power and
performance at room temperature are shown in Fig. 19.

The six-class KTH Human Action Data Set [20] is used
for action classification testing, with 600 samples and a
training/testing split ratio of 5:1. Using the core extracting
the activation response of STRFs and a soft-max classifier

CHEN et al.: 135-mw 1.70TOPS SPARSE VIDEO SEQUENCE INFERENCE SoC FOR ACTION CLASSIFICATION 2089

programmed on the OpenRISC processor, the SoC achieves a
76.7% classification accuracy.

We also designed an support-vector machine (SVM) classi-
fier based on a feed-forward network with two hidden layers
of 40 and 50 neurons. The inputs to the classifier are extracted
STRF features, i.e., spiking neuron outputs of the feature
extraction network; and the outputs are the action class labels.
The SVM is trained using a conjugate gradient method. The
SVM classifier achieves an 82.8% accuracy as shown in
Table IV.

In software and full precision, the state of the art for
the KTH data set classification has now reached 92% accu-
racy [21]. The approach used differential gating of long short-
term memory (LSTM), and the LSTM model consists of
450 input units, 300 memory cell state units, and 6 output
units. There is not yet a clear path toward an efficient
implementation of such a large model. In comparison, we sac-
rificed about 10% accuracy to obtain an efficient hardware
implementation.

In Table V, this work is compared with video processors for
key point matching [3] in SIFT-based object recognition, and
DPM-based object detection [5], as well as a convolutional
sparse coding processor for feature and depth extraction [16].
Direct comparisons are not possible due to the major dif-
ferences in algorithms and applications. This work is the
first video action classification processor that extracts spatio-
temporal features from video for sequence classification. The
2.53 mm2, 40-nm test chip achieves up to 1.70TOPS at a
power efficiency above 12.5TOPS/W (including skipped OPs).
The performance and power efficiency are competitive with
the other designs. Compared to [16] that used a similar
algorithm for feature extraction and depth extraction, this work
demonstrates higher performance and power efficiency.

VI. CONCLUSION

We present an inference SoC for video sequence classifica-
tion based on an RNN implementing LCA, a neuro-inspired
compressed sensing algorithm. Due to the large video data
size, spatio-temporal, and iterative processing, the computa-
tional requirement of the RNN is high. We adopt a residual
form of the LCA algorithm and apply a transformation by
rectifying the residuals after each inference iteration to ternary
spikes.

The algorithm reformulation leads to a sparse all-spiking
RNN architecture realized in three layers: residual layer,
charge layer, and activate layer. All layers are implemented
primarily in SAs. Data are seamlessly streamed across the
layers in iterations. To balance the processing layers and avoid
stalling, we use a temporal aggregation and aggregate process-
ing technique to shorten the processing latency of the slowest
charge layer. To reduce the chip area and power, we apply
delta compression and non-uniform quantization to STRFs
to reduce the memory by 42% and CCS encoding to sparse
activations to reduce the memory by 64%. In all, the algorithm
and architecture techniques increase the processing throughput
and reduce the energy by 51× and 63×, respectively, while
the area is kept nearly constant.

The design is prototyped in a 2.53 mm2 40-nm CMOS
video inference SoC chip. The chip is measured to achieve
1.70TOPS (including skipped OPs) at 0.9 V and 250 MHz,
dissipating 135 mW. Tested with the six-class KTH Human
Action Data Set, the chip provides a 76.7% classification
accuracy.

Not every video application in practice can directly benefit
from a design that supports XY ≤ 36. As a small research
prototype, we chose XY = 36 to target the KTH data set.
Even for this relatively small data set, multiple optimizations
are needed to keep the hardware complexity within bounds.
Video sequence classification is a demanding task. For larger
and practical applications, we expect more substantial compute
resources to be needed. The same optimizations demonstrated
in this work are equally applicable to larger and more demand-
ing applications.

ACKNOWLEDGMENT

The authors would like to thank Prof. B. Olshausen for his
advice.

REFERENCES

[1] J. Oh et al., “A 320 mW 342 GOPS real-time dynamic object recognition
processor for HD 720 p video streams,” IEEE J. Solid-State Circuits,
vol. 48, no. 1, pp. 33–45, Jan. 2013.

[2] G. Kim, J. Oh, S. Lee, and H.-J. Yoo, “An 86 mW 98 GOPS ANN-
searching processor for Full-HD 30 fps video object recognition with
Zeroless locality-sensitive hashing,” IEEE J. Solid-State Circuits, vol. 48,
no. 7, pp. 1615–1624, Jul. 2013.

[3] K. J. Lee, G. Kim, J. Park, and H.-J. Yoo, “A vocabulary forest object
matching processor with 2.07 M-vector/s throughput and 13.3 nJ/vector
per-vector energy for Full-HD 60 fps video object recognition,” IEEE
J. Solid-State Circuits, vol. 50, no. 4, pp. 1059–1069, Apr. 2015.

[4] D. Jeon et al., “An energy efficient full-frame feature extraction acceler-
ator with shift-latch fifo in 28 nm CMOS,” IEEE J. Solid-State Circuits,
vol. 49, no. 5, pp. 1271–1284, May 2014.

[5] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mW 30 frames/s real-time
programmable multiobject detection accelerator with deformable parts
models on full HD 1920 × 1080 videos,” IEEE J. Solid-State Circuits,
vol. 52, no. 3, pp. 844–855, Mar. 2017.

[6] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2, Sep. 1999,
pp. 1150–1157.

[7] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in Proc. Eur. Conf. Comput. Vis., 2006, pp. 404–417.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
Sep. 2010.

[9] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition
via sparse spatio-temporal features,” in Proc. IEEE Int. Workshop Vis.
Surv. Perform. Eval. Tracking Surv., Oct. 2005, pp. 65–72.

[10] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[11] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and
scale-invariant spatio-temporal interest point detector,” in Proc. Eur.
Conf. Comput. Vis., 2008, pp. 650–663.

[12] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Spatio-
temporal convolutional sparse auto-encoder for sequence classification,”
in Proc. Brit. Mach. Vis. Conf., Jan. 2012, pp. 1–12.

[13] B. A. Olshausen, “Learning sparse, overcomplete representations of
time-varying natural images,” in Proc. Int. Conf. Image Process., vol. 1,
Sep. 2003, pp. 41–44.

[14] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen,
“Sparse coding via thresholding and local competition in neural circuits,”
Neural Comput., vol. 20, no. 10, pp. 2526–2563, Oct. 2008.

[15] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A sparse coding neural net-
work ASIC with on-chip learning for feature extraction and encoding,”
IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1070–1079, Apr. 2015.

2090 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

[16] C. Liu, S.-G. Cho, and Z. Zhang, “A 2.56-mm2718 GOPS configurable
spiking convolutional sparse coding accelerator in 40-nm CMOS,” IEEE
J. Solid-State Circuits, vol. 53, no. 10, pp. 2818–2827, Oct. 2018.

[17] S. Savarese, A. DelPozo, J. C. Niebles, and L. Fei-Fei, “Spatial-
temporal correlatons for unsupervised action classification,” in Proc.
IEEE Workshop Motion Video Comput., Jan. 2008, pp. 1–8.

[18] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,”
in Proc. Eur. Conf. Comput. Vis., 2012, pp. 864–877.

[19] P. F. Schultz, D. M. Paiton, W. Lu, and G. T. Kenyon.(2014).
“Replicating kernels with a short stride allows sparse reconstruc-
tions with fewer independent kernels.” [Online]. Available: https://
arxiv.org/abs/1406.4205

[20] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions:
A local SVM approach,” in Proc. IEEE 17th Int. Conf. Pattern Recognit.,
vol. 3, Aug. 2004, pp. 32–36.

[21] V. Veeriah, N. Zhuang, and G.-J. Qi, “Differential recurrent neural
networks for action recognition,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), 2015, pp. 4041–4049.

Thomas Chen (S’15) received the B.S. and M.S.
degrees in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2013 and
2015, respectively, where he is currently pursuing
the Ph.D. degree in electrical engineering.

He did an internship with the Circuits Research
Lab, Intel Corporation, Hillsboro, OR, USA,
in 2015. His research interests are high-speed and
low-power VLSI circuits and systems.

Mr. Chen received the Rackham Merit Fellowship
from the University of Michigan in 2013 and the

NSF Graduate Research Fellowship in 2015.

Ching-En Lee (S’15) received the B.S. degree
in electrical engineering from National Tsing Hua
University, Hsinchu, Taiwan, in 2012, and the M.S.
degree in electrical engineering from the University
of California at Los Angeles, Los Angeles, CA,
USA, in 2015. He is currently pursuing the Ph.D.
degree in electrical engineering and computer sci-
ence with the University of Michigan, Ann Arbor,
MI, USA.

From 2015 to 2016, he was with Intel Labs,
Hillsboro, OR, USA, where he worked on real-time

machine learning hardware acceleration for full-duplex radios. From 2018
to 2019, he was with Iluvatar Corex, San Jose, CA, USA, where he led the
development of deep learning inference SoCs and systems for edge computing
applications. His current research interests focus on efficient domain-specific
computing architectures and full-stack systems design for machine learning,
deep learning, computer vision, and robotics.

Chester Liu (S’14) received the B.S. degree in elec-
trical engineering from National Tsing Hua Univer-
sity, Hsinchu, Taiwan, in 2008, and the M.S. degree
in electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, in 2010. He is currently pur-
suing the Ph.D. degree in electrical engineering and
computer science with the University of Michigan,
Ann Arbor, MI, USA.

From 2010 to 2013, he was with MediaTek,
Hsinchu, Taiwan, where he worked on the platform
design and verification for smartphone SoCs. Since

2014, he has been with the University of Michigan. His current research
interests include neuromorphic computing, efficient hardware accelerator
design for machine learning and robotics, and 2.5-D integration technologies.

Zhengya Zhang (S’02–M’09–SM’17) received the
B.A.Sc. degree in computer engineering from the
University of Waterloo, Waterloo, ON, Canada, in
2003, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of California
at Berkeley, Berkeley (UC Berkeley), CA, USA,
in 2005 and 2009, respectively.

Since 2009, he has been a Faculty Member with
the University of Michigan, Ann Arbor, MI, USA,
where he is currently an Associate Professor with
the Department of Electrical Engineering and Com-

puter Science. His current research interests include low-power and high-
performance VLSI circuits and systems for computing, communications, and
signal processing.

Dr. Zhang serves on the Technical Program Committees of Symposium
on VLSI Circuits and IEEE Custom Integrated Circuits Conference (CICC).
He was a recipient of the David J. Sakrison Memorial Prize from UC Berkeley
in 2009, the National Science Foundation CAREER Award in 2011, and the
Intel Early Career Faculty Award in 2013. He was an Associate Editor of
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: REGULAR
PAPERS from 2013 to 2015 and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS PART II: EXPRESS BRIEFS from 2014 to 2015. He has been
an Associate Editor of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION SYSTEMS since 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

