
Efficient In Situ Error Detection Enabling
Diverse Path Coverage

Chia-Hsiang Chen, Yaoyu Tao, and Zhengya Zhang
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor

Abstract—Technology scaling continues to improve density, but
also reduces the critical charge to hold a logic state, causing
devices to become more susceptible to accidental disruptions
due to noise and soft errors. Increased process variation adds
to the reliability challenge, resulting in over designs and extra
timing margins at the cost of power consumption, silicon area and
performance degradation. We present efficient in situ error detec-
tion techniques to exploit datapath characteristics for monitoring
circuit errors: pre-edge checking in non-critical paths without
hold time constraints; post-edge checking in critical paths without
sacrificing performance; and cross-edge checking in moderate
paths for the optimal trade-off. The techniques are all realized
using the inherent redundancy within a conventional flip-flop
design and do not require any logic or sample duplication as
done by most existing methods. The detection-enabled flip-flop
is implemented using only 31 transistors as a competitive and
low-cost solution.

I. INTRODUCTION

The scaling of device geometries continues to improve the
performance of digital integrated circuits, but also leads to
growing challenges in reliability and variability [1]. To deal
with variations and aging problems, increasingly pessimistic
margins have been applied in circuit designs as shown in
Fig. 1(a), which results in a performance degradation and
energy wasted. The reliability challenge is exacerbated by the
shrinking of device dimensions and the ensuing reduction of
critical charge, as devices are becoming more susceptible to
the external noise sources and soft errors due to high-energy
particle strikes [2].

To enhance the robustness of deep-submicron designs
against occasional delay errors and soft errors, online circuit
techniques have been proposed to detect error occurrences.
These techniques can be classified to three groups based
on how the checking is performed: post-edge checking that
detects error in a window after the sampling edge [3]–[7],
pre-edge checking that detects error in a window prior to the
sampling edge [8], [9], as in Fig. 1(b), and multi-edge checking
that detects errors by upsampling using multiple clock phases
[10], [11].

Each existing technique has its own advantage and limita-
tion. The post-edge technique incurs no performance penalty
as checking occurs after the sampling edge, but each path
under post-edge protection must be carefully tuned to avoid
race conditions. The pre-edge technique is free of any hold
time constraints, and it can use the delay slack in fast paths
for error detection, however it prolongs the clock period if it
is used in slow (critical) paths. Note that none of the above
techniques alone is well suited to providing coverage of all

clock

temperature

aging

process

voltage

Post-edge error-detection window

Pre-edge error-prediction window

(a)

(b)

timing

margin

Fig. 1: (a) Timing margin allocated for static and dynamic variations,
and (b) pre-edge and post-edge error checking window.

types of datapaths. The implementation cost is also prohibitive,
as each of the above techniques costs more than 40 transistors
[3], [4], [8] or requires special clock controls [11], making it
very expensive to equip every datapath for a full coverage.

To overcome these challenges, we propose a diverse error
detection technique to protect combinational logic paths while
minimizing the performance penalty and implementation cost.
In particular, we use a new cross-edge technique and its
special pre-edge and post-edge versions for moderate, fast,
and slow paths, respectively. Our method utilizes the inherent
redundancy in a flip-flop design, thereby keeping the cost at
only 31 transistors. Furthermore, it can also be tuned by duty
cycling the clock signal, offering more flexibility for diverse
levels of protection.

II. PRIOR WORK

Pre-edge, post-edge and multi-edge are three classes of in
situ timing error detection techniques. Their unique features
are listed in Table I for comparison. The post-edge technique
performs error detection after the sampling edge, thus elimi-
nating the timing margin that would otherwise be necessary
for the occasional variation-induced delay errors. The post-
edge technique has been applied in high-performance, low-
power designs. It allows the clock period to be reduced for
a higher performance or the supply voltage to be reduced
for a lower power consumption, as the post-edge checking
acts as a safety net to detect the resulting delay errors. Post-
edge checking is often implemented by a duplicate shadow
latch that holds a post-edge sample that is compared with
the primary sample for error detection [3], [5]. Transition
detection was recently proposed as an alternative for a more
area-efficient implementation. Successful designs including
the second-generation RAZOR [4], [7] and DSTB [6] have
been demonstrated. However, it requires each path under

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 773

TABLE I: COMPARISON OF IN SITU ERROR DETECTION TECHNIQUES

Technique Post-edge checking Pre-edge checking Multi-edge checking

Implementations
RAZOR [3], [4] DSTB [6],

and TDTB [5]

BISER [8]

and aging sensors [9]
PEDFF [10] and TIMBER [11]

Error detection mechanism
Transition detectors [4], [6]

Duplicate latch/FFs [3], [5]

Transition detectors [9]

Duplicate latch/FFs [8], [9]
Duplicate latch/FFs [10], [11]

Number of clock domains 1 1 2 [10] and 4 [11]

Race conditions Yes No Yes

Checking window Limited by fast path Limited by max clock period Flexible by multi-sampling

post-edge protection to be carefully adjusted to avoid race
conditions.

The pre-edge technique has been presented in [8], [9] to
monitor errors by detecting transitions in the checking window
before the data is registered. The pre-edge technique is free
of hold time constraints and is proven to be effective, e.g., in
detecting slow changing events such as transistor aging [9], but
the checking window occupies a portion of the clock period
and degrades the performance in order to guarantee error-free
operations for critical paths.

The multi-edge technique in [10], [11] offers more flexibil-
ity as the sampling edges for error detection are not necessarily
aligned with the primary sampling edge of the datapath. Even
though multi-edge improves the performance by adaptive time
borrowing, the multi-edge implementation costs more than
the transition detection introduced in post-edge and pre-edge
checking and an additional clock domain also adds significant
design complexity.

Each of the three techniques has its advantages and disad-
vantages in handling paths of different delays. The output of
a critical path makes its final transition close to the sampling
edge, while a non-critical path makes its final transition early.
In the case of a fast path, the transition can happen shortly after
the launching edge, resulting in a tight hold time constraint and
a significant idle period prior to the end of the clock period.
The ideal error checking window in each case should be placed
right after the transition point as any delayed transition is an
indication of possible errors. The desirable checking window
for each type of path is annotated in Fig. 2(a). The figure
also shows the difficulty of designing one checking window
that fits all cases: a post-edge checking window causes race
conditions from fast path, as in Fig. 2(b); a pre-edge checking
window leads to performance penalty due to critical path as
the clock period needs to be lengthened, as in Fig. 2(c).

Besides the location of the checking window, the length of
the checking window is also important. A fixed length, as in
most of the existing pre-edge and post-edge implementations,
offers only a fixed protection against non-deterministic errors
with variable durations. A soft error can last from a few
pico seconds to hundreds of pico seconds [2]. The large
variation calls for a tunable scheme to support different levels
of protection as needed.

performance
penalty

post-edge

checking window

desirable checking

window

desirable checking

window

desirable checking

window

clock

critical path

moderately

critical path

short path

data transition

(a)

critical path

race

conditionshort path

(b)

critical path

(c)

increased

clock period

pre-edge checking window

Fig. 2: (a) Checking window positions depending on path criticality,
(b) fixed post-edge checking window causing race conditions, and (c)
fixed pre-edge checking window leading to performance degradation.

III. FLEXIBLE CROSS-EDGE CHECKING

We exploit the diverse path delay distribution and design
a new cross-edge checking to improve the performance while
minimizing race conditions. We implement cross-edge check-
ing based on a low-cost transition detection using a flip-flop.
The cross-edge circuitry can be tuned depending on path
criticality: pre-edge for fast paths, post-edge for critical paths,
and cross-edge for the optimal trade-off between performance
and race conditions in moderate paths. We assume that the
path criticality is determined in design time for tuning the
cross-edge circuitry.

A cross-edge checking window starts prior to the sampling
edge and extends after the sampling edge, thus it crosses the
sampling edge. A flexible and efficient circuit implementation
is shown in Fig. 3(a) based on a conventional transmission gate
flip-flop [12]. The flip-flop naturally keeps four copies of an
input: D, ND, NM and M (“N” indicates logic inversion) that
are phased apart by inverters and a transmission gate. We rely

774

clk_b

clk

clk_b

clk

clk

clk_b

clk

clk_b

D Q

Error

Detector

CW

Error flag

MND NM

D

NM

CW

reset_n

ND

M

CK

clk_b

clk

τ CW

Delay

Error flag

(a)

(b)

Error

Detector

Fig. 3: (a) Cross-edge checking design based on a conventional
transmission gate flip-flop [12], and (b) error detector design.

on the inherent redundancy instead of creating duplications,
which is the key to achieving lower power and area.

A. Cross-Edge Circuitry

The cross-edge error detector circuit is shown in Fig. 3(b).
The checking window CW is based on the inverted clock
clk b phased by an amount τ that is controlled by a local
delay element. The delay element can be shared by a group
of cross-edge flip-flops to amortize its cost. We can increase τ
to push the checking window forward in time towards a post-
edge checking for critical paths, or shrink the delay towards a
pre-edge checking for fast paths. To reduce the design effort, a
number of checking windows can be made based on different
local delays. We will select one for a cluster of paths to
suit their criticality. In addition to the location-tunability of
the checking window, the duration of CW is controlled by
duty cycling the clock signal. Thus, the duration is a tunable
fraction of the clock cycle, and is dictated by one of the clock
phase (i.e., low phase of the clock in Fig. 4).

The error detector circuit in Fig. 3(b) is made of a dynamic
gate followed by a latch [4]. The dynamic gate first pre-
charges. When CW is high, it checks the agreement of (D
and NM) and (M and ND) as an indication of an erroneous
transition. More specifically, the cross-edge checking window
can be divided into two parts: a pre-edge part and a post-
edge part. During the pre-edge part, clock is low and the
master latch is transparent (see Fig. 3(a)). Early samples in
NM and M are checked against late arriving samples D and
ND to accomplish pre-edge checking. The dynamic gate is
designed to respond much quicker than the propagation delay
between D and NM and the delay between M and ND to
guarantee the proper functionality. During the post-edge part
of the checking window, the master latch is holding and the
stored samples in NM and M are checked against post-edge

clk

CW

D

Q

Err

cross-edge checking

window

correct data

registered

error flagged

Fig. 4: Waveforms illustrating the operations of the cross-edge
circuitry.

Q

CK

clk_b

clk

τ CW

Delay

(a)

(b)

clk_b

clk

clk_b

clk

clk

clk_b

clk

clk_b

D

Transition

Detector

CW

Error flag

M

M
M1 M2

τ

Delay

M3
Error

Detector

CW

Error flag
M
M1
M2
M3

Transition

Detector

Fig. 5: (a) Pre-edge checking design, and (b) transition detector
design.

samples D and ND to accomplish post-edge checking. If an
erroneous transition is detected, the dynamic gate pulls down
and an error flag is generated to trigger appropriate actions.
An error could be corrected through rollback recovery [13],
architectural recovery [14] or cross-layer recovery [15]. Once
the error is resolved, the detector is reset by the controller.

We implemented the cross-edge circuitry in a 65nm CMOS
technology and the SPICE simulation waveforms are provided
in Fig. 4. The checking window is generated by delaying
clk b. In the first clock cycle, a clean input D is shown to
be correctly registered. While in the second clock cycle, the
input D makes an erroneous transition during the checking
window and it is detected as an error. The proposed cross-
edge checking circuitry adds a detector and extra wiring to
the conventional flip-flop design. Our 65nm CMOS circuit
simulation shows that the design consumes 13% more static
power and 25% more total power than the conventional flip-
flop at the highest switching activity of 1.

B. Pre-Edge Circuitry

Pre-edge checking can be made by shortening or eliminating
the local delay τ in the cross-edge design, but an alternative
design is possible for a guaranteed alignment between the
sampling edge and the checking window for a zero hold

775

clk

CW

D

Q

Err

effective pre-edge

checking window

error ignored

error flagged

Fig. 6: Waveforms illustrating the operations of the pre-edge circuitry.

time. Fig. 5(a) shows the alternative design. The same error
detector circuit is used but it taps only the master latch
internal node M and its delayed copies. During the pre-edge
part of checking window, the master latch is transparent and
the error detector monitors (M and M2) and (M1 and M3)
for transition detection, which implements pre-edge checking.
When the master latch is holding during the post-edge part of
the checking window, M can no longer change and post-edge
checking is essentially turned off.

The SPICE simulation waveforms of this circuitry are
illustrated in Fig. 6. An erroneous transition made by input
D after the sampling edge is blocked by the master latch, thus
no error is detected. In this way, an effective pre-edge checking
window is created as shown in Fig. 6, and the alignment
of this effective pre-edge window with the sampling edge is
guaranteed. The design costs 15% more static power and 33%
more total power than a conventional flip-flop at the highest
switching activity of 1. The slight increase in power compared
to the cross-edge design is due to the extra inverters to generate
M1, M2 and M3 as in Fig. 5(b).

C. Comparisons

We compare the implementation complexity of the pro-
posed cross-edge technique with state-of-the-art in situ error
detection techniques in Table II. All error detection techniques
use one delay element to generate the checking window. The
transistor count of the proposed cross-edge flip-flop is only
31, much lower than other designs. In particular, the post-
edge RAZOR technique uses detection clock generator and
transition detector, which increase its transistor count to 47.
The pre-edge BISER technique uses two conventional flip-
flops and a C-element as a filter, resulting in a transistor count
of 52. The transistor count of multi-edge TIMBER flip-flop is
36, but a specially designed clock control circuit is required
to generate input signals to the flip-flop, costing more than 30
extra transistors.

IV. CONCLUSION

We propose a new efficient and in situ error detection
technique to enhance system reliability against delay and
soft errors. This technique exploits datapath criticality by
appropriately adjusting the checking window for a higher
performance while minimizing race conditions. The error
detection technique is implemented in a flexible cross-edge

TABLE II: IMPLEMENTATION COMPLEXITY OF IN SITU
ERROR DETECTION TECHNIQUES

Flip-flop type
Standard

[12]

Post-edge

[3], [4]

Pre-edge

[8]

Multi-edge

[11]

Cross-edge

(this work)

Transistor count 22 47 52 36 31

Delay elements 0 1 1 1 1

Clock domains 1 1 1 ≥ 2 1

checking circuitry that relies on the inherent redundancy
without resorting to additional storage or duplication, thus
the implementation cost is kept low. By duty cycling the
clock signal, the checking window can be adjusted to provide
different levels of protection. An alternative pre-edge circuitry
is also proposed to guarantee the alignment of the checking
window and the sampling edge for a zero hold time. The
flexible and low-cost technique provides diverse path coverage
for a fully protected error-resilient system.

ACKNOWLEDGMENT

This research was supported in part by Intel Corporation.

REFERENCES

[1] S. Borkar, “Design perspectives on 22nm CMOS and beyond,” in Design
Automation Conference, ACM/IEEE, Jul. 2009, pp. 93–94.

[2] P. Dodd et al., “Production and propagation of single-event transients
in high-speed digital logic ICs,” IEEE Trans. Nuclear Science, vol. 51,
no. 6, pp. 3278–3284, Dec. 2004.

[3] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in IEEE/ACM Microarchitecture, Dec. 2003, pp.
7–18.

[4] S. Das et al., “RazorII: In situ error detection and correction for PVT
and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp.
32–48, Jan. 2009.

[5] K. Bowman et al., “Energy-efficient and metastability-immune timing-
error detection and recovery circuits for dynamic variation tolerance,”
in Integrated Circuit Design and Technology and Tutorial, June 2008.

[6] K. Bowman et al., “A 45 nm resilient microprocessor core for dynamic
variation tolerance,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp.
194–208, Jan. 2011.

[7] S. Valadimas et al., “Cost and power efficient timing error tolerance in
flip-flop based microprocessor core,” in IEEE European Test Symposium,
2012, pp. 8–13.

[8] M. Zhang et al., “Sequential element design with built-in soft error
resilience,” IEEE Trans. VLSI Systems, vol. 14, no. 12, pp. 1368–1378,
Dec. 2006.

[9] M. Agarwal et al., “Circuit failure prediction and its application to
transistor aging,” in VLSI Test Symposium, May 2007, pp. 277–286.

[10] M. Kurimoto et al., “Phase-adjustable error detection flip-flops with 2-
stage hold driven optimization and slack based grouping scheme for dy-
namic voltage scaling,” in Design Automation Conference, ACM/IEEE,
Jun. 2008, pp. 884–889.

[11] M. Choudhury et al., “TIMBER: Time borrowing and error relaying for
online timing error resilience,” in Design, Automation Test in Europe
Conference Exhibition, Mar. 2010, pp. 1554–1559.

[12] G. Gerosa et al., “A 2.2 W, 80 MHz superscalar RISC microprocessor,”
IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1440 –1454, Dec. 1994.

[13] T. Sakata et al., “A cost-effective dependable microcontroller architec-
ture with instruction-level rollback for soft error recovery,” in Depend-
able Systems and Networks, IEEE/IFIP, June 2007, pp. 256–265.

[14] C.-H. Chen et al., “A confidence-driven model for error-resilient com-
puting,” in Design, Automation Test in Europe Conference Exhibition,
Mar. 2011.

[15] N. Carter et al., “Design techniques for cross-layer resilience,” in Design,
Automation Test in Europe Conference Exhibition, Mar. 2010, pp. 1023–
1028.

776

