
A Confidence-Driven Model for Error-Resilient Computing
Chia-Hsiang Chen1, Yejoong Kim1, Zhengya Zhang1, David Blaauw1, Dennis Sylvester1, Helia Naeimi2, Sumeet Sandhu2

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
2Intel Corporation, Santa Clara, CA

Abstract—We propose an adaptive reliability enhancement struc-
ture for deeply-scaled CMOS and future devices that exhibit
nondeterministic behavior. This structure forms the basis of a
confidence-driven computing model that can be implemented in
either a rollback recovery or an iterative dual modular redun-
dancy method incorporating synchronous handshake schemes.
The performance and cost of the computing model are estimated
using a 45 nm CMOS technology and the functionality is verified
by FPGA-based emulation. The confidence-driven computing
model is demonstrated using a 16-bit, 12-stage CORDIC proces-
sor operating under random, transient errors. The confidence-
driven computing model adapts to the fluctuating error rates at
the device substrate level to guarantee the reliability of computa-
tion at the system level. This computing model costs 4.2 times
smaller area and 2.7 times less energy overhead than triple mod-
ular redundancy to guarantee a system-level mean time to failure
of two years.

Keywords: reliability, transient error, confidence estimator, roll-
back recovery, dual modular redundancy.

I. INTRODUCTION
The scaling of semiconductor devices continues to improve

the cost and performance of digital integrated circuits. CMOS
device size has already reached the tens of nanometer regime.
In the meantime, a variety of nano devices, such as carbon na-
notube (CNT) [1], graphene [2], spin [3], nanoelectromechani-
cal (NEM) relay [4], memristor [5], have been proposed to sus-
tain Moore’s law of scaling for years to come [6]. Although
these new CMOS and post-CMOS devices boast the much an-
ticipated high integration density and substantially lower ener-
gy consumption, they also exhibit less deterministic behavior.
For example, the reduced critical charge with scaling causes the
circuits to be more susceptible to accidental disruptions due to
soft errors, power supply jitter, and quantum tunneling, leading
to reliability concerns as scaling continues.

To overcome the reliability challenge, two common tech-
niques can be employed. One is margining which provides
sufficient slack in timing and supply voltage for the worst case;
the other technique is fault detection and recovery. Margining
can be wasteful as the worst case is rarely encountered. Fault
detection and recovery makes use of either spatial redundancy,
such as N-modular redundancy (NMR), or temporal redundan-
cy, such as checkpointing and rollback. These methods are
either expensive or not flexible enough to adapt to the fluctuat-
ing device error rates and the varying application requirements.

We propose a confidence-driven computing model that
combines temporal and spatial redundancy to reduce the cost of
reliability enhancement for a wide range of error rates. In par-
ticular, we use fine-grained temporal redundancy for the tuna-
ble reliability at an improved performance compared to check-
pointing and rollback; and we apply partial spatial redundancy
to reduce the energy and area overhead while providing the
necessary protection against permanent errors. The key concept
of the proposed computing model is to employ confidence es-
timators in each stage of computation that enforces a confi-

dence threshold to be met before the hardened output is propa-
gated to the following stage, as shown in Fig. 1. This compu-
ting model is emulated on FPGA incorporating real-time error
injection at random locations in the circuitry. The experiments
based on a 16-bit, 12-stage coordinate rotation digital computer
(CORDIC) processor demonstrates several orders of magnitude
reliability enhancement with a moderate throughput penalty,
and the area and energy overhead are as low as 8% and 14%
respectively.

II. RELATED WORK
An error-resilient computation can be achieved through ei-

ther error tolerance or error correction. Error tolerance can be
provided by the computation algorithm itself, an example of
which is the work on algorithmic noise-tolerance (ANT) [7],
where errors incurred due to supply voltage over scaling are
compensated by the computation algorithm. Error tolerance can
be provided at the architecture level, as what has been imple-
mented in systems such as ERSA [8], which employs multiple
cores of lower reliability to execute probabilistic applications.
The scalable stochastic processor [9] enables error tolerance by
transforming a datapath with balanced critical paths to one that
is error-scaling friendly. The above works improve the robust-
ness of computation, thus the supply voltage and clock fre-
quency margins can be reduced to lower power consumption
and to improve performance. However, error tolerance tech-
niques are often limited in their applicability. ANT, ERSA and
stochastic processor techniques all rely on the characteristics of
a specific target computation and they need to be tailored to
each individual application.

In contrast, an error detection and correction approach is
general-purpose in nature. Feed-forward recovery methods
provide spatial redundancy such that the errors are detected and
corrected with no interruption in the computation. The method
is commonly known as N-modular redundancy or NMR. The
fluid NMR scheme [10] demonstrates the tradeoff between
power and reliability: the number of pre-allocated redundancies
can be intelligently selected along with a matching voting strat-
egy to achieve the required reliability with low power. Howev-
er, cost increases exponentially when the device substrates
fluctuate over a wide range of error rates [11]. The BulletProof
design [12] incorporates adaptive sparing using routers in a
widely-applicable defect-tolerant architecture, but the area and
energy overhead are still significant.

In Fig. 2, we classify different error-recovery techniques
based on their target error duration from short transient to per-

This research is supported by Intel Corporation.
978-3-9810801-7-9/DATE11/©2011 EDAA

Logic

Logic

Logic
Logic

C
on

fid
en

ce
Es

tim
at

or

C
on

fid
en

ce
Es

tim
at

or

C
on

fid
en

ce
Es

tim
at

or

Duplicate Logic

Figure 1. Proposed confidence-driven computing model incorporating
confidence estimators.

Razor [15]

NMR
Fluid NMR [10]

Rollback Recovery [16]
Confidence Estimator (This Work)

error duration fraction of
one cycle one cycle multiple cycles permanent

recovery techniques

BulletProof [12]

Figure 2. Error-recovery techniques and the applicable error duration.

Spatial Redundancy
Less More

Adaptive, lower area
and energy overhead

(this work)

Checkpointing and rollback

N-modular redundancy

Te
m

po
ra

lR
ed

un
da

nc
y

Fi
ne

-g
ra

in
ed

C
oa

rs
e-

gr
ai

ne
d

High performance,
but high area and
energy overhead

Adaptive,
but high latency

Figure 3. Combination of spatial and temporal redundancy for an effi-
cient error-resilient computing system.

M
ai

n
Fl

ip
-F

lo
p

Fl
ip

-F
lo

p

Checker

Controller

Counter
pclk

Confidence Estimator

cl
k

cl
k

cl
k

inter-stage
signal

inter-stage
signal

Logic

Figure 4. Block diagram of the confidence estimator.

manent. NMR is capable of correcting both permanent errors
and transient errors. If an error is known to last for a short dura-
tion, a more area- and energy-efficient alternative is through
temporal redundancy [13], which can be implemented in a
checkpointing and rollback scheme at the software level – er-
rors are detected by repeating the computation over time, thus
only one copy of the datapath is needed [14]. Nevertheless,
checkpointing requires saving the context, which can be costly.
Rollback incurs significant throughput and latency penalty,
causing performance degradation especially when errors hap-
pen frequently. The Razor technique [15] improves on the con-
ventional checkpointing and rollback by performing rollback at
the circuit level. Razor uses a parallel shadow latch to detect
and correct errors before the next clock cycle expires. In this
way, Razor incurs only a small performance overhead, but the
error detection window is also short, limiting its effectiveness
to detecting errors that last for a fraction of a cycle. An alterna-
tive circuit-level rollback and recovery technique [16] requires
a duplicate datapath for error detection and rollback buffers for
correction. The rollback recovery technique has a smaller area
overhead compared to NMR. Its reliability enhancement is not
adjustable either.

The confidence estimator proposed in this paper can be ap-
plied with temporal redundancy to extend the error detection
window to multiple clock cycles. It also allows temporal re-
dundancy to be applied in conjunction with spatial redundancy
to improve the throughput and latency. Its key feature is that it
enforces a confidence threshold to be met by looking for
agreements, either through repeated computation over the same
datapath (temporal redundancy) or duplicate datapaths (spatial
redundancy). The confidence threshold can be adjusted based
on the device error rate and the application requirement. For
example, when the application-required reliability is high and
the device error rate is high, the confidence threshold is raised
to allow more repeated computations. The resulting throughput
degradation can be compensated by a fine-grained temporal
redundancy to limit the number of recomputations and increase
the clock frequency. The combination of spatial and temporal

redundancy produces an adaptive error-resilient computing as
illustrated in Fig 3.

III. CONFIDENCE-DRIVEN COMPUTING MODEL
In the proposed confidence-driven computing model, a da-

tapath is partitioned into short segments where the probability
of error of each segment is bounded. A confidence estimator is
placed at the end of each segment to harden the output for for-
ward propagation to the next stage. A confidence estimator
(CE) is composed of four components: a flip-flop, a checker, a
counter, and a small controller as shown in Fig. 4. The confi-
dence estimator samples the output of the datapath in every
clock cycle and compares it with the previous sample stored in
the flip-flop (through temporal redundancy), or the output of a
duplicate datapath (through spatial redundancy). The checker
performs the comparison and looks for either an agreement or a
disagreement. The counter keeps track of the confidence level
of the output: the confidence level is raised upon an agreement
and reset upon a disagreement. The controller ensures that the
confidence level reaches the threshold before allowing the out-
put to be propagated through the main flip-flop by enabling the
propagation clock (pclk).

An n-bit counter is capable of tracking 2n distinct confi-
dence levels. The lowest confidence level indicates bypass. The
controller generates synchronization signals and coordinates
with the neighboring stages through inter-stage signaling. We
explore two types of synchronization schemes: lockstep and
speculative. Their distinct effects on the output reliability,
throughput, latency, as well as the area and energy overhead
are described in the following sections after a brief introduction
of the emulation framework and the baseline datapath.
A. FPGA-Based Emulation Framework

A CORDIC processor is used to demonstrate the functio-
nality of the confidence-driven computing model. A CORDIC
processor is constructed using multiple stages of shift and add
operations. Each stage can be entirely identical, an example of
which is shown in Fig. 5(a). A 16-bit, 12-stage CORDIC pro-
cessor is implemented as the baseline design on a Xilinx Vir-
tex-5 FPGA.

 To emulate runtime errors, an error injection block is add-
ed to the end of each CORDIC stage, as shown in Fig. 5(b).
The error injection block inverts the output bits using XOR
gates based on the error rate that is selected. The random errors
are generated using a set of linear feedback shift registers
(LFSR) by comparing their values to some constants: if the
LFSR values match the constants, bit errors are injected by
inverting the bits. Since each LFSR produces 1 and 0 with
nearly equal likelihood, the probability of error being generated
is 2-x, where x is the length of the constant. A set of maximal-
length LFSRs of various lengths is constructed, each of which

start executing
checking

confidence
level

ready

“ready” from
the next stage

pclk to the
next stage

“ready” to the prev. stage

pclk from the
prev. stage

insufficient confidence

checking
agreement

sufficient
confidence

Figure 6. Lockstep synchronization flow.

2

4

6

8

10

12

1E-4 1E-5 1E-6

A
ve

ra
ge

D
el

ay
pe

r
C

om
pu

ta
tio

n

CT=3

CT=2

Node Error Rate
(b)

1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 1E-24 1E-25

1E-8

1E-4

1

Sy
st

em
E

rr
or

R
at

e

CT=2

CT=3

No error protection

1E-20

1E-16

1E-12

Node Error Rate
(a)

1E-22 1E-231E-21

MTTF of two years

produces a different error probability. An error-rate selector,
shown in Fig. 5(c), sets the error rate by choosing one of the
LFSRs.

 Each bit of the datapath assumes a different error rate due
to the unequal propagation paths [17]. We capture the unequal
error rates by mapping the gate level description of the
CORDIC processor in software and apply independent and
identical circuit node level error injection across the entire da-
tapath. We find that the least significant bit of each CORDIC
stage, or bit 0, has the lowest error rate due to the shortest path
and fewest number internal nodes along the path. Bit 1 error
rate is 2.8 times higher; bit 2 error rate is 3.9 times higher; and
bits 3 to 15 error rates are the highest at 4.3 times due to the
long paths. This experiment used a 16-bit ripple carry adder
topology. A different datapath topology could have equally
well been used and would have yielded a different error rate
profile. The error rate profile is accounted for in the error injec-
tion block by setting the bit 0 at the base error rate and tuning
up the error rates of the remaining bits accordingly.

Fault simulation can be accelerated by hardware emulation
by up to six orders of magnitude for complex designs [18]
compared to software-based simulations. A hardware emula-
tion setup was also used in [8], which relied on pre-stored error
vectors supplied through scan chains. In contrast, our FPGA
based emulation uses real-time, on-FPGA error generation for
the maximum performance.

The 12-stage CORDIC processor is partitioned into two,
three or four segments and each segment terminates at a confi-
dence estimator. Properties of the confidence estimator are
described in Subsections B and C below by assuming a roll-
back recovery (RR) method incorporating only temporal re-
dundancy. The incorporation of spatial redundancy is described
in Subsection D in an iterative dual modular redundancy
(IDMR) method.
B. Lockstep Synchronization

In the lockstep synchronization scheme, the output of one
stage is guaranteed to be hardened before it is propagated to the
next stage. A slow stage, due to errors, holds back the computa-
tion and leaves the neighboring stages waiting. The flow chart
of the lockstep synchronization is shown in Fig. 6. The pclk

signal from the previous stage triggers the start of a new com-
putation in the current stage. The output is sampled and it is
checked for agreement. The counter accumulates the confi-
dence level (CL) until it reaches the confidence threshold (CT),
at which point the current stage enters the ready state. The con-
troller waits until the following stage signals “ready” and then
enables the pclk to allow the output to be propagated to the
following stage. After the output exits the current stage, a
“ready” signal is passed to the previous stage.

The confidence threshold is the primary knob to tune the
output reliability level. A confidence threshold of 2 requires 2
agreements and a threshold 3 requires 3 agreements. Note that
the confidence estimator looks for consecutive agreements in
time or concurrent agreements through redundant spatial cop-
ies, which is different from the majority voting scheme used in
NMR. Any disagreement resets the confidence level and res-
tarts the confidence accumulation process.

Fig. 7 shows the emulation results of the CORDIC proces-
sor on FPGA. Confidence estimators are placed at the end of
6th stage and 12th stage of the CORDIC processor to enhance
the system reliability. Fig. 7(a) shows the system error rate
(the probability of an incorrect system output) as a function of
the circuit node error rate (the probability of error of any cir-
cuit node). Without any reliability enhancement mechanism,
the error rate of the CORDIC processor is three orders of
magnitude higher than the node error rate due to the large
number of circuit nodes that are subject to errors. With the
confidence estimators and as we increase the confidence thre-
shold, the system error rate decreases by at least four orders of
magnitude when the node error rate is at 10-5 or lower.

One CORDIC
Stage

Error GeneratorError-Rate
Selection

±±±

>> >>

LFSR1

constant1
LFSR2

constant2

=

err

Error-Rate Selection

err

(a) (b) (c)

=

x y z

Z[15] a

x’ y’ z’

Fig. 5. (a) A single stage of a CORDIC processor composed of two shifters and three adders, (b) error injection mechanism, and (c) error generator.

Figure 7. (a) System error rate
based on FPGA emulation
results (solid line) and extra-
polation (dash line), and (b)
average delay per computation
of the CORDIC processor as
the confidence threshold is
adjusted.

1

3

5

7

9

1E-4 1E-5 1E-6

A
ve

ra
ge

D
el

ay
pe

r
C

om
pu

ta
tio

n

CT=3

increase the number of
CE stages from 2 to 4

Node Error Rate
(b)

Node Error Rate
(a)

1

2

3

4

1E-4 1E-5 1E-6

CT=2

increase the number of
CE stages from 2 to 4

A
ve

ra
ge

D
el

ay
pe

r
C

om
pu

ta
tio

n

Figure 8. Average delay per computation improves with more fine-
grained placement of confidence estimators: (a) at confidence threshold =
2, and (b) at confidence threshold = 3.

start executing
checking

confidence
level

“ready” from
the next stage

pclk to the
next stage

“ready” to the prev. stage

pclk from the
prev. stage

insufficient confidence

checking
agreement

sufficient
confidence

speculation

ready

Figure 9. Speculative synchronization flow.

 To translate the error rates in practical terms, if we were to
guarantee a mean time to failure (MTTF) of two years at a 1
GHz clock frequency, the required node error rate is 10-22 if no
reliability enhancement technique is used. This extremely low
node error rate is possible with current mainstream CMOS
technology but will likely become difficult with continued
device scaling and the new generation of nano devices. By
inserting confidence estimators, the required node error rate is
relaxed to 10-11 with a confidence threshold of 2 and 10-8 with
a threshold of 3. The threshold can be adjusted at runtime
based on the underlying circuit error rate and the application
requirement. A high confidence threshold provides better pro-
tection but it also decreases the throughput. Fig. 7(b) shows
the average delay per computation (the inverse of throughput):
when the node error rate is moderate to low, a confidence thre-
shold of 2 requires at least 2 clock cycles per computation and
a threshold of 3 requires at least 3 cycles per computation.
When the circuit node error rate is high, the delay becomes
significant using a higher threshold. Frequent node errors slow
down the process of gathering agreements. It is therefore more
advantageous to operate the confidence estimators at the low-
est confidence threshold that provides the necessary reliability.
The runtime configurable confidence threshold accommodates
device fluctuations and different reliability requirements
among applications. Note that increasing the confidence thre-
shold has only a minor impact on the energy consumption
because the datapath under protection usually does not incur
additional activities during checking.

 To reduce the throughput penalty, we now show how con-
fidence estimators can be placed in finer-grained intervals. A
fine-grained placement of confidence estimators shortens the
path and bounds the probability of error, contributing to a fast-
er convergence towards the required reliability. The sampling
clock frequency can also be increased due to the shortened
delay per stage. Fig. 8 shows the improved average delay per
computation as more stages of confidence estimators are in-
serted to the same CORDIC processor. The improvement be-
comes more significant at high circuit node error rates, thanks
to the faster convergence towards the confidence threshold.
The delay improvement is also attributed to the increased
clock frequency by up to 2.4 times as more confidence estima-
tor stages are inserted, as shown in Table I.

The fine-grained placement of confidence estimators in-
creases the area and energy penalties. Table I presents the
comparison among different placement choices by listing the
normalized clock frequency, area and energy, which are esti-

mated based on the synthesis results using a 45 nm CMOS
technology. Adding one stage of confidence estimator reduces
the clock frequency by 30% and introduces an 8% area over-
head. Additional stages of confidence estimators improve the
clock frequency and the area overhead increases. However,
there is a limit to how fine-grained the confidence estimators
can be efficiently placed due to the diminishing improvement
in throughput, and the escalating cost of area and energy. De-
sign time decisions need to be made based on the expected
range of circuit error rates along with the area and energy con-
straints imposed by the design.
C. Speculative Synchronization

The speculative synchronization scheme allows a computa-
tion to proceed to the next stage even if the confidence level
has not reached the confidence threshold. Compared to the
lockstep synchronization, the speculative execution shortens
the latency and permits a higher throughput. The flow chart of
the speculative synchronization is shown in Fig. 9. Under this
scheme, the confidence estimators become transparent gate
keepers: tentative output is passed to the next stage when the
next stage is ready to accept a new computation, while the
tentative output is still being hardened by the current stage.
When the current stage finally reaches the confidence thre-
shold, its controller signals “ready” to the previous stage, indi-
cating that it is ready to accept a new computation. The spe-
culative synchronization cuts the idle cycles when one stage is
complete and waiting for the previous stage to finish accumu-
lating confidence. The scheme assigns tentative work to oth-
erwise idle stages. The lockstep synchronization can be ap-
plied in the final stage to ensure that the final output is har-
dened to meet the confidence threshold.

The speculative synchronization provides almost identical
reliability enhancement compared to the lockstep scheme as
shown in Fig. 10(a), and the speculative scheme demonstrates
an appreciable improvement in throughput, or average delay
per computation, compared to the lockstep scheme when the

TABLE I. AREA AND ENERGY OF THE ROLLBACK RECOVERY METHOD
(LOCKSTEP SYNCHRONIZATION)

 1-stage
CE

2-stage
CE

3-stage
CE

4-stage
CE

Normalized clock
period 1.30 0.76 0.60 0.54

Normalized area 1.082 1.210 1.337 1.464

Normalized energy
(CT=2) 1.14 1.20 1.36 1.53

Normalized energy
(CT=3) 1.15 1.23 1.46 1.64

Normalized energy
(CT=4) 1.16 1.26 1.54 1.76

1

2

3

4

5

1E-4 1E-5 1E-6
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-4 1E-5 1E-6

Sy
st

em
E

rr
or

R
at

e

A
ve

ra
ge

D
el

ay
pe

r
C

om
pu

ta
tio

n

Node Error Rate
(b)

Node Error Rate
(a)

lockstep sync.

lockstep sync.
speculative sync.

speculative sync.

lockstep sync.
speculative sync.

Figure 10. (a) System error rate and (b) average delay of the CORDIC
processor using different synchronization schemes (assume a rollback
recovery method using a confidence threshold of 2).

1E-4 1E-5 1E-6
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1

2

3

4

5

1E-4 1E-5 1E-6

A
ve

ra
ge

D
el

ay
pe

r
C

om
pu

ta
tio

n

IDMR
IDMRSy

st
em

E
rr

or
R

at
e

Node Error Rate
(b)

Node Error Rate
(a)

RRRR

Figure 11. (a) System error rate and (b) average delay of the CORDIC
processor using rollback recovery (RR) and iterative DMR (IDMR) me-
thod (assume a confidence threshold of 2).

circuit node error rate is high. Moreover, the speculative syn-
chronization can substantially improve the latency of compu-
tation. When the circuit node error rate is moderate to low, the
latency of computation is almost independent of the confi-
dence threshold because a tentative output is passed along
without waiting, followed by parallel checking performed at
all the stages. Therefore, the speculative synchronization is
especially attractive for latency-sensitive applications.

The area overhead of the speculative scheme is higher than
the lockstep scheme by a negligible proportion, and its energy
overhead is up to 6 % higher. The higher energy cost is due to
the higher switching activity in speculative execution.
D. Spatial Redundancy

 The above discussions assume a rollback recovery (RR)
method that utilizes only the temporal redundancy. In fact,
spatial redundancy can be incorporated in conjunction with the
temporal redundancy to achieve additional gains in perfor-
mance. The simplest way to include spatial redundancy is by
providing a duplicate datapath in the form of dual modular
redundancy (DMR). A duplicate datapath allows the confi-
dence to be accumulated quickly, thus increasing throughput
and minimizing latency. DMR is less expensive than TMR.
Errors detected in DMR trigger recomputations for error cor-
rection in an iterative DMR (IDMR) method. The inter-stage
synchronization is performed using either the lockstep or the
speculative scheme described above.

 The iterative DMR method demonstrates slightly higher
reliability enhancement than the rollback recovery method as
shown in Fig. 11(a). The improvement is due to the difference
in confidence accumulation policies: an error in DMR invali-
dates one pair of computations from both the primary and the
duplicate datapath, thus the number of agreements needed on
average to reach the confidence threshold is slightly higher
than the rollback recovery method. Iterative DMR incurs less
throughput penalty compared to the rollback recovery method,

as shown in Fig. 11(b), but the energy and area are 58% and
64% higher respectively by comparing the results in Table II
and Table I (when using four stages of confidence estimators).

 The iterative DMR method detects permanent errors when
a confidence estimator consistently reports disagreements and
fails to meet the confidence threshold over a large number of
clock cycles. An adaptive sparing method can be used to dy-
namically allocate additional spatial redundancy to alleviate
permanent errors. This enhancement follows the existing work
on sparing [12], [19], and it will be part of our future work.

IV. COMPARISON AND DISCUSSION
In a practical operating environment, the circuit node error

rate can fluctuate over time due to supply jitter, temperature
variation, noise, and other environmental effects. The effects
on different parts of a chip can also vary, e.g., some parts are
subject to a higher temperature or a higher noise level due to
run-time activities. The confidence-driven computing model
based on confidence estimators allows the dynamic adjustment
of the confidence thresholds to accommodate variations in
time and differences among parts of a chip.

Two case studies are shown in Fig. 12 for two applica-
tions: a probabilistic application that tolerates a high system
error rate and a general-purpose computing application that
requires a very low system error rate. In the first case study
targeting a probabilistic application, the confidence-driven
computing model guarantees a given system error rate of 10-5,
when the underlying circuit node error rate varies between 10-5
and 10-4. The protection can be accomplished in several ways:
rollback recovery or iterative DMR with either lockstep or
speculative synchronization. For example, using rollback re-
covery and speculative synchronization, the confidence thre-
shold can be set to either 3 or 2 to accommodate node error
rate of 10-4 and 10-5, respectively. In comparison, TMR guar-
antees the 10-5 system error rate when the node error rate is at

TABLE II. AREA AND ENERGY OF THE ITERATIVE DMR METHOD
(LOCKSTEP SYNCHRONIZATION AND CT = 2)

 1-stage
CE

2-stage
CE

3-stage
CE

4-stage
CE

Normalized area 2.03 2.15 2.28 2.40

Normalized energy 2.12 2.17 2.27 2.42

1

2

3

4

5

1
2

3
4

NMR(3 out of 5)

NMR(2 out of 3)

IDMR (CT=2)

RR (CT=2)

RR(CT=3)

4E-5
6E-5

8E-5
1E-4

N
or

m
al

iz
ed

E
ne

rg
y

Average Delay

per ComputationNode Error Rate

2E-5

(a)

1

2

3

4

5

1
2

3
4

1E-12
1E-11

1E-10
1E-9

1E-8
1E-7

N
or

m
al

iz
ed

E
ne

rg
y

Average Delay

per ComputationNode Error Rate

NMR(3 out of 5)

NMR(2 out of 3)

IDMR (CT=2)
RR (CT=2)

RR(CT=3)

(b)
Figure 12. Normalized energy and latency overhead of two cases: (a) a
probabilistic application that requires a 10-5 system error rate, and (b) a
highly reliable general-purpose computing application that requires a
MTTF of 2 years.

10-5, but it fails to adapt when the circuit error rate deteri-
orates.

The confidence-driven model has low area and energy
overhead, which are 4.2 times and 1.6 times lower compared
to TMR as shown in Table III based on the rollback recovery
method. The iterative DMR method is more costly, but still
30% more area-efficient and 16% more energy-efficient than
TMR. Compared to the fluid NMR that is able to adapt to the
range of node error rates, the rollback recovery method costs
8.5 times smaller area and 3.2 times lower energy.

The second case study targets a highly reliable general-
purpose computing application that requires two years of
MTTF. We estimate that the rollback and recovery method
costs 4.2 times smaller area and 2.7 times lower energy than
TMR as shown in Table IV.

V. CONCLUSION
We propose a confidence-driven computing model that en-

hances the system reliability even when the underlying circuits
operate non-deterministically. The reliability enhancement is
enabled by the confidence estimators using both spatial and
temporal redundancy. Fine-grained temporal redundancy low-
ers the performance penalty, while the reduced spatial redun-
dancy cuts the area and energy overhead. As a result, the con-
fidence estimator based methods can be realized more effi-
ciently compared to the competing alternatives, such as TMR.

 We explore two choices in implementing the confidence-
driven computing: rollback recovery and iterative DMR. The
rollback recovery method is more area and energy efficient,
and the iterative DMR method features a higher throughput.
The two methods can adopt one of the two synchronization
schemes: lockstep or speculative. The speculative scheme
permits a lower latency and average delay per computation
with a negligible increase in energy.

The confidence-driven computing model represents a
promising solution that bridges the gap between the varying
application-required reliability and the fluctuating device be-
havior in future technologies. The placement of confidence
estimators, along with the tuning of the confidence threshold
and the synchronization scheme will allow us to construct a
reliability-diverse computer architecture with computing ele-
ments that provide a range of reliability levels at appropriate
energy cost to deliver the required performance.

ACKLOWEDGEMENT
The authors would like to thank Farhana Sheikh, Keith

Bowman, Feng Xue, Tanay Karnik, Chris Ramming and
Shekhar Borkar for guidance and suggestions.

REFERENCES
[1] H. Wei, et al., “Efficient Metallic Carbon Nanotube Removal Readily

Scalable to Wafer-Level VLSI CNFET Circuits,” in Symp.VLSI Circuits,
pp. 237-238, 2010.

[2] S. J. Han, et al., “Study of Channel Length Scaling in Large-Scale
Graphene,” in Symp.VLSI Circuits, pp. 26-27, 2010.

[3] T. Inokuchi, et al., “Reconfigurable Characteristics of Spintronics-based
MOSFETs for Nonvolatile Integrated Circuits,” in Symp.VLSI Circuits,
pp. 119-120, 2010.

[4] F. Chen, et al., “Demonstration of Integrated Micro-Electro-Mechanical
Switch Circuits for VLSI Applications,” in IEEE Int. Solid-State Circuit
Conf., pp. 26-27, 2010.

[5] S. H. Jo, K. H. Kim, and W. Lu, “Programmable Resistance Switching
in Nanoscale Two-Terminal Devices,” Nano Lett., vol. 9, no. 1, pp. 496-
500, 2009.

[6] International Technology Roadmap for Semiconductors 2009 [Online]
Available: http://www.itrs.net/Links/2009ITRS/Home2009.htm

[7] R. Hegde and N. R. Shanbhag, “Energy-Efficient Signal Processing via
Algorithmic Noise-Tolerance”, in Proc.Int. Symp. Low Power Electron.
and Design, pp. 30–35, 1999.

[8] L. Leem, et al., “ERSA: Error Resilient System Architecture for
Probabilistic Applications,” in Design, Automation, and Test in Europe
Conf., pp. 1560-1565, 2010.

[9] S. Naravana, et al., “Scalable Stochastic Processors,” in Design,
Automation, and Test in Europe Conf., pp. 335-338, 2010.

[10] J. Sartori, J. Sloan, and R. Kumar, “Fluid NMR – Performing
Power/Reliability Tradeoffs for Applications with Error Tolerance,” in
Workshop on Power Aware Computing and Systems, 2009.

[11] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-Tolerent Techniques for
Nanocomputers,” Nanotechnology, vol. 13, no. 3, pp. 357-362, May,
2002.

[12] K. Constantinides, et al., “BulletProof: A Defect-Tolerant CMP Switch
Architecture,” in Int. Symp. High-Performance Comput. Architecture,
pp. 5-16, 2006.

[13] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerance to Rescue
Nanometer Technologies,” in VLSI Test Symp., pp 86-94, 1999.

[14] K. G. Shin, and H. Kim, “A Time Redundancy Approach to TMR
Failures Using Fault-State Likelihoods,” in IEEE Trans. Comput., vol.
43, no. 10, pp. 1151-1162, 1994.

[15] D. Ernst, et al., “Razor: A Lowpower Pipeline Based on Circuit-Level
Timing Speculation,” in Proc. IEEE/ACM Int. Symp.Microarchitecture,
pp. 7–18, 2003.

[16] H. Naeimi and A. DeHon, “Fault-Tolerant Sub-Lithographic Design
with Rollback Recovery,” Nanotechnology, vol. 19, no. 11, Feb., 2008.

[17] B. E. S. Akgul, et al., “Probabilistic CMOS Technology: A Survey and
Future Direction,” in VLSI IFIP Int. Conf. , pp. 1-6, 2006.

[18] A. Pellegrini, et al., “Crash Test: A Fast High-Fidelity FPGA-Based
Resiliency Analysis Framework,” in IEEE Int. Conf. Comput. Design,
pp. 363-370, 2008.

[19] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The StageNet
Fabric for Constructing Resilient Multicore Systems,” in Proc.
IEEE/ACM Intl. Symp. on Microarchitecture, pp.141–151, 2008.

TABLE III. OVERHEAD COMPARISON FOR A PROBABILISTIC APPLICATION

 Technique
Confidence-Driven Model NMR

Applied strategy RR*
(CT=2)

RR*
(CT=3)

IDMR**
(CT=2)

2 out of
3 (TMR)

3 out
of 5

Max node error rate 3x10-5 10-4 3x10-5 3x10-5 10-4
Area overhead 47% 47% 140% 200% 400%

Energy overhead 66% 125% 168% 200% 400%
Delay in cycles 2.13 3.9 1.11 1 1

Assume a required system error rate of 10-5.

*RR: rollback recovery, **IDMR: iterative dual modular redundancy

TABLE IV. OVERHEAD COMPARISON FOR A RELIABLE COMPUTING
APPLICATION

 Technique
Confidence-Driven Model NMR

Applied strategy RR*
(CT=2)

RR*
(CT=3)

IDMR**
(CT=2)

2 out of
3 (TMR)

3 out
of 5

Max node error rate 10-11 10-8 10-11 10-11 10-8
Area overhead 47% 47% 140% 200% 400%

Energy overhead 62% 73% 142% 200% 400%
Delay in cycles 2 3 1 1 1

Assume a required system error rate of 1.6×10-17(MTTF of 2 years at a 1 GHz clock frequency).

*RR: rollback recovery, **IDMR: iterative dual modular redundancy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

