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Abstract—We propose an adaptive reliability enhancement struc-
ture for deeply-scaled CMOS and future devices that exhibit 
nondeterministic behavior. This structure forms the basis of a 
confidence-driven computing model that can be implemented in 
either a rollback recovery or an iterative dual modular redun-
dancy method incorporating synchronous handshake schemes. 
The performance and cost of the computing model are estimated 
using a 45 nm CMOS technology and the functionality is verified 
by FPGA-based emulation. The confidence-driven computing 
model is demonstrated using a 16-bit, 12-stage CORDIC proces-
sor operating under random, transient errors. The confidence-
driven computing model adapts to the fluctuating error rates at 
the device substrate level to guarantee the reliability of computa-
tion at the system level. This computing model costs 4.2 times 
smaller area and 2.7 times less energy overhead than triple mod-
ular redundancy to guarantee a system-level mean time to failure 
of two years. 

Keywords: reliability, transient error, confidence estimator, roll-
back recovery, dual modular redundancy. 

I. INTRODUCTION  
The scaling of semiconductor devices continues to improve 

the cost and performance of digital integrated circuits. CMOS 
device size has already reached the tens of nanometer regime. 
In the meantime, a variety of nano devices, such as carbon na-
notube (CNT) [1], graphene [2], spin [3], nanoelectromechani-
cal (NEM) relay [4], memristor [5], have been proposed to sus-
tain Moore’s law of scaling for years to come [6]. Although 
these new CMOS and post-CMOS devices boast the much an-
ticipated high integration density and substantially lower ener-
gy consumption, they also exhibit less deterministic behavior. 
For example, the reduced critical charge with scaling causes the 
circuits to be more susceptible to accidental disruptions due to 
soft errors, power supply jitter, and quantum tunneling, leading 
to reliability concerns as scaling continues. 

To overcome the reliability challenge, two common tech-
niques can be employed. One is margining which provides 
sufficient slack in timing and supply voltage for the worst case; 
the other technique is fault detection and recovery. Margining 
can be wasteful as the worst case is rarely encountered. Fault 
detection and recovery makes use of either spatial redundancy, 
such as N-modular redundancy (NMR), or temporal redundan-
cy, such as checkpointing and rollback. These methods are 
either expensive or not flexible enough to adapt to the fluctuat-
ing device error rates and the varying application requirements. 

We propose a confidence-driven computing model that 
combines temporal and spatial redundancy to reduce the cost of 
reliability enhancement for a wide range of error rates. In par-
ticular, we use fine-grained temporal redundancy for the tuna-
ble reliability at an improved performance compared to check-
pointing and rollback; and we apply partial spatial redundancy 
to reduce the energy and area overhead while providing the 
necessary protection against permanent errors. The key concept 
of the proposed computing model is to employ confidence es-
timators in each stage of computation that enforces a confi-

dence threshold to be met before the hardened output is propa-
gated to the following stage, as shown in Fig. 1. This compu-
ting model is emulated on FPGA incorporating real-time error 
injection at random locations in the circuitry. The experiments 
based on a 16-bit, 12-stage coordinate rotation digital computer 
(CORDIC) processor demonstrates several orders of magnitude 
reliability enhancement with a moderate throughput penalty, 
and the area and energy overhead are as low as 8% and 14% 
respectively. 

II. RELATED WORK 
An error-resilient computation can be achieved through ei-

ther error tolerance or error correction. Error tolerance can be 
provided by the computation algorithm itself, an example of 
which is the work on algorithmic noise-tolerance (ANT) [7], 
where errors incurred due to supply voltage over scaling are 
compensated by the computation algorithm. Error tolerance can 
be provided at the architecture level, as what has been imple-
mented in systems such as ERSA [8], which employs multiple 
cores of lower reliability to execute probabilistic applications. 
The scalable stochastic processor [9] enables error tolerance by 
transforming a datapath with balanced critical paths to one that 
is error-scaling friendly. The above works improve the robust-
ness of computation, thus the supply voltage and clock fre-
quency margins can be reduced to lower power consumption 
and to improve performance. However, error tolerance tech-
niques are often limited in their applicability. ANT, ERSA and 
stochastic processor techniques all rely on the characteristics of 
a specific target computation and they need to be tailored to 
each individual application.  

In contrast, an error detection and correction approach is 
general-purpose in nature. Feed-forward recovery methods 
provide spatial redundancy such that the errors are detected and 
corrected with no interruption in the computation. The method 
is commonly known as N-modular redundancy or NMR. The 
fluid NMR scheme [10] demonstrates the tradeoff between 
power and reliability: the number of pre-allocated redundancies 
can be intelligently selected along with a matching voting strat-
egy to achieve the required reliability with low power. Howev-
er, cost increases exponentially when the device substrates 
fluctuate over a wide range of error rates [11]. The BulletProof 
design [12] incorporates adaptive sparing using routers in a 
widely-applicable defect-tolerant architecture, but the area and 
energy overhead are still significant. 

In Fig. 2, we classify different error-recovery techniques 
based on their target error duration from short transient to per-
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Figure 1. Proposed confidence-driven computing model incorporating 
confidence estimators. 
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Figure 4. Block diagram of the confidence estimator. 

manent. NMR is capable of correcting both permanent errors 
and transient errors. If an error is known to last for a short dura-
tion, a more area- and energy-efficient alternative is through 
temporal redundancy [13], which can be implemented in a 
checkpointing and rollback scheme at the software level – er-
rors are detected by repeating the computation over time, thus 
only one copy of the datapath is needed [14]. Nevertheless, 
checkpointing requires saving the context, which can be costly. 
Rollback incurs significant throughput and latency penalty, 
causing performance degradation especially when errors hap-
pen frequently. The Razor technique [15] improves on the con-
ventional checkpointing and rollback by performing rollback at 
the circuit level. Razor uses a parallel shadow latch to detect 
and correct errors before the next clock cycle expires. In this 
way, Razor incurs only a small performance overhead, but the 
error detection window is also short, limiting its effectiveness 
to detecting errors that last for a fraction of a cycle. An alterna-
tive circuit-level rollback and recovery technique [16] requires 
a duplicate datapath for error detection and rollback buffers for 
correction. The rollback recovery technique has a smaller area 
overhead compared to NMR. Its reliability enhancement is not 
adjustable either. 

The confidence estimator proposed in this paper can be ap-
plied with temporal redundancy to extend the error detection 
window to multiple clock cycles. It also allows temporal re-
dundancy to be applied in conjunction with spatial redundancy 
to improve the throughput and latency. Its key feature is that it 
enforces a confidence threshold to be met by looking for 
agreements, either through repeated computation over the same 
datapath (temporal redundancy) or duplicate datapaths (spatial 
redundancy). The confidence threshold can be adjusted based 
on the device error rate and the application requirement. For 
example, when the application-required reliability is high and 
the device error rate is high, the confidence threshold is raised 
to allow more repeated computations. The resulting throughput 
degradation can be compensated by a fine-grained temporal 
redundancy to limit the number of recomputations and increase 
the clock frequency. The combination of spatial and temporal 

redundancy produces an adaptive error-resilient computing as 
illustrated in Fig 3. 

III. CONFIDENCE-DRIVEN COMPUTING MODEL 
In the proposed confidence-driven computing model, a da-

tapath is partitioned into short segments where the probability 
of error of each segment is bounded. A confidence estimator is 
placed at the end of each segment to harden the output for for-
ward propagation to the next stage. A confidence estimator 
(CE) is composed of four components: a flip-flop, a checker, a 
counter, and a small controller as shown in Fig. 4. The confi-
dence estimator samples the output of the datapath in every 
clock cycle and compares it with the previous sample stored in 
the flip-flop (through temporal redundancy), or the output of a 
duplicate datapath (through spatial redundancy). The checker 
performs the comparison and looks for either an agreement or a 
disagreement. The counter keeps track of the confidence level 
of the output: the confidence level is raised upon an agreement 
and reset upon a disagreement. The controller ensures that the 
confidence level reaches the threshold before allowing the out-
put to be propagated through the main flip-flop by enabling the 
propagation clock (pclk). 

An n-bit counter is capable of tracking 2n distinct confi-
dence levels. The lowest confidence level indicates bypass. The 
controller generates synchronization signals and coordinates 
with the neighboring stages through inter-stage signaling. We 
explore two types of synchronization schemes: lockstep and 
speculative. Their distinct effects on the output reliability, 
throughput, latency, as well as the area and energy overhead 
are described in the following sections after a brief introduction 
of the emulation framework and the baseline datapath. 
A.  FPGA-Based Emulation Framework 

A CORDIC processor is used to demonstrate the functio-
nality of the confidence-driven computing model. A CORDIC 
processor is constructed using multiple stages of shift and add 
operations. Each stage can be entirely identical, an example of 
which is shown in Fig. 5(a). A 16-bit, 12-stage CORDIC pro-
cessor is implemented as the baseline design on a Xilinx Vir-
tex-5 FPGA. 

 To emulate runtime errors, an error injection block is add-
ed to the end of each CORDIC stage, as shown in Fig. 5(b). 
The error injection block inverts the output bits using XOR 
gates based on the error rate that is selected. The random errors 
are generated using a set of linear feedback shift registers 
(LFSR) by comparing their values to some constants: if the 
LFSR values match the constants, bit errors are injected by 
inverting the bits. Since each LFSR produces 1 and 0 with 
nearly equal likelihood, the probability of error being generated 
is 2-x, where x is the length of the constant. A set of maximal-
length LFSRs of various lengths is constructed, each of which 
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Figure 6. Lockstep synchronization flow.  
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produces a different error probability. An error-rate selector, 
shown in Fig. 5(c), sets the error rate by choosing one of the 
LFSRs. 

 Each bit of the datapath assumes a different error rate due 
to the unequal propagation paths [17]. We capture the unequal 
error rates by mapping the gate level description of the 
CORDIC processor in software and apply independent and 
identical circuit node level error injection across the entire da-
tapath. We find that the least significant bit of each CORDIC 
stage, or bit 0, has the lowest error rate due to the shortest path 
and fewest number internal nodes along the path. Bit 1 error 
rate is 2.8 times higher; bit 2 error rate is 3.9 times higher; and 
bits 3 to 15 error rates are the highest at 4.3 times due to the 
long paths. This experiment used a 16-bit ripple carry adder 
topology. A different datapath topology could have equally 
well been used and would have yielded a different error rate 
profile. The error rate profile is accounted for in the error injec-
tion block by setting the bit 0 at the base error rate and tuning 
up the error rates of the remaining bits accordingly. 

Fault simulation can be accelerated by hardware emulation 
by up to six orders of magnitude for complex designs [18] 
compared to software-based simulations. A hardware emula-
tion setup was also used in [8], which relied on pre-stored error 
vectors supplied through scan chains.  In contrast, our FPGA 
based emulation uses real-time, on-FPGA error generation for 
the maximum performance. 

The 12-stage CORDIC processor is partitioned into two, 
three or four segments and each segment terminates at a confi-
dence estimator. Properties of the confidence estimator are 
described in Subsections B and C below by assuming a roll-
back recovery (RR) method incorporating only temporal re-
dundancy. The incorporation of spatial redundancy is described 
in Subsection D in an iterative dual modular redundancy 
(IDMR) method. 
B. Lockstep Synchronization 

In the lockstep synchronization scheme, the output of one 
stage is guaranteed to be hardened before it is propagated to the 
next stage. A slow stage, due to errors, holds back the computa-
tion and leaves the neighboring stages waiting. The flow chart 
of the lockstep synchronization is shown in Fig. 6. The pclk 

signal from the previous stage triggers the start of a new com-
putation in the current stage. The output is sampled and it is 
checked for agreement. The counter accumulates the confi-
dence level (CL) until it reaches the confidence threshold (CT), 
at which point the current stage enters the ready state. The con-
troller waits until the following stage signals “ready” and then 
enables the pclk to allow the output to be propagated to the 
following stage. After the output exits the current stage, a 
“ready” signal is passed to the previous stage. 

The confidence threshold is the primary knob to tune the 
output reliability level. A confidence threshold of 2 requires 2 
agreements and a threshold 3 requires 3 agreements. Note that 
the confidence estimator looks for consecutive agreements in 
time or concurrent agreements through redundant spatial cop-
ies, which is different from the majority voting scheme used in 
NMR. Any disagreement resets the confidence level and res-
tarts the confidence accumulation process. 

Fig. 7 shows the emulation results of the CORDIC proces-
sor on FPGA. Confidence estimators are placed at the end of 
6th stage and 12th stage of the CORDIC processor to enhance 
the system reliability. Fig. 7(a) shows the system error rate 
(the probability of an incorrect system output) as a function of 
the circuit node error rate (the probability of error of any cir-
cuit node). Without any reliability enhancement mechanism, 
the error rate of the CORDIC processor is three orders of 
magnitude higher than the node error rate due to the large 
number of circuit nodes that are subject to errors. With the 
confidence estimators and as we increase the confidence thre-
shold, the system error rate decreases by at least four orders of 
magnitude when the node error rate is at 10-5 or lower. 

One CORDIC
Stage

Error GeneratorError-Rate
Selection

±±±

>> >>

LFSR1

constant1
LFSR2

constant2

=

err

Error-Rate Selection

err

(a) (b) (c)

=

x y z

Z[15] a

x’ y’ z’

 
Fig. 5. (a) A single stage of a CORDIC processor composed of two shifters and three adders, (b) error injection mechanism, and (c) error generator. 

Figure 7. (a) System error rate 
based on FPGA emulation 
results (solid line) and extra-
polation (dash line), and (b) 
average delay per computation 
of the CORDIC processor as 
the confidence threshold is 
adjusted. 
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 To translate the error rates in practical terms, if we were to 
guarantee a mean time to failure (MTTF) of two years at a 1 
GHz clock frequency, the required node error rate is 10-22 if no 
reliability enhancement technique is used. This extremely low 
node error rate is possible with current mainstream CMOS 
technology but will likely become difficult with continued 
device scaling and the new generation of nano devices. By 
inserting confidence estimators, the required node error rate is 
relaxed to 10-11 with a confidence threshold of 2 and 10-8 with 
a threshold of 3. The threshold can be adjusted at runtime 
based on the underlying circuit error rate and the application 
requirement. A high confidence threshold provides better pro-
tection but it also decreases the throughput. Fig. 7(b) shows 
the average delay per computation (the inverse of throughput): 
when the node error rate is moderate to low, a confidence thre-
shold of 2 requires at least 2 clock cycles per computation and 
a threshold of 3 requires at least 3 cycles per computation. 
When the circuit node error rate is high, the delay becomes 
significant using a higher threshold. Frequent node errors slow 
down the process of gathering agreements. It is therefore more 
advantageous to operate the confidence estimators at the low-
est confidence threshold that provides the necessary reliability. 
The runtime configurable confidence threshold accommodates 
device fluctuations and different reliability requirements 
among applications. Note that increasing the confidence thre-
shold has only a minor impact on the energy consumption 
because the datapath under protection usually does not incur 
additional activities during checking. 

 To reduce the throughput penalty, we now show how con-
fidence estimators can be placed in finer-grained intervals. A 
fine-grained placement of confidence estimators shortens the 
path and bounds the probability of error, contributing to a fast-
er convergence towards the required reliability. The sampling 
clock frequency can also be increased due to the shortened 
delay per stage. Fig. 8 shows the improved average delay per 
computation as more stages of confidence estimators are in-
serted to the same CORDIC processor. The improvement be-
comes more significant at high circuit node error rates, thanks 
to the faster convergence towards the confidence threshold. 
The delay improvement is also attributed to the increased 
clock frequency by up to 2.4 times as more confidence estima-
tor stages are inserted, as shown in Table I. 

The fine-grained placement of confidence estimators in-
creases the area and energy penalties. Table I presents the 
comparison among different placement choices by listing the 
normalized clock frequency, area and energy, which are esti-

mated based on the synthesis results using a 45 nm CMOS 
technology. Adding one stage of confidence estimator reduces 
the clock frequency by 30% and introduces an 8% area over-
head. Additional stages of confidence estimators improve the 
clock frequency and the area overhead increases. However, 
there is a limit to how fine-grained the confidence estimators 
can be efficiently placed due to the diminishing improvement 
in throughput, and the escalating cost of area and energy. De-
sign time decisions need to be made based on the expected 
range of circuit error rates along with the area and energy con-
straints imposed by the design. 
C. Speculative Synchronization 

The speculative synchronization scheme allows a computa-
tion to proceed to the next stage even if the confidence level 
has not reached the confidence threshold. Compared to the 
lockstep synchronization, the speculative execution shortens 
the latency and permits a higher throughput. The flow chart of 
the speculative synchronization is shown in Fig. 9. Under this 
scheme, the confidence estimators become transparent gate 
keepers: tentative output is passed to the next stage when the 
next stage is ready to accept a new computation, while the 
tentative output is still being hardened by the current stage. 
When the current stage finally reaches the confidence thre-
shold, its controller signals “ready” to the previous stage, indi-
cating that it is ready to accept a new computation. The spe-
culative synchronization cuts the idle cycles when one stage is 
complete and waiting for the previous stage to finish accumu-
lating confidence. The scheme assigns tentative work to oth-
erwise idle stages. The lockstep synchronization can be ap-
plied in the final stage to ensure that the final output is har-
dened to meet the confidence threshold. 

The speculative synchronization provides almost identical 
reliability enhancement compared to the lockstep scheme as 
shown in Fig. 10(a), and the speculative scheme demonstrates 
an appreciable improvement in throughput, or average delay 
per computation, compared to the lockstep scheme when the 

TABLE I. AREA AND ENERGY OF THE ROLLBACK RECOVERY METHOD 
(LOCKSTEP SYNCHRONIZATION) 

 1-stage 
CE 

2-stage 
CE 

3-stage 
CE 

4-stage  
CE 

Normalized clock 
period 1.30 0.76 0.60 0.54 

Normalized area 1.082 1.210 1.337 1.464 

Normalized energy 
(CT=2) 1.14 1.20 1.36 1.53 

Normalized energy 
(CT=3) 1.15 1.23 1.46 1.64 

Normalized energy 
(CT=4) 1.16 1.26 1.54 1.76 
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circuit node error rate is high. Moreover, the speculative syn-
chronization can substantially improve the latency of compu-
tation. When the circuit node error rate is moderate to low, the 
latency of computation is almost independent of the confi-
dence threshold because a tentative output is passed along 
without waiting, followed by parallel checking performed at 
all the stages. Therefore, the speculative synchronization is 
especially attractive for latency-sensitive applications. 

The area overhead of the speculative scheme is higher than 
the lockstep scheme by a negligible proportion, and its energy 
overhead is up to 6 % higher.  The higher energy cost is due to 
the higher switching activity in speculative execution. 
D. Spatial Redundancy 

 The above discussions assume a rollback recovery (RR) 
method that utilizes only the temporal redundancy. In fact, 
spatial redundancy can be incorporated in conjunction with the 
temporal redundancy to achieve additional gains in perfor-
mance. The simplest way to include spatial redundancy is by 
providing a duplicate datapath in the form of dual modular 
redundancy (DMR). A duplicate datapath allows the confi-
dence to be accumulated quickly, thus increasing throughput 
and minimizing latency. DMR is less expensive than TMR. 
Errors detected in DMR trigger recomputations for error cor-
rection in an iterative DMR (IDMR) method. The inter-stage 
synchronization is performed using either the lockstep or the 
speculative scheme described above. 

 The iterative DMR method demonstrates slightly higher 
reliability enhancement than the rollback recovery method as 
shown in Fig. 11(a). The improvement is due to the difference 
in confidence accumulation policies: an error in DMR invali-
dates one pair of computations from both the primary and the 
duplicate datapath, thus the number of agreements needed on 
average to reach the confidence threshold is slightly higher 
than the rollback recovery method. Iterative DMR incurs less 
throughput penalty compared to the rollback recovery method, 

as shown in Fig. 11(b), but the energy and area are 58% and 
64% higher respectively by comparing the results in Table II 
and Table I (when using four stages of confidence estimators). 

 The iterative DMR method detects permanent errors when 
a confidence estimator consistently reports disagreements and 
fails to meet the confidence threshold over a large number of 
clock cycles. An adaptive sparing method can be used to dy-
namically allocate additional spatial redundancy to alleviate 
permanent errors. This enhancement follows the existing work 
on sparing [12], [19], and it will be part of our future work. 

IV. COMPARISON AND DISCUSSION 
In a practical operating environment, the circuit node error 

rate can fluctuate over time due to supply jitter, temperature 
variation, noise, and other environmental effects. The effects 
on different parts of a chip can also vary, e.g., some parts are 
subject to a higher temperature or a higher noise level due to 
run-time activities. The confidence-driven computing model 
based on confidence estimators allows the dynamic adjustment 
of the confidence thresholds to accommodate variations in 
time and differences among parts of a chip. 

Two case studies are shown in Fig. 12 for two applica-
tions: a probabilistic application that tolerates a high system 
error rate and a general-purpose computing application that 
requires a very low system error rate. In the first case study 
targeting a probabilistic application, the confidence-driven 
computing model guarantees a given system error rate of 10-5, 
when the underlying circuit node error rate varies between 10-5 
and 10-4. The protection can be accomplished in several ways: 
rollback recovery or iterative DMR with either lockstep or 
speculative synchronization. For example, using rollback re-
covery and speculative synchronization, the confidence thre-
shold can be set to either 3 or 2 to accommodate node error 
rate of 10-4 and 10-5, respectively. In comparison, TMR guar-
antees the 10-5 system error rate when the node error rate is at 

TABLE II. AREA AND ENERGY OF THE ITERATIVE DMR METHOD 
(LOCKSTEP SYNCHRONIZATION AND CT = 2) 

 1-stage 
CE 

2-stage 
CE 

3-stage 
CE 

4-stage  
CE 

Normalized area 2.03 2.15 2.28 2.40 

Normalized energy 2.12 2.17 2.27 2.42 
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10-5, but it fails to adapt when the circuit error rate deteri-
orates. 

The confidence-driven model has low area and energy 
overhead, which are 4.2 times and 1.6 times lower compared 
to TMR as shown in Table III based on the rollback recovery 
method. The iterative DMR method is more costly, but still 
30% more area-efficient and 16% more energy-efficient than 
TMR. Compared to the fluid NMR that is able to adapt to the 
range of node error rates, the rollback recovery method costs 
8.5 times smaller area and 3.2 times lower energy. 

The second case study targets a highly reliable general-
purpose computing application that requires two years of 
MTTF. We estimate that the rollback and recovery method 
costs 4.2 times smaller area and 2.7 times lower energy than 
TMR as shown in Table IV. 

V. CONCLUSION 
We propose a confidence-driven computing model that en-

hances the system reliability even when the underlying circuits 
operate non-deterministically. The reliability enhancement is 
enabled by the confidence estimators using both spatial and 
temporal redundancy. Fine-grained temporal redundancy low-
ers the performance penalty, while the reduced spatial redun-
dancy cuts the area and energy overhead. As a result, the con-
fidence estimator based methods can be realized more effi-
ciently compared to the competing alternatives, such as TMR. 

 We explore two choices in implementing the confidence-
driven computing: rollback recovery and iterative DMR. The 
rollback recovery method is more area and energy efficient, 
and the iterative DMR method features a higher throughput. 
The two methods can adopt one of the two synchronization 
schemes: lockstep or speculative. The speculative scheme 
permits a lower latency and average delay per computation 
with a negligible increase in energy. 

The confidence-driven computing model represents a 
promising solution that bridges the gap between the varying 
application-required reliability and the fluctuating device be-
havior in future technologies. The placement of confidence 
estimators, along with the tuning of the confidence threshold 
and the synchronization scheme will allow us to construct a 
reliability-diverse computer architecture with computing ele-
ments that provide a range of reliability levels at appropriate 
energy cost to deliver the required performance. 
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TABLE III. OVERHEAD COMPARISON FOR A PROBABILISTIC APPLICATION 

 Technique 
Confidence-Driven Model NMR 

Applied strategy  RR* 
(CT=2) 

RR* 
(CT=3) 

IDMR** 
(CT=2) 

2 out of 
3 (TMR) 

3 out 
of 5 

Max node error rate 3x10-5 10-4 3x10-5 3x10-5 10-4 
Area overhead 47% 47% 140% 200% 400% 

Energy overhead 66% 125% 168% 200% 400% 
Delay in cycles 2.13 3.9 1.11 1 1 

Assume a required system error rate of 10-5. 

*RR: rollback recovery, **IDMR: iterative dual modular redundancy 
 

TABLE IV. OVERHEAD COMPARISON FOR A RELIABLE COMPUTING 
APPLICATION 

 Technique 
Confidence-Driven Model NMR 

Applied strategy  RR* 
(CT=2) 

RR* 
(CT=3) 

IDMR** 
(CT=2) 

2 out of 
3 (TMR) 

3 out 
of 5 

Max node error rate 10-11 10-8 10-11 10-11 10-8 
Area overhead 47% 47% 140% 200% 400% 

Energy overhead 62% 73% 142% 200% 400% 
Delay in cycles 2 3 1 1 1 

Assume a required system error rate of 1.6×10-17(MTTF of 2 years at a 1 GHz clock frequency). 

*RR: rollback recovery, **IDMR: iterative dual modular redundancy 
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