
Articles
https://doi.org/10.1038/s41928-019-0270-x

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. 2Present address: Samsung Electronics,
Yongin, Korea. 3These authors contributed equally: Fuxi Cai, Justin M. Correll, Seung Hwan Lee. *e-mail: wluee@umich.edu

Memristors are two-terminal resistive devices that have
a conductance state that depends on one or more inter-
nal state variables and can be modulated by the history

of external stimulation1–5. Due to their compact device structure
and ability to both store and process information at the same physi-
cal location, memristors and memristor crossbar arrays have been
explored for neuromorphic computing, machine learning and edge
computing applications5–8. These include single-layer perceptron9–11
and multi-layer perceptron networks12,13, image transformation14,15,
sparse coding16, reservoir computing17 and principal component
analysis (PCA)18. In addition, novel approaches using multiple mem-
ristor devices or mixed-precision architectures have been developed
to effectively mitigate device non-idealities and allow the devices to
be used in high-precision computing and training tasks19–24.

Although the key matrix operations can be performed effi-
ciently with memristor crossbar arrays14,15,25, previous implemen-
tations have largely relied on external printed-circuit boards to
provide the required interface and control circuitry10,14,16, or discrete
parameter analysers to generate and collect signals9,12,15. In cases
where memristor arrays are integrated with periphery circuitry,
the circuit’s function has been limited to providing access devices
(for example, in the form of 1T1R arrays10,13,14,25) or address decod-
ing purposes26,27. Demonstrating the potential of memristor-based
computing hardware requires the development of fully functional
systems, where the memristor crossbars are integrated with nec-
essary analogue interface circuitry (including analogue-to-digital
converters (ADCs) and digital-to-analogue converters (DACs)),
digital buses and ideally a programmable processor to control the
digital and analogue components. Integrating all the necessary
functions on chip will be key to enabling the practical implementa-
tion of memristor-based computing systems and allowing the pro-
totypes to be scaled to larger systems.

In this Article, we report a fully integrated, functional, reprogram-
mable memristor chip, including a passive memristor crossbar array
directly integrated with all the necessary interface circuitry, digital
buses and an OpenRISC processor to form a complete hardware
system on chip. Thanks to the re-programmability of the memris-
tor crossbar and the integrated complementary metal–oxide–semi-
conductor (CMOS) circuitry, the system is highly flexible and can
be programmed to implement different computing models and
network structures. Three widely used models—a perceptron net-
work, a sparse coding algorithm and a bilayer PCA system with an
unsupervised feature extraction layer and a supervised classification
layer—are demonstrated experimentally on the same chip.

Fully integrated reprogrammable neuromorphic chip
A memristor crossbar is very efficient at vector-matrix multiplica-
tion (VMM), because the values in the matrix can be stored as the
analogue device conductances of the crossbar array. When an input
vector is applied as voltage pulses with different pulse amplitudes
or different pulse widths to the rows of the crossbar, the currents
or charges collected at the columns of the crossbar correspond to
the resulting VMM outputs, following Ohm’s law and Kirchhoff ’s
current law14,16,25,28. This approach allows direct computing of this
data-intensive task both in memory and in parallel5,29 in a single
step, that is O(1), and has attracted broad interest for implementing
neuromorphic computing and machine learning models28,30,31.

The results from the crossbar are then used to update the
neuron outputs, which typically require efficient ADC circuits
that convert the analogue current or charge signals collected at
the columns to digital signals that can be processed by the artifi-
cial neurons. Similarly, neuron outputs need to be supplied to the
devices in the crossbar, typically through DAC circuits feeding the
rows. Controllers are needed to convert the input signals to pulse

A fully integrated reprogrammable memristor–
CMOS system for efficient multiply–accumulate
operations
Fuxi Cai   1,3, Justin M. Correll   1,3, Seung Hwan Lee   1,3, Yong Lim   1,2, Vishishtha Bothra1,
Zhengya Zhang1, Michael P. Flynn1 and Wei D. Lu   1*

Memristors and memristor crossbar arrays have been widely studied for neuromorphic and other in-memory computing appli-
cations. To achieve optimal system performance, however, it is essential to integrate memristor crossbars with peripheral and
control circuitry. Here, we report a fully functional, hybrid memristor chip in which a passive crossbar array is directly inte-
grated with custom-designed circuits, including a full set of mixed-signal interface blocks and a digital processor for reprogram-
mable computing. The memristor crossbar array enables online learning and forward and backward vector-matrix operations,
while the integrated interface and control circuitry allow mapping of different algorithms on chip. The system supports charge-
domain operation to overcome the nonlinear I–V characteristics of memristor devices through pulse width modulation and
custom analogue-to-digital converters. The integrated chip offers all the functions required for operational neuromorphic com-
puting hardware. Accordingly, we demonstrate a perceptron network, sparse coding algorithm and principal component analy-
sis with an integrated classification layer using the system.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics290

mailto:wluee@umich.edu
http://orcid.org/0000-0002-1945-6302
http://orcid.org/0000-0003-0192-8129
http://orcid.org/0000-0002-5839-6533
http://orcid.org/0000-0002-1161-5671
http://orcid.org/0000-0003-4731-1976
http://www.nature.com/natureelectronics

ArticlesNATure elecTroNics

amplitude or width, and to implement weight update rules dur-
ing training. To reduce latency and power consumption, all these
components need to be integrated together with the crossbar array
on a single chip, instead of using discrete components on a board.
Integrating a processor on chip also allows the neuron functions
and network structures to be reprogrammed though simple soft-
ware changes, enabling different models to be mapped on the same
hardware platform.

In this study we have designed and fabricated a complete,
integrated memristor/CMOS system, with a memristor crossbar
array integrated on top of CMOS circuits consisting of a full set
of ADCs, DACs, digital bus, memory and a processor, allowing
the integrated system to take advantage of the efficiency of the
matrix operations provided by the memristor crossbar and the
flexibility offered by the CMOS system to successfully implement
different algorithms on chip. The system architecture is shown in
Supplementary Figs. 1 and 2.

We operate the crossbar array in the charge domain to mini-
mize multiplication error due to memristor device I–V nonlinearity
(Supplementary Note 1). Our approach also simplifies the interface
circuit design as the input pulses to the crossbar have fixed ampli-
tude and variable widths. The charge-domain technique is enabled
by a current-integrating hybrid ADC design and a pulse-mode DAC
scheme (Supplementary Figs. 3 and 4).

Our design features both DACs and ADCs at each row and each
column for flexibility and to allow bidirectional and full transpose
operation of the crossbar. For example, inputs x can be applied to
the rows and the charges collected at the columns correspond to the
forward operation xTW. If the output neurons’ activities are then
applied to the columns, the charges collected at the rows then repre-
sent the reconstructed signal, corresponding to multiplication of the
output neurons’ activities a and the transpose of the weight matrix
aWT. With DACs and ADCs at each row and column, both forward
and backward operations can be obtained with the same crossbar
array16. Furthermore, our design allows all DACs and ADCs at
each row/column to operate in parallel, thereby supporting high-
throughput parallel VMM and transpose VMM operations. More
details of the system architecture are provided in Supplementary
Fig. 1 and Supplementary Note 2.

The mixed-signal interface is controlled by an on-chip
OpenRISC processor that allows the implementation of differ-
ent computing operations, as shown in Supplementary Fig. 2 and
Supplementary Note 2. The processor provides fine-grained pro-
grammability, allowing the operation of any set of rows and col-
umns, in either read or write mode and forward or backward
direction (Supplementary Figs. 5–8 and Supplementary Note 3).
The design also supports online dictionary learning with higher-
voltage write DACs to program or update the memristor conduc-
tance (Supplementary Figs. 7 and 8).

A 54 × 108 WOx-based memristor crossbar is fabricated on top of
the CMOS circuits. Figure 1a shows a photograph of the integrated
chip after packaging, along with the testing set-up. Figure 1b,c are
top-view images of the chip, showing the memristor array integrated
on top of the chip surface, at different magnifications. Each row and
column of the crossbar array is connected to a specific landing pad
left open during the CMOS fabrication process, and then connected
to the interface circuitry through internal CMOS wiring (Fig. 1d;
see also Supplementary Figs. 9 and 10 and Methods for fabrication
details). Each row or column of the array is connected to two write
DACs, one read DAC and a 13 bit ADC (Fig. 1e). The memristors can
be successfully programmed by controlling the number of applied
write/erase pulses, then read out by the integrated interface cir-
cuitry and controller, even without any current-limiting transistors
or external current compliance (Supplementary Fig. 11). Figure 1f
shows the on/off ratio distribution of devices in the integrated array
after a weight update operation. The relative uniform distribution

of devices within the array allows the system to implement a num-
ber of computing tasks on chip. We note that device variations can
still be observed. This effect is exacerbated by the line resistance
effects (Supplementary Figs. 12 and 13). Further device optimiza-
tions and the use of a monolithic integration technique that reduces
the line resistance can lead to better array and network performance
(Supplementary Fig. 14 and Supplementary Note 4).

In the following, we discuss different models and neural network
structures implemented in the same chip, by reprogramming the
on-chip processor and the functions of the memristor array and the
interface circuits.

training and classification using a single-layer perceptron
A feed-forward single-layer perceptron (SLP) network was first
implemented to verify the operation of the integrated chip; 5 × 5
binary patterns were used in the SLP training and testing. The SLP
has 26 inputs (corresponding to the 25 pixels in the image and a bias
term) and 5 outputs, with the input and output neurons fully con-
nected with 26 × 5 = 130 synaptic weights, where the neuron with the
highest output is identified as the winner and used to classify the cor-
responding class, as schematically shown in Fig. 2a (see Methods).

In our implementation, the original binary input patterns are
converted into input voltage pulses through the integrated proces-
sor and DAC circuitry and are fed to the rows of the memristor
array. Specifically, when a white pixel is present, a pulse is applied to
the corresponding row; while black pixels correspond to no pulse.
The bias term is fixed at a constant value of 1 (treated as a white
pixel) and is applied as an extra input. All the input pulses have
the same duration and amplitude in this test, as illustrated in Fig.
2b. Each synaptic weight wij is implemented with two memristors
representing a positive weight and a negative weight, Gþ

ij

I
 and G�

ij

I
,

respectively, using the positive memristor conductance values (see
equation (10) in Methods).

The integrated chip allows us to perform online learning.
Specifically, the synaptic weights are updated during the training
phase using the batch gradient descent rule:

Δwij ¼ η
PN
n¼1

tðnÞj � yðnÞj

xðnÞ ð1Þ

where x(n) is the nth training sample of the input dataset, y(n) is the
network output and t(n) is the corresponding label. η is the learn-
ing rate. The update value Δwij for the ith element in the jth class
is then implemented in the memristors by applying programming
pulses through the write DACs with a pulse width proportional to
the desired weight change (quantized within the range of 0–63 time
steps corresponding to 6 bit precision).

We trained and tested the SLP with noisy 5 × 5 Greek letter pat-
terns, for five distinct classes: ‘Ω’, ‘M’, ‘Π’, ‘Σ’, ‘Φ’. For each Greek
letter, we flip one of the 25 pixels of the original image and generate
25 noisy images. Together with the original image they form a set
of 26 images for each letter. We randomly select 16 images from the
set of each class for training and use the other 10 images for test-
ing (Fig. 2c). Examples of the training set and testing set are shown
in Supplementary Figs. 15 and 16. This approach guarantees that
the training set and the testing set do not overlap, and therefore
improves the robustness of our testing results.

Training and testing results from the experimentally imple-
mented SLP are shown in Fig. 2d,e. After five online training epochs
the SLP can already achieve 100% classification accuracy for both
the training and testing sets. The average activation of the correct
neuron during training is also clearly separated from the others, and
the difference in neuron outputs between the winning neuron and
the other neurons improves during training, as shown in Fig. 2d,
verifying that online learning has been reliably implemented in the
experimental set-up.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics 291

http://www.nature.com/natureelectronics

Articles NATure elecTroNics

Sparse coding algorithm implementation
The same hardware system was then used to implement a sparse
coding algorithm (see Methods). Sparse coding aims at represent-
ing the original data with the activity of a small set of neurons, and
can be traced to models of data representation in the visual cor-
tex32,33. Sparse coding is an efficient method for feature extraction
and information compression, and allows pattern recognition and
classification to be performed in the compressed domain34.

Following our previous work implemented at the board level16,
we mapped the locally competitive algorithm (LCA)35 on our inte-
grated memristor/CMOS chip. In this approach, the membrane
potential of an output neuron is determined by the input, a leak-
age term and an inhibition term whose strength is proportional
to the similarity of the neurons’ features; that is, an active neuron
will try to inhibit neurons having similar features. It can be shown
mathematically that lateral neuron inhibition can be achieved in the
memristor crossbar by removing the reconstructed signal from the
input (see equation (13) in Methods). With this approach, the LCA
algorithm can be implemented in an iterative process through two
VMM operations: in the forward direction to obtain neuron acti-
vations and in the backward direction to obtain the reconstructed
input. The residue term is then obtained by removing the recon-
structed input from the original input, and is then fed to the net-
work. The process is repeated until the network stabilizes. Figure 3a
illustrates the iterative forward and backward processes employed
in the LCA implementation.

The bidirectional operation of the memristor array in the inte-
grated memristor/CMOS chip allowed us to experimentally imple-
ment the sparse coding algorithm on chip. Similar to the SLP case,
we use the crossbar array to perform VMM operations, here in

both forward and backward directions. Given that the chip offers
full flexibility to implement different algorithms by re-program-
ming the integrated processor, the LCA algorithm was imple-
mented in the same chip used in the SLP study, through simple
software changes.

We used 4 × 4 inputs to test the experimental implementation of
the LCA algorithm. By using linear combinations of horizontal and
vertical bar patterns, the input dimension is reduced to 7. To satisfy
the over-completeness requirement of the LCA algorithm, a diction-
ary containing 14 features of horizontal and vertical bar patterns is
used, as shown in Fig. 3b. This set-up produces a 2 × over-complete
dictionary35 that enables the network to find a sparse, optimal solu-
tion out of several possible solutions.

The LCA algorithm was mapped to a 16 × 14 subarray in the
memristor/CMOS chip, using the corresponding interface circuitry
and the processor that provide the neuron functions. An example of
the LCA network operation is shown in Fig. 3c,d. The experimen-
tally implemented network correctly reconstructs the input image
while minimizing the number of activated neurons. For example, it
identifies the optimized solution with two neurons 6 and 13, instead
of using three neurons 2, 4 and 6 in this case. The dynamics of the
LCA network operation can also be correctly captured, as shown
in Fig. 3e, where the effects of lateral neuron inhibition that lead
to a more sparse solution than the initial solution can be clearly
observed (see Methods).

To verify the system’s performance for other input patterns, an
exhaustive test of all 24 possible patterns consisting of two horizon-
tal bars and one vertical bar was performed using the on-chip mem-
ristor network, resulting in 100% success rate (Fig. 3f), measured by
the network’s ability to correctly identify the sparse solutions.

Crossbar array
PAD connection line

a

d e f

b c

M1

M4

Al

M4

M2

M3

M4

Al

M1

Extension pad

Passivation

M0

Gate

Pd

SiO2

Au

Au WOx

Ni/Cr
M2

M3

+ –

486 DACs and 162 ADCs
memory mapped via

mixed-signal interface

162 configurable
channels

T
o crossbar pad

VREG

ADC

DAC

DAC

DAC

Read DAC

Write_High DAC

Write_Low DAC

M
ixed-signal interface

Mixed-signal interface

OpenRISC
AltOR32

1

3

5

7

9

11

13

15

17

19

1 3 5 7 9 11 13 15 17 19

0

1

2

3

4

5

O
n/off ratio

Fig. 1 | Fully integrated memristor/CMOS chip. a, Integrated chip wire-bonded on a pin-grid array package. Inset, testing set-up used to power and test
the integrated memristor/CMOS chip. b, Optical microscopic image of a memristor crossbar array integrated on the chip, with portions of the CMOS
circuitry visible underneath the chip surface. c, Magnified image of the integrated 54 × 108 memristor array region. Inset, scanning electron microscope
(SEM) image of the WOx memristor crossbar. Scale bar, 50 μm. d, Cross-section schematic of the integrated chip, showing connections of the memristor
array with the CMOS circuitry through extension lines and internal CMOS wiring. Inset, cross-section of the WOx device. e, Schematic of the mixed-
signal interface to the 54 × 108 crossbar array, with two write DACs, one read DAC and one ADC for each row and column. f, Distribution map for a
20 × 20 subarray of the memristor crossbar. Colour represents the on/off ratio measured after 50 consecutive programming pulses (1.8 V, 82 µs; see
Supplementary Note 1 for more details).

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics292

http://www.nature.com/natureelectronics

ArticlesNATure elecTroNics

implementation of a multi-layer neural network
Finally, we demonstrate a bilayer neural network with the same
integrated chip, using two subarrays in the memristor crossbar
implementing unsupervised and supervised online learning to
achieve feature extraction and classification functions, respectively.
The bilayer network is used to analyse and classify data obtained
from breast cancer screening based on PCA. Specifically, the first
layer of the system is a 9 × 2 network that performs PCA of the orig-
inal data, which reduces the nine-dimensional (9D) raw input data
to a 2D space based on the learned principal components (PCs).
The second layer is a 3 × 1 SLP layer (with differential weights and
a bias term), which performs classification using the reduced data
in the 2D space for the two classes (benign or malignant). The
schematic and crossbar implementation of the bilayer network are
shown in Fig. 4a,b.

PCA reduces data dimensionality by projecting data onto lower
dimensions along the PCs, with the goal of finding the best sum-
mary of the data using a limited number of PCs36. The conventional
approach to PCA is to solve the eigenvectors of the covariance
matrix of the input data, which can be computationally expensive
in hardware. A more hardware-friendly approach is to find the PCs
through unsupervised, online learning.

Specifically, following our previous study18, Sanger’s rule, also
known as the generalized Hebbian algorithm, is implemented in
the integrated chip to obtain the PCs (Supplementary Note 5). The
desired weight change for the jth PC is determined by

δgij ¼ ηyj xi �
Pj

k¼1
gijyj

ð2Þ

In the experiment, the weights of the first and second PCs, gij, are
mapped onto the memristor conductances through a linear trans-
formation18 (Supplementary Note 5). The network is trained online,
using a subset of the original database consisting of 100 data points.
During the training process, the 9D breast cancer data are converted
into input voltage pulses with pulse widths proportional to the data
values, within the range of 0–63 time units. The output charge col-
lected at column j then corresponds to the dot product of the input
vector and the conductance vector stored in column j, projecting
data from the original 9D space to a 2D output space (when only
two PCs are used). During training, the weights are then updated
following equation (2), using programming voltage pulses gener-
ated through the write DACs with pulse widths proportional to δgij.

Initially, the weights of the first and second PCs are random-
ized in the memristor array (Fig. 4c). Projection of the input along
these vectors leads to severe overlapping of the benign and malig-
nant cases in the 2D space, as shown in Fig. 4d,e. After 30 train-
ing epochs (an epoch is defined as a training cycle through the 100
training data), the PCs are correctly learned (Fig. 4f) and the 2D
projected data can be clearly separated into two clusters (Fig. 4g,h).
Note that the ground truth (benign or malignant) is not used in
the PCA training or clustering process. It is included in the plots

V1

V2

V3

V4

V5

V21

V22

V23

V24

V25

Vb

…

a1Q1

Q2

Q3

Q4

Q5

a2

a3

a4

a5

Softmax

a

d e

b c

Bias

… …

V21

V22

V23

V24

V25

Vb

V1

V2

V3

V4

V5

1Q +
2Q +

3Q +
4Q +

1Q –
2Q –

3Q –
4Q –

5Q +
5Q –

…

0 1 2 15

16 17 18 31

32 33 34 47

48 49 50 63

64 65 66 79

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

y

Epochs Epochs Epochs Epochs Epochs

Epochs

Ω
Π Σ
Ψ

0

20

40

60

0 5 10 15 20 25 30

0

20

40

N
o.

 o
f m

is
cl

as
si

fic
at

io
ns Training error

Testing error

M

Fig. 2 | experimental demonstration of the single-layer perceptron on the integrated memristor chip. a, Schematic of the single-layer perceptron for
classification of 5 × 5 images. b, Implementation of the SLP using a 26 × 10 memristor subarray through the integrated chip. Input data (for example, the
Greek letter ‘Ω’) are converted to voltage pulses of Vread or 0 through the on-chip circuitry, depending on the pixel value. c, Samples from the training data
set. d, Evolution of the output neuron signals during training. Each data point represents the average output value for a specific neuron during a training
epoch for a given input class. e, Classification error of the training and testing data set as a function of training epochs. The network can achieve 100%
classification for both the training set and the testing set after five training epochs.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics 293

http://www.nature.com/natureelectronics

Articles NATure elecTroNics

(represented as blue and red colours in Fig. 4g,h) only to highlight
the effectiveness of the clustering before and after learning the PCs.

The PCA layer separates the original data into clusters, but does
not classify them. To achieve classification, we implement a second
layer, an SLP, in the same hardware system. The SLP processes out-
puts from the PCA layer and generates a label (benign or malig-
nant). Given that there are only two classes to distinguish, the SLP is
trained online using logistic regression. A 3 × 2 subarray is used in
the second layer to account for the two inputs, the bias term and the
differential weights (see Methods).

After learning the PCs in the PCA layer, the original 9D data
are fed through the PCA layer, and the clustered 2D data are used
as inputs for the SLP layer. The same 100 training data used for the
PCA layer training are used for the SLP layer training (Fig. 5a) in
a supervised fashion, using the ground truth (the label associated
with the original data, Supplementary Note 6). Training is com-
pleted after 30 epochs.

Afterwards, the 500 test data not included in the training set are
applied to the network, passing first through the PCA layer then
as 2D data into the SLP layer. After online training of the PCA
and the SLP layers, the experimentally implemented two-layer
network can achieve 94% and 94.6% classification accuracy dur-
ing training and testing (Fig. 5b,c). The values are slightly lower

than those obtained from software implementation (95% during
training and 96.8% during testing, Fig. 5d,e), due to the non-
ideality in the memristor weight update that results in a decision
boundary that differs from that obtained from software (which
assumes ideal linear weight updates) after the online training pro-
cess (Supplementary Figs. 17 and 18). Other statistical parameters,
including the sensitivity, specificity and accuracy for the experi-
mentally implemented PCA + classifier network, were calculated
to be 93.1%, 99.0% and 94.6%, respectively, along with excellent
receiver operating characteristic and F1 scores (Supplementary Fig.
19 and Supplementary Note 7).

Performance analysis of the integrated memristor chip
An important design goal in this study is to have the complete algo-
rithms run on-chip, without having to access off-chip storage for
weights and instructions. To achieve this goal, we first program
all necessary instructions in the algorithm in C code, and compile
the C code into binary machine code. This process only needs to
be performed once for each application. Afterwards, the binary
code is loaded into the static random-access memory on chip by
a bootloader, and all operations are performed on chip. During
training and inference, the binary program instructions are exe-
cuted through the OpenRISC processor without the need to access

O R O R O R O R O R O R

0 5 10 15 20 25 30

0

5

10

15

20

25

M
em

br
an

e
po

te
nt

ia
l

Iteration no.

1 2 3
4 5 6
7 8 9
10 11 12
13 14

1a

e f

b c

d

2 3

4 5 6

7 8 9

10 11 12

13 14

x1

x2

x3

x4

x5

x6

u1 u2 u3 u4 u5 u6

r1

r2

r3

r4

r5

r6

a1 a2 a3 a4 a5 a6

Fig. 3 | experimental demonstration of sparse coding using the integrated memristor chip. a, Schematic of the experimental implementation of the LCA
algorithm using on-chip memristor arrays. In each iteration a forward pass is performed to update the membrane potential u of the output neurons based on
the inputs x, followed by a backward pass to update the residual r based on the neuron activities a. The residual r becomes the input for the next iteration.
b, Dictionary elements based on horizontal and vertical bars. c, Original test image. d, Experimentally reconstructed image based on the neuron activities
from the memristor chip. e, Experimentally obtained neuron membrane potentials as a function of iteration number during LCA analysis. The horizontal red
dashed line marks the threshold parameter λ. f, Additional examples of original input images (O) and reconstructed images (R). The same threshold λ = 18
is used in all experiments in d–f.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics294

http://www.nature.com/natureelectronics

ArticlesNATure elecTroNics

external controllers. The inputs to the memristor array are supplied
through the DACs following the instructions, and the VMM results
are read as charge values from the ADCs and processed by the
OpenRISC processor for batch gradient decent calculations or for
running other algorithms. The results (for example, batch update
values) are then sent to the on-chip registers, and the DACs are
reconfigured for the next operations. After the process is complete,
the final output can be transferred to a computer and accessed by
the users. Details of the data path are provided in Supplementary
Fig. 20 and Supplementary Note 8.

The integrated chip suggests that different computing tasks can
be efficiently mapped on the memristor-based computing plat-
form by taking advantage of the bidirectional VMM operations in
the memristor crossbars and the flexibility of the CMOS interface
and control circuitry. In our prototype, the supporting analogue
interfaces, as well as digital control and the OpenRISC processor,
are implemented in 180 nm CMOS technology. The entire mixed-
signal interface with independent ADCs and DACs supporting
the 54 × 108 crossbar and operating at the maximum frequency of
148 MHz consumes 64.4 mW, obtained from experimental mea-
surements. This corresponds to an energy consumption of 6.53 nJ
per inner product or 1.12 pJ per operation for the mixed-signal
interface, where an operation is defined as the multiplication and
accumulate (MAC) process of a 4 bit input with a stored analogue
weight in the memristor array. At the maximum operating fre-
quency of 148 MHz, the OpenRISC core consumes 235.3 mW and
the system supports 9.87 M VMMs per second, corresponding to a
throughput of 57.5 GOPS. Along with an average power consump-

tion of 7 mW experimentally measured from the 54 × 108 crossbar,
this results in a total system power of 306.7 mW and a power effi-
ciency of 187.62 GOPS per W for the experimentally demonstrated
memristor/CMOS chip based on 180 nm CMOS technology. Simply
scaling the design to a more advanced process node such as 40 nm
CMOS technology would reduce the total system power consump-
tion to 42.1 mW, corresponding to a power efficiency of 1.37 TOPS
per W (Supplementary Fig. 21 and Supplementary Note 9). Further
optimizations of the system design, for example by replacing the
generic processor with a custom-designed controller or field-pro-
grammable gate array, and by replacing the fast and high-precision
13 bit ADC with simpler interface circuits (for example, 8 bit neu-
ron activations may be sufficient for common neural networks) and
more optimized ADC designs, along with memristor device optimi-
zations that reduce power consumption in the memristor crossbar,
can further improve the system’s performance and power efficiency
(see Supplementary Figs. 22–27 and Supplementary Note 10 for
details about circuit optimizations).

During batch training, the memory needed to store the batch
information may become a bottleneck as the task becomes complex
and the pattern size increases. Batch gradient descent has also been
associated with overfitting due to the low stochasticity of the process.
For complicated tasks and large datasets, mini-batch training37,38 may
be an attractive option by splitting the training dataset into small
batches, with typical batch sizes between 2 and 32. Additionally,
recently proposed hybrid techniques that utilize CMOS capacitors
to store the lower-significance weight updates could also provide a
realistic solution to the batch information storage challenge22.

x1

x2

x3

x4

x5

x6

x7

x8

x9

y2

y1

Q

b

a
Sigmoid

a

b f g h

c d e

Input 1 (x1)
Input 2 (x2)
Input 3 (x3)
Input 4 (x4)
Input 5 (x5)
Input 6 (x6)
Input 7 (x7)
Input 8 (x8)
Input 9 (x9)

y1

Bias
(b)

Subarray 1 Subarray 2

Q + Q –

y2
4 8 12 16 20

–9

–6

–3

0

3

3 6 9 12 15 18

–15

–12

–9

–6

–3

0

3

6

1 2 3 4 5 6 7 8 9

–0.4

–0.2

0

0.2

0.4

Benign
Malignant

–12 –8 –4 0 4 8

–15

–12

–9

–6

–3

0

3

6

9

1 2 3 4 5 6 7 8 9

–0.9

–0.6

–0.3

0

0.3

0.6

0.9

W
ei

gh
t (

g)
W

ei
gh

t (
g)

Inputs

V1

V2

V1

V2

S
ec

on
d

P
C

S
ec

on
d

P
C

First PC First PC

Inputs First PCFirst PC

S
ec

on
d

P
C

S
ec

on
d

P
C

–12 –8 –4 0 4 8

–12
–9
–6
–3

0
3
6
9

Benign
Malignant

Benign
Malignant

Benign
Malignant

Fig. 4 | experimental demonstration of PCA using the integrated chip. a, Schematic of the bilayer neural network for PCA analysis and classification.
b, The bilayer network is mapped onto the integrated memristor chip, using a 9 × 2 subarray for the PCA layer and a 3 × 2 subarray for the classification
layer. c, Initial weights for the two PCs in the network. d,e, Before training, linear separation is not possible in the projected 2D space, for both training (d)
and testing (e) data. f, Weights for the two PCs after unsupervised online training obtained from the memristor network, using Sanger’s learning rule and
30 training cycles. g,h, Clear separation can be observed in the 2D space for both training (g) and testing (h) data after projection along the trained PCs.
Note that the colour labels (representing the ground truth) are used only to highlight the effect of clustering in the plots, and are not used in the PC training
or PCA analysis.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics 295

http://www.nature.com/natureelectronics

Articles NATure elecTroNics

To achieve high accuracy with more complex and larger datasets,
the memristor device properties should be further improved. The
WOx memristor device can be reliably programmed over 107 times.
Although this level of endurance can support certain online train-
ing algorithms, longer endurance may be desirable. Additionally,
the cycle to cycle variation during the 107 programming cycles is
~3.4–4.2% (Supplementary Fig. 28a) and the device to device vari-
ability is ~4.5% (Supplementary Fig. 28b). The small models we
implemented in the current study can tolerate these cycle-to-cycle
and device-to-device variations; however, device nonlinearity and
variability need to be reduced to implement larger networks39. To
this end, future device optimizations that can improve device uni-
formity and weight update linearity13,40, along with architecture
innovations such as hybrid non-volatile memory (NVM)–CMOS
neural-network implementations22, mixed-precision19, multi-
memristive device architectures21 and other precision extension
techniques24 can be employed. To scale up the system for larger net-
works, rather than simply increasing the crossbar size, a promising
approach may be to tile small crossbars together in a modular fash-
ion24,41,42, as schematically shown in Supplementary Figs. 29 and 30.
In this approach, each tile is a self-contained, integrated memristor–
CMOS unit (macro); these units are then tiled together using digital
interfaces to construct larger systems5 (Supplementary Note 11).

Conclusions
We have reported the design and fabrication of a fully functional,
programmable neuromorphic computing chip, in which a passive

memristor crossbar array is integrated with a complete set of ana-
logue and digital components and an on-chip processor. The inte-
grated chip allows mapping of different neuromorphic and machine
learning algorithms on chip through simple software changes.
Three different and commonly used models, perceptron, sparse
coding and PCA with an integrated classification layer, have been
demonstrated. A classification accuracy of 100% was achieved for
5 × 5 noisy Greek letters in the SLP implementation, reliable sparse
coding analysis was obtained from an exhaustive test set using
4 × 4 bar patterns, and 94.6% classification rate was experimentally
obtained from the breast cancer screening dataset using the same
integrated chip.

The integrated memristor–CMOS systems potentially offer
efficient hardware solutions for different network sizes and appli-
cations6–10,13,14,16,19,20,22,25,43. An initial application of such systems
may be edge computing, for example as used in the Internet of
Things (IoT) to process data near its source, allowing real-time
data processing with high speed and low energy consumption44,45.
Continued device, circuit and architecture innovations as discussed
above, along with algorithm advances such as quantized neural net-
works46,47, can allow the system to be scaled up for more complex
and more demanding tasks.

Methods
Crossbar array fabrication and integration. The memristor crossbar array used
in this work was directly fabricated on top of the CMOS circuits. First, bottom
electrode (BE) patterns with 500 nm width were defined by electron-beam
lithography; the 80-nm-thick Au BEs were then deposited (with Ni/Cr adhesion

0 10 20 30

0

5

10

15

20

25

30

35

40

45

50

55

a b

d e

c

N
o.

 o
f m

is
cl

as
si

fic
at

io
ns

Training epochs

4 6 8 10 12 14 16 18 20 22

–10

–8

–6

–4

–2

0

2

4

4 6 8 10 12 14 16 18
–18

–16

–14

–12

–10

–8

–6

–4

–2

0

2

4

6
Experimental testing

S
ec

on
d

P
C

 p
ro

je
ct

io
n

First PC projection First PC projection

4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18

First PC projection First PC projection

S
ec

on
d

P
C

 p
ro

je
ct

io
n

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

2

4

6

S
ec

on
d

P
C

 p
ro

je
ct

io
n

–10

–8

–6

–4

–2

0

2

4
S

ec
on

d
P

C
 p

ro
je

ct
io

n

Experimental training

Simulation testingSimulation training

Correct predicted benign
Correct predicted malignant
Incorrect predicted benign
Incorrect predicted malignant

Correct predicted benign
Correct predicted malignant
Incorrect predicted benign
Incorrect predicted malignant

Correct predicted benign
Correct predicted malignant
Incorrect predicted benign
Incorrect predicted malignant

Correct predicted benign
Correct predicted malignant
Incorrect predicted benign
Incorrect predicted malignant

Fig. 5 | Classification results in the bilayer network. a, Evolution of the classification error during the online training process, from the experimentally
implemented bilayer network on chip. b,c, Classification results experimentally obtained from the memristor chip, for the training (b) and testing (c)
data. Blue and red colours represent the predicted benign and malignant data, respectively. The incorrectly classified results are marked as open circles.
Classification rates of 94% and 94.6% are obtained for the training and testing data, respectively. d,e, Classification results of the bilayer network
implemented in software. Blue and red colours represent the predicted benign and malignant data, respectively. Incorrectly classified results are marked as
open circles. Classification rates of 95% and 96.8% are obtained for the training (d) and testing (e) data in software, respectively.

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics296

http://www.nature.com/natureelectronics

ArticlesNATure elecTroNics

layer underneath) by electron-beam evaporation and liftoff processes. Next, 300 nm
of SiO2 was deposited by plasma-enhanced chemical vapour deposition, followed
by a reactive-ion etch back process to form a spacer structure along the sidewalls
of the BEs. The spacer structure allows better step coverage for the WOx switching
layer and the top electrodes (TEs), and also restricts the active device regions to the
flat exposed top surface of the BEs, as shown in Fig. 1d. To prevent leakage through
the switching layer among adjacent devices, the switching layer was only deposited
at the crosspoint regions through electron-beam lithography defined patterns. The
switching layer was formed by first depositing 20-nm-thick W by d.c. sputtering
and liftoff processes in the electron-beam patterned regions, then through rapid
thermal annealing of the patterned W islands with oxygen gas at 400 °C for 60 s
to form the WOx switching material. Afterwards, TEs (Pd (40 nm)/Au (90 nm))
with 500 nm width were patterned and deposited by electron-beam lithography,
electron-beam evaporation and liftoff processes. Finally, metallization processes
were performed by photolithography to connect the crossbar electrodes with
the CMOS landing pads that are left open during the CMOS circuit fabrication
process. An in situ etch process was performed to remove the native aluminium
oxide on the CMOS landing pads, followed by deposition of 800 nm thick Al with
d.c. sputtering and liftoff processes to ensure step coverage of the deeply recessed
landing pads.

Experimental set-up for chip measurement. The integrated chip was wire-
bonded onto a pin-grid-array package and mounted on a printed circuit board
(PCB). The PCB provides the needed power signals and the global system clock
for the integrated chip. No active circuitry (DACs, ADCs, matrix switches and
so on) are implemented on the PCB, as these functions are all provided directly
on chip. A UART-to-serial (UART, universal asynchronous receiver–transmitter)
board was used to convert the input/ouput data from the chip into serial data and
communicate with a desktop computer through a USB cable.

On-chip analogue-to-digital and digital-to-analogue interfaces. A charge-
based mixed-signal interface was used to support the VMM and programming
operations of the integrated crossbar array. We operated the memristor array in
the charge domain instead of the voltage/current domain to avoid the nonlinear
voltage-to-current multiplication issue (for example, 2 × voltage does not produce
2 × current because of the nonlinear current–voltage characteristics in the device).
Specifically, we applied a discrete-time pulse-train input and measured the
accumulated charge from each column (row). During VMM operations the row
(column) DACs applied 6 bit programmable pulses at fixed amplitude (600 mV
with respect to the virtual ground) to the crossbar. The integrating ADCs provided
a virtual ground (at 1.2 V) and measured the collected charge over the input period.

A hybrid incremental charge-integrating ADC was used to tackle the challenge
of digitizing a broad range of column (row) outputs while minimizing the area
and energy consumption. The required large number of ADCs (162), charge
domain inputs and large dynamic ranges all present unique design challenges.
Supplementary Fig. 3 shows the 13 bit ADC design used for this study, which
balances performance and area consumption. Accurate and linear time-domain
DACs were implemented with a pulsed, return-to-zero DAC architecture. A simple
time-domain DAC is inherently nonlinear because of the finite rise and fall time
of the output waveform (Supplementary Fig. 4). Instead, we applied duty-cycled
(75%) pulsed inputs where the number of pulses represented the input amplitude.
The return-to-zero ‘read’ DACs toggled between 1.8 V and 1.2 V (virtual ground),
creating 600 mV pulses for VMM operations without changing the memristor
conductance. Two additional ‘write’ DACs were connected for each column and
row to create 1.8 V amplitude pulses for weight updates during online learning.

Logistic regression. A supervised learning algorithm, logistic regression, was used
to train the SLP layer of the bilayer network to classify benign and malignant cells.

Logistic regression is commonly used for the classification of two classes.
Suppose an N training sample dataset x ¼ x 1ð Þ; ¼ ; x Nð Þ� �T

I
 with label

t ¼ t 1ð Þ; ¼ ; t Nð Þ� �T
I

, where the nth training sample can be written as x(n) and the
nth label as t nð Þ 2 0; 1f g

I
.

A cross-entropy energy function can be defined as

E wð Þ ¼ �
XN

n¼1

t nð Þln y nð Þ þ 1� t nð Þ

ln 1� y nð Þ
 n o

ð3Þ

where y nð Þ ¼ σ z nð Þ� �

I
 and z nð Þ ¼ wTx nð Þ

Iσ(z) is the logistic sigmoid function defined by

σ zð Þ ¼ 1
1þ exp �zð Þ ð4Þ

The likelihood of a training data x(n) belonging to class t(n) = 1 is determined
by the sigmoid function output y(n), with larger y(n) meaning x(n) is more likely to
belong to the class.

Taking the gradient of the error function leads to

∇E wð Þ ¼ PN
n¼1

y nð Þ � t nð Þ�
x nð Þ ð5Þ

To minimize the energy function, the network is trained using batch gradient
descent defined as48

w ¼ w� η
PN
n¼1

y nð Þ � t nð Þ�
x nð Þ ð6Þ

Softmax regression. Softmax regression is a generalized logistic regression for
multi-class classification, usually used when more than two classes need to be
classified. The activation function is defined as

yðnÞj z nð Þ�
¼ exp zðnÞj

�
P

k
exp zðnÞkð Þ ð7Þ

where zðnÞk
I

 is given by z
ðnÞ
k ¼ wT

k x
nð Þ

I
, representing the likelihood of training data x(n)

belonging to class Ck ðtðnÞ ¼ ð0; ¼ ; 1|{z}
kth

; ¼ ; 0ÞÞ

I
The network ends up with a similar form of gradient as in the logistic

regression case:

∇wj E w1; ¼ ;wKð Þ ¼ PN
n¼1

yðnÞj � tðnÞj

x nð Þ ð8Þ

To minimize the energy function, the network is trained using batch gradient
descent defined as48

wj ¼ wj � η∇wj E ¼ wj � η
PN
n¼1

yðnÞj � tðnÞj

x nð Þ ð9Þ

In general, the weighted sums of the inputs can be anything ranging from −∞
to +∞. To bound the neuron output values and perform proper classifications,
activation functions play a key role. Nonlinear activation functions such as the
Sigmoid and the Softmax functions are among the most widely used for binary and
multi-class classification, respectively. In this case, we chose the Softmax function
for the multi-class classification task, which allows us to compute the probabilities
for all classes. The Softmax function produces neuron output values in the range
0–1, where the neuron with the highest output is identified as the winner and used
to classify the corresponding class.

In the memristor crossbar array, the charge collected at an output neuron j is

Qj ¼
P
i
wijxi ¼ V

P
i
Gijti ¼ V

P
i

Gþ
ij � G�

ij

ti ¼ Qþ

j � Q�
j ð10Þ

where xi is the input at row i and is represented by a voltage pulse with amplitude V
and width ti. The charges are measured at the output columns and digitized by the
ADCs, then converted to the neuron output yj through the Softmax function:

yj Qj
�

¼ exp βQjð ÞP
k
exp βQkð Þ ð11Þ

where β is a scaling factor of the ADC output and k represents the output neuron
index.

Compared with earlier SLP implementations9 that used the Manhattan rule
and required on average 23 epochs to achieve perfect classification for a similar
database, the batch gradient descent rule used here not only considers the direction
of the weight update (which represents the Manhattan rule), but also the value of
the weight update, so much faster training convergence can be obtained.

LCA. The LCA is a sparse coding algorithm that uses a dictionary of feature
vectors to encode an input signal with a small number of output coefficients, while
minimizing the reconstruction error.

The concept of sparse coding is as follows. Given an input signal x and a
dictionary of features D, sparse coding aims to represent x as a linear combination
of features from D using a set of sparse coefficients a, with a minimum number
of features. Mathematically, the objective of sparse coding can be summarized as
minimizing an energy function containing both the reconstruction error term as
well as a sparsity penalty term, defined as

min
a

x � DaT
�� ��

2
þλ aj j0

� �
ð12Þ

where |·|2 and |·|0 are the L2- and L0-norm, respectively, and λ is a sparsity parameter
that determines the relative weights of the reconstruction error (first term) and the
sparsity penalty (the number of neurons used, second term).

The mathematical form of the LCA can be expressed as follows: x is an
m-element (m × 1) input vector, D is an m × n matrix, where each column of D
represents an m-element feature vector (that is, a dictionary element) and a is
an n-element (1 × n) row vector representing the neuron activity coefficients,
where the ith element of a corresponds to the activity of the ith neuron. After
feeding input x to the network and allowing the network to stabilize through
lateral inhibition, a reconstruction of x can be obtained as DaT, that is, the linear

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics 297

http://www.nature.com/natureelectronics

Articles NATure elecTroNics

combination of the neuron activities and the corresponding neurons’ feature
vectors. In a sparse representation, only a few elements in a are non-zero, while the
other neurons’ activities are suppressed to be precisely zero.

The neuron dynamics during LCA analysis can be summarized by the
following equation35:

du
dt ¼ 1

τ �uþ xTD� a DTD� Inð Þð Þ ð13aÞ

ai ¼
ui if ui>λ

0 otherwise

�
ð13bÞ

where ui is the membrane potential of neuron i, τ is a time constant and In is the
n × n identity matrix.

Implementing the inhibition effect DTD can be very computation-intensive. To
implement the algorithm in memristor hardware, the original equation (13a) can
be rewritten as

du
dt ¼ 1

τ �uþ x � x̂ð ÞTDþ a
� �

ð14Þ

where x̂ ¼ DaT
I

 is the reconstructed signal. Equation (14) shows that the inhibition
term between neurons can be interpreted as a neuron removing its feature from
the input when it becomes active, thus suppressing the activity of other neurons
having similar features. The matrix–matrix operation DTD in equation (13a) is
thus reduced to two sequential matrix-vector operations, one used to calculate
x̂ ¼ DaT
I

 and the other used to calculate the neuron activity from the updated input
rTD, where r ¼ x � x̂

I
 is the residue term. This approach allows us to implement

the LCA in memristor crossbars without physical inhibitory synaptic connections
between the neurons.

The dynamics of the LCA network operation are correctly captured by the
memristor chip, as shown in Fig. 3e. In this example, all neurons are charging up in
the first four iterations. At the fifth iteration, neuron 13 first crosses the threshold,
as it consists of two horizontal bars which result in a larger output value in the
membrane potential update. As a result, the lateral inhibition effect in the system
suppresses the membrane potentials of other neurons (2 and 4) sharing part of
the features of neuron 13, even though they also represent features of the input.
Meanwhile neuron 6, which represents the vertical bar feature, continues to charge
up. At iteration 11, the membrane potential of neuron 6 crosses the threshold,
and all other neurons’ membrane potentials are suppressed below the threshold,
leading to the optimal solution. The neurons’ membrane potentials continue to
evolve, but those of neurons 6 and 13 remain above the threshold and those of
other neurons continue to decrease due to the inhibition term and the leaky term
in the membrane potential equation. The solution from the network was read out
after 30 iterations.

Breast cancer dataset and classification. A standard breast cancer dataset from
the University of Wisconsin Hospital49 was used as the input for the PCA network,
which is available through the University of Californian, Irvine Machine Learning
Repository50.

The dataset consists of breast cell mass properties measured in nine categories;
each property is scored from 1 to 10. Each input to the memristor network is thus
a 9D vector consisting of scores from the nine measurements. The bilayer network
was trained using 100 training data (containing 50 benign and 50 malignant
cases) from the dataset, and tested with 500 data (containing 312 benign and 188
malignant cases) not in the training set.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding author upon reasonable request.

Received: 18 October 2018; Accepted: 12 June 2019;
Published online: 15 July 2019

references
 1. Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory

18, 507–519 (1971).
 2. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing

memristor found. Nature 453, 80–83 (2008).
 3. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic

systems. Nano Lett. 10, 1297–1301 (2010).
 4. Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An electronic

synapse device based on metal oxide resistive switching memory
for neuromorphic computation. IEEE Trans. Electron Devices 58,
2729–2737 (2011).

 5. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on
memristive systems. Nat. Electron. 1, 22–29 (2018).

 6. Krestinskaya, O., James, A. P. & Chua, L. O. Neuro-memristive circuits for
edge computing: a review. Preprint at https://arxiv.org/abs/1807.00962 (2018)

 7. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing.
Nat. Mater. 18, 309–323 (2019).

 8. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching
devices. Nat. Electron. 1, 333–343 (2018).

 9. Prezioso, M. et al. Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61–64 (2015).

 10. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8,
15199 (2017).

 11. Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by
memristive crossbar circuits using ex situ and in situ training. Nat. Commun.
4, 2072 (2013).

 12. Bayat, F. M. et al. Implementation of multilayer perceptron network with highly
uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

 13. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks. Nat. Commun. 9, 2385 (2018).

 14. Li, C. et al. Analogue signal and image processing with large memristor
crossbars. Nat. Electron. 1, 52–59 (2017).

 15. Gao, L., Chen, P.-Y. & Yu, S. Demonstration of convolution kernel operation
on resistive cross-point array. IEEE Electron Device Lett. 37, 870–873 (2016).

 16. Sheridan, P. M. et al. Sparse coding with memristor networks.
Nat. Nanotechnol. 12, 784–789 (2017).

 17. Du, C. et al. Reservoir computing using dynamic memristors for temporal
information processing. Nat. Commun. 8, 2204 (2017).

 18. Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental
demonstration of feature extraction and dimensionality reduction using
memristor networks. Nano Lett. 17, 3113–3118 (2017).

 19. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1,
246–253 (2018).

 20. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale
neural network (165,000 synapses) using phase-change memory as the
synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

 21. Boybat, I. et al. Neuromorphic computing with multi-memristive synapses.
Nat. Commun. 9, 2514 (2018).

 22. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training
using analogue memory. Nature 558, 60–67 (2018).

 23. Gao, B. et al. Ultra-low-energy three-dimensional oxide-based electronic
synapses for implementation of robust high-accuracy neuromorphic
computation systems. ACS Nano 8, 6998–7004 (2014).

 24. Zidan, M. A. et al. A general memristor-based partial differential equation
solver. Nat. Electron. 1, 411–420 (2018).

 25. Hu, M. et al. Memristor-based analog computation and neural network
classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

 26. Xia, Q. et al. Memristor–CMOS hybrid integrated circuits for reconfigurable
logic. Nano Lett. 9, 3640–3645 (2009).

 27. Kim, K.-H. et al. A functional hybrid memristor crossbar-array/CMOS
system for data storage and neuromorphic applications. Nano Lett. 12,
389–395 (2012).

 28. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing.
Nat. Nanotechnol. 8, 13–24 (2013).

 29. Chen, B. et al. Efficient in-memory computing architecture based on crossbar
arrays. In Proceedings of 2015 IEEE International Electron Devices Meeting
(IEDM) 17.5.1–17.5.4 (IEEE, 2015).

 30. Pershin, Y. V. & Di Ventra, M. Neuromorphic, digital and quantum
computation with memory circuit elements. Proc. IEEE 100, 2071–2080 (2012).

 31. Jeong, D. S. & Hwang, C. S. Nonvolatile memory materials for neuromorphic
intelligent machines. Adv. Mater. 30, 1704729 (2018).

 32. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature 381,
607–609 (1996).

 33. Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set:
a strategy employed by V1? Vis. Res. 37, 3311–3325 (1997).

 34. Sheridan, P. M., Du, C. & Lu, W. D. Feature extraction using memristor
network. IEEE Trans. Neural Netw. Learn. Syst. 27, 2327–2336 (2016).

 35. Rozell, C. J., Johnson, D. H., Baraniuk, R. G. & Olshausen, B. A. Sparse
coding via thresholding and local competition in neural circuits.
Neural Comput. 20, 2526–2563 (2008).

 36. Lever, J., Krzywinski, M. & Altman, N. Points of significance: principal
component analysis. Nat. Methods 14, 641–642 (2017).

 37. Masters, D. & Luschi, C. Revisiting small batch training for deep neural
networks. Preprint at https://arxiv.org/abs/1804.07612 (2018).

 38. Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. On
large-batch training for deep learning: generalization gap and sharp minima.
Preprint at https://arxiv.org/abs/1609.04836 (2016).

 39. Chen, P.-Y., Peng, X. & Yu, S. NeuroSim: a circuit-level macro model
for benchmarking neuro-inspired architectures in online learning.
IEEE Trans. Comput. Des. Integr. Circuits Syst. 37, 3067–3080 (2018).

 40. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with
reproducible high performance based on engineered dislocations. Nat. Mater.
17, 335–340 (2018).

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics298

https://arxiv.org/abs/1807.00962
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1609.04836
http://www.nature.com/natureelectronics

ArticlesNATure elecTroNics

 41. Zidan, M. A. et al. Field-programmable crossbar array (FPCA) for
reconfigurable computing. IEEE Trans. Multi-scale Comput. Syst. 4,
698–710 (2017).

 42. Mikhailenko, D., Liyanagedera, C., James, A. P. & Roy, K. M2CA: modular
memristive crossbar arrays. In Proceedings of 2018 IEEE International
Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

 43. Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron.
1, 216–222 (2018).

 44. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. In Proceedings of 43rd International
Symposium on Computer Architecture 14–26 (IEEE, 2016).

 45. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training
with resistive cross-point devices: design considerations. Front. Neurosci. 10,
33 (2016).

 46. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized
neural networks: training neural networks with low precision weights and
activations. Preprint at https://arxiv.org/abs/1609.07061 (2016).

 47. Jacob, B. et al. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. Preprint at https://arxiv.org/abs/1712.05877
(2017)

 48. Bishop, C. M. Pattern Recognition and Machine Learning Vol. 4 (Springer, 2006).
 49. Mangasarian, O. L., Street, W. N. & Wolberg, W. H. Breast cancer diagnosis

and prognosis via linear programming. Oper. Res. 43, 570–577 (1995).
 50. Dheeru, D. & Karra Taniskidou, E. Machine Learning Repository (Univ.

California–Irvine, 2017).

Acknowledgements
The authors acknowledge inspiring discussions with C. Liu, T. Chou, P. Brown, M.A.
Zidan and P.M. Sheridan. This work was supported in part by the Defense Advanced

Research Projects Agency (DARPA) through award HR0011-13-2-0015, the National
Science Foundation (NSF) through awards CCF-1617315 and 1734871, and the
Applications Driving Architectures (ADA) Research Centre, a JUMP Centre co-
sponsored by SRC and DARPA.

Author contributions
F.C., J.M.C., S.H.L., Z.Z., M.P.F. and W.D.L. conceived the project and constructed
the research frame. S.H.L. prepared the memristor arrays and performed device
integration. J.M.C., Y.L., V.B., Z.Z. and M.P.F. designed the CMOS chip. F.C. and J.M.C.
prepared the test hardware and software platform. F.C. and S.H.L. performed the
network measurements and software simulations. W.D.L. directed the project. F.C.,
J.M.C., S.H.L., Z.Z., M.P.F. and W.D.L. analysed the experimental data and wrote the
manuscript. All authors discussed the results and implications and commented on the
manuscript at all stages.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41928-019-0270-x.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to W.D.L.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

NAture eLeCtrONiCS | VOL 2 | JULY 2019 | 290–299 | www.nature.com/natureelectronics 299

https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1712.05877
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1038/s41928-019-0270-x
http://www.nature.com/reprints
http://www.nature.com/natureelectronics

	A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations
	Fully integrated reprogrammable neuromorphic chip
	Training and classification using a single-layer perceptron
	Sparse coding algorithm implementation
	Implementation of a multi-layer neural network
	Performance analysis of the integrated memristor chip
	Conclusions
	Methods
	Crossbar array fabrication and integration
	Experimental set-up for chip measurement
	On-chip analogue-to-digital and digital-to-analogue interfaces
	Logistic regression
	Softmax regression
	LCA
	Breast cancer dataset and classification

	Acknowledgements
	Fig. 1 Fully integrated memristor/CMOS chip.
	Fig. 2 Experimental demonstration of the single-layer perceptron on the integrated memristor chip.
	Fig. 3 Experimental demonstration of sparse coding using the integrated memristor chip.
	Fig. 4 Experimental demonstration of PCA using the integrated chip.
	Fig. 5 Classification results in the bilayer network.

