
History-Based Harvesting of Spare Cycles and Storage in
Large-Scale Datacenters

Yunqi Zhang†⇤ George Prekas‡⇤ Giovanni Matteo Fumarolad

Marcus Fontourad Íñigo Goiri? Ricardo Bianchini?

†University of Michigan ‡EPFL d Microsoft ?Microsoft Research

Abstract
An effective way to increase utilization and reduce costs
in datacenters is to co-locate their latency-critical ser-
vices and batch workloads. In this paper, we describe
systems that harvest spare compute cycles and storage
space for co-location purposes. The main challenge
is minimizing the performance impact on the services,
while accounting for their utilization and management
patterns. To overcome this challenge, we propose tech-
niques for giving the services priority over the resources,
and leveraging historical information about them. Based
on this information, we schedule related batch tasks on
servers that exhibit similar patterns and will likely have
enough available resources for the tasks’ durations, and
place data replicas at servers that exhibit diverse patterns.
We characterize the dynamics of how services are uti-
lized and managed in ten large-scale production datacen-
ters. Using real experiments and simulations, we show
that our techniques eliminate data loss and unavailability
in many scenarios, while protecting the co-located ser-
vices and improving batch job execution time.

1 Introduction

Motivation. Purchasing servers dominates the total cost
of ownership (TCO) of large-scale datacenters [4], such
as those operated by Google and Microsoft. Unfortu-
nately, the servers’ average utilization is often low, es-
pecially in clusters that host user-facing, interactive ser-
vices [4, 10]. The reasons for this include: these services
are often latency-critical (i.e., require low tail response
times); may exhibit high peaks in user load; and must
reserve capacity for unexpected load spikes and failures.

An effective approach for extracting more value from
the servers is the co-location of useful batch workloads
(e.g., data analytics, machine learning) and the data they
require on the same servers that perform other functions,

⇤This work was done while Zhang and Prekas were interns at MSR.

including those that run latency-critical services. How-
ever, for co-location with these services to be acceptable,
we must shield them from any non-trivial performance
interference produced by the batch workloads or their
storage accesses, even when unexpected events occur. If
co-location starts to degrade response times, the sched-
uler must throttle or even kill (and re-start elsewhere) the
culprit batch workloads. In either case, the performance
of the batch workloads suffers. Nevertheless, co-location
ultimately reduces TCO [37], as the batch workloads are
not latency-critical and share the same infrastructure as
the services, instead of needing their own.

Recent scheduling research has considered how to
carefully select which batch workload to co-locate with
each service to minimize the potential for interference
(most commonly, last-level cache interference), e.g. [9,
10, 25, 42]. However, these works either assume sim-
ple sequential batch applications or overlook the resource
utilization dynamics of real services. Scheduling data-
intensive workloads comprising many distributed tasks
(e.g., data analytics jobs) is challenging, as scheduling
decisions must be made in tandem for collections of
these tasks for best performance. The resource utiliza-
tion dynamics make matters worse. For example, a long-
running workload may have some of its tasks throttled or
killed when the load on a co-located service increases.

Moreover, no prior study has explored in detail the
co-location of services with data for batch workloads.
Real services often leave large amounts of spare storage
space (and bandwidth) that can be used to store the data
needed by the batch workloads. However, co-locating
storage raises even more challenges, as the management
and utilization of the services may affect data durabil-
ity and availability. For example, service engineers and
the management system itself may reimage (reformat)
disks, deleting all of their data. Reimaging typically re-
sults from persistent state management, service deploy-
ment, robustness testing, or disk failure. Co-location and
reimaging may cause all replicas of a data block to be

destroyed before they can be re-generated.
Our work. In this paper, we propose techniques for har-
vesting the spare compute cycles and storage space in
datacenters for distributed batch workloads. We refer to
the original workloads of each server as its “primary ten-
ant”, and to any resource-harvesting workload (i.e., batch
compute tasks or their storage accesses) on the server as
a “secondary tenant”. We give priority over each server’s
resources to its primary tenant; secondary tenants may
be killed (in case of tasks) or denied (in case of storage
accesses) when the primary tenant needs the resources.

To reduce the number of task killings and improve data
availability and durability, we propose task scheduling
and data placement techniques that rely on historical re-
source utilization and disk reimaging patterns. We logi-
cally group primary tenants that exhibit similar patterns
in these dimensions. Using the utilization groups, our
scheduling technique schedules related batch tasks on
servers that have similar patterns and enough resources
for the tasks’ expected durations, and thereby avoids cre-
ating stragglers due to a lack of resources. Using the uti-
lization and reimaging groups, our data placement tech-
nique places data replicas in servers with diverse pat-
terns, and thereby increases durability and availability
despite the harvested nature of the storage resources.

To create the groups, we characterize the primary ten-
ants’ utilization and reimaging patterns in ten production
datacenters,1 including a popular search engine and its
supporting services. Each datacenter hosts up to tens of
thousands of servers. Our characterization shows that the
common wisdom that datacenter workloads are periodic
is inaccurate, since often most servers do not execute in-
teractive services. We target all servers for harvesting.
Implementation and results. We implement our tech-
niques into the YARN scheduler, Tez job manager, and
HDFS file system [11, 29, 36] from the Apache Hadoop
stack. (Primary tenants use their own scheduling and file
systems.) Stock YARN and HDFS assume there are no
external workloads, so we also make these systems aware
of primary tenants and their resource usage.

We evaluate our systems using 102 servers in a pro-
duction datacenter, with utilization and reimaging behav-
iors scaled down from it. We also use simulations to
study our systems for longer periods and for larger clus-
ters. The results show that our systems (1) can improve
the average batch job execution time by up to 90%; and
(2) can reduce data loss by more than two orders of mag-
nitude when blocks are replicated three times, eliminate
data loss under four-way replication, and eliminate data
unavailability for most utilization levels.

Finally, we recently deployed our file system in large-

1For confidentiality, we omit certain information, such as absolute
numbers of servers and actual utilizations, focusing instead on coarse
behavior patterns and full-range utilization exploration.

scale production (our scheduler is next), so we discuss
our experience and lessons that may be useful to others.
Summary and conclusions. Our contributions are:
• We characterize the dynamics of how servers are used

and managed in ten production datacenters.
• We propose techniques for improving task scheduling

and data placement based on the historical behavior of
primary tenants and how they are managed.

• We extend the Hadoop stack to harvest the spare cy-
cles and storage in datacenters using our techniques.

• We evaluate our systems using real experiments and
simulations, and show large improvements in batch
job performance, data durability, and data availability.

• We discuss our experience with large-scale production
deployments of our techniques.
We conclude that resource harvesting benefits signifi-

cantly from a detailed accounting of the resource usage
and management patterns of the primary workloads. This
accounting enables higher utilization and lower TCO.

2 Related Work

Datacenter characterization. Prior works from data-
center operators have studied selected production clus-
ters, not entire datacenters, e.g. [37]. Instead, we char-
acterize all primary tenants in ten datacenters, includ-
ing those used for production latency-critical and non-
critical services, for service development and testing, and
those awaiting use or being prepared for decommission.
Harvesting of resources without co-location. Prior
works have proposed to harvest resources for batch
workloads in the absence of co-located latency-critical
services, e.g. [22, 23]. Our work focuses on the more
challenging co-location scenario in modern datacenters.
Co-location of latency-critical and batch tasks. Re-
cent research has targeted two aspects of co-location: (1)
performance isolation – ensuring that batch tasks do not
interfere with services, after they have been co-located
on the same server [19, 20, 21, 24, 27, 31, 32, 38, 42]; or
(2) scheduling – selecting which tasks to co-locate with
each service to minimize interference or improve pack-
ing quality [9, 10, 12, 25, 37, 43]. Borg addresses both
aspects in Google’s datacenters, using Linux cgroup-
based containers, special treatment for latency-critical
tasks, and resource harvesting from containers [37].

Our work differs substantially from these efforts. As
isolation and interference-aware scheduling have been
well-studied, we leave the implementation of these tech-
niques for future work. Instead, we reserve compute re-
sources that cannot be given to batch tasks; a spiking pri-
mary tenant can immediately consume this reserve until
our software can react (within a few seconds at most) to
replenish the reserve. Combining our systems with finer
grained isolation techniques will enable smaller reserves.

Moreover, unlike services at Google, our primary ten-
ants “own” their servers, and do not declare their poten-
tial resource needs. This means that we must harvest
resources carefully to prevent interference with latency-
critical services and degraded batch job performance.
Thus, we go beyond prior works by understanding and
exploiting the primary tenants’ resource usage dynam-
ics to reduce the need for killing batch tasks. With re-
spect to resource usage dynamics, a related paper is [5],
which derives Service-Level Objectives (SLOs) for re-
source availability from historical utilization data. We
leverage similar data but for dynamic task scheduling,
which their paper did not address.

Also importantly, we are the first to explore in detail
the harvesting of storage space from primary tenants for
data-intensive batch jobs. This scenario involves under-
standing how primary tenants are managed, as well as
their resource usage.

For both compute and storage harvesting, we lever-
age primary and secondary tenants’ historical behav-
iors, which are often more accurate than user annota-
tions/estimates (e.g., [35]). Any system that harvests re-
sources from latency-critical workloads can benefit from
leveraging the same behaviors.
Data-processing frameworks and co-location. Re-
searchers have proposed improvements to the Hadoop
stack in the absence of co-location, e.g. [3, 8, 13, 14,
15, 18, 39]. Others considered Hadoop (version 1) in co-
location scenarios using virtual machines, but ran HDFS
on dedicated servers [7, 30, 41]. Lin et al. [22] stored
data on dedicated and volunteered computers (idle desk-
tops), but in the absence of primary tenants. We are not
aware of studies of Mesos [16] in co-location scenarios.
Bistro [12] relies on static resource reservations for ser-
vices, and schedules batch jobs on the leftover resources.
In contrast to these works, we propose dynamic schedul-
ing and data placement techniques for the Hadoop stack,
and explore the performance, data availability, and data
durability of co-located primary and secondary tenants.

3 Characterizing Behavior Patterns

We now characterize the primary tenants in ten produc-
tion datacenters. In later sections, we use the characteri-
zation for our co-location techniques and results.

3.1 Data sources and terminology
We leverage data collected by AutoPilot [17], the pri-
mary tenant management and deployment system used
in the datacenters. Under AutoPilot, each server is part
of an environment (a collection of servers that are log-
ically related, e.g. indexing servers of a search engine)

and executes a machine function (a specific functional-
ity, e.g. result ranking). Environments can be used for
production, development, or testing. In our terminology,
each primary tenant is equivalent to an <environment,
machine function> pair. Primary tenants run on physical
hardware, without virtualization. Each datacenter has be-
tween a few hundred to a few thousand primary tenants.

Though our study focuses on AutoPilot-managed dat-
acenters, our characterization and techniques should be
easily applicable to other management systems as well.
In fact, similar telemetry is commonly collected in other
production datacenters, e.g. GWP [28] at Google and
Scuba [2] at Facebook.

3.2 Resource utilization
AutoPilot records the primary tenant utilization per
server for all hardware resources, but for simplicity we
focus on the CPU in this paper. It records the CPU uti-
lization every two minutes. As the load is not always
evenly balanced across all servers of a primary tenant,
we compute the average of their utilizations in each time
slot, and use the utilization of this “average” server for
one month to represent the primary tenant.

We then identify trends in the tenants’ utilizations,
using signal processing. Specifically, we use the Fast
Fourier Transform (FFT) on the data from each primary
tenant individually. The FFT transforms the utilization
time series into the frequency domain, making it easy to
identify any periodicity (and its strength) in the series.

We identify three main classes of primary tenants: pe-
riodic, unpredictable, and (roughly) constant. Figure 1
shows the CPU utilization trends of a periodic and an
unpredictable primary tenant in the time and frequency
domains. Figure 1b shows a strong signal at frequency
31, because there are 31 days (load peaks and valleys)
in that month. In contrast, Figure 1d shows a decreas-
ing trend in signal strength as the frequency increases, as
the majority of the signal derives from events that rarely
happen (i.e., exhibit lower frequency).

As one would expect, user-facing primary tenants of-
ten exhibit periodic utilization (e.g., high during the day
and low at night), whereas non-user-facing (e.g., Web
crawling, batch data analytics) or non-production (e.g.,
development, testing) primary tenants often do not. For
example, a Web crawling or data scrubber tenant may
exhibit (roughly) constant utilization, whereas a testing
tenant often exhibits unpredictable utilization behavior.

More interestingly, Figure 2 shows that user-facing
(periodic) primary tenants are actually a small minority.
The vast majority of primary tenants exhibit roughly con-
stant CPU utilization. Nevertheless, Figure 3 shows that
the periodic primary tenants represent a large percent-
age (⇠40% on average) of the servers in each datacenter.

(a) Periodic – time (b) Periodic – frequency

(c) Unpredictable – time (d) Unpredictable – frequency

Figure 1: Sample periodic and unpredictable one-month traces in the time and frequency domains.

Figure 2: Percentages of primary tenants per class.

Still, the non-periodic primary tenants account for more
than half of the tenants and servers.

Most importantly, the vast majority of servers (⇠75%)
run primary tenants (periodic and constant) for which
the historical utilization data is a good predictor of fu-
ture behaviors (the utilizations repeat periodically or all
the time). Thus, leveraging this data should improve the
quality of both our task scheduling and data placement.

3.3 Disk reimaging
Disk reimages are relatively frequent for some primary
tenants, which by itself potentially threatens data dura-
bility under co-location. Even worse, disk reimages are
often correlated, i.e. many servers might be reimaged at
the same time (e.g., when servers are repurposed from
one primary tenant to another). Thus, it is critical for
data durability to account for reimages and correlations.

AutoPilot collects disk reimaging (reformatting) data

Figure 3: Percentages of servers per class.

per server. This data includes reimages of multiple types:
(1) those initiated manually by developers or service op-
erators intending to re-deploy their environments (pri-
mary tenants) or re-start them from scratch; (2) those
initiated by AutoPilot to test the resilience of production
services; and (3) those initiated by AutoPilot when disks
have undergone maintenance (e.g., tested for failure).

We now study the reimaging patterns using three years
of data from AutoPilot. As an example of the reimaging
frequencies we observe, Figure 4 shows the Cumulative
Distribution Function (CDF) of the average number of
reimages per month for each server in three years in five
representative datacenters in our sample. Figure 5 shows
the CDF of the average number of reimages per server
per month for each primary tenant for the same years and
datacenters. The discontinuities in this figure are due to
short-lived primary tenants.

We make three observations from these figures. First
and most importantly, there is a good amount of diver-

0

20

40

60

80

100

0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f s
er

ve
rs

Reimages / month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 4: Per-server number of reimages in three years.

0

20

40

60

80

100

0 0.5 1 1.5 2

Pe
rc

en
ta

ge
 o

f p
rim

ar
y

te
na

nt
s

Reimages / server / month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 5: Per-tenant number of reimages in three years.

sity in average reimaging frequency across primary ten-
ants in each datacenter (Figure 5 does not show nearly
vertical lines). Second, the reimaging frequencies per
month are fairly low in all datacenters. For example, at
least 90% of servers are reimaged once or fewer times
per month on average, whereas at least 80% of primary
tenants are reimaged once or fewer times per server per
month on average. This shows that reimaging by primary
tenant engineers and AutoPilot is not overly aggressive
on average, but there is a significant tail of servers (10%)
and primary tenants (20%) that are reimaged relatively
frequently. Third, the primary tenant reimaging behav-
iors are fairly consistent across datacenters, though three
datacenters show substantially lower reimaging rates per
server (we show two of those datacenters in Figure 4).

The remaining question is whether each primary ten-
ant exhibits roughly the same frequencies month after
month. In this respect, we find that there is substantial
variation, as frequencies sometimes change substantially.

Nevertheless, when compared to each other, primary
tenants tend to rank consistently in the same part of the
spectrum. In other words, primary tenants that experi-
ence a relatively small (large) number of reimages in a
month tend to experience a relatively small (large) num-
ber of reimages in the following month. To verify this
trend, we split the primary tenants of a datacenter into
three frequency groups, each with the same number of
tenants: infrequent, intermediate, and frequent. Then,
we track the movement of the primary tenants across
these groups over time. Figure 6 plots the CDF of the
number of times a primary tenant changed groups from
one month to the next. At least 80% of primary tenants

0

20

40

60

80

100

0 5 10 15 20

Pe
rc

en
ta

ge
 o

f p
rim

ar
y

te
na

nt
s

Group changes from month to month

DC-0

DC-7
DC-9

DC-3
DC-1

Figure 6: Number of times a primary tenant changed
reimage frequency groups in three years.

changed groups only 8 or fewer times out of the possible
35 changes in three years. This behavior is also consis-
tent across datacenters.

Again, these figures show that historical reimaging
data should provide meaningful information about the
future. Using this data should improve data placement.

4 Smart Co-location Techniques

In this section, we describe our techniques for smart task
scheduling and data placement, which leverage the pri-
mary tenants’ historical behavior patterns.

4.1 Smart task scheduling
We seek to schedule batch tasks (secondary tenants) to
harvest spare cycles from servers that natively run in-
teractive services and their supporting workloads (pri-
mary tenants). Modern cluster schedulers achieve high
job performance and/or fairness, so they are good candi-
dates for this use. However, their designs typically as-
sume dedicated servers, i.e. there are no primary tenants
running on the same servers. Thus, we must (1) mod-
ify them to become aware of the primary tenants and
the primary tenants’ priority over the servers’ resources;
and (2) endow them with scheduling algorithms that re-
duce the number of task killings resulting from the co-
located primary tenants’ need for resources. The first re-
quirement is fairly easy to accomplish, so we describe
our implementation in Section 5. Here, we focus on the
second requirement, i.e. smart task scheduling, and use
historical primary tenant utilization data to select servers
that will most likely have the required resources available
throughout the tasks’ entire executions.

Due to the sheer number of primary tenants, it would
be impractical to treat them independently during task
scheduling. Thus, our scheduling technique first clus-
ters together primary tenants that have similar utilization
patterns into the same utilization class, and then select a
class for the tasks of a job. Next, we discuss our cluster-
ing and class selection algorithms in turn.

Algorithm 1 Class selection algorithm.
1: Given: Classes C, Headroom(type,c), Ranking Weights W
2: function SCHEDULE(Batch job J)
3: J.type = Length (short, medium, or long) from its last run
4: J.req = Max amount of concurrent resources from DAG
5: for each c 2C do
6: c.weightedroom=Headroom(J.type,c) ⇥ W [J.type,c.class]
7: end for
8: F = {8c 2C| Headroom(J.type,c) � J.req}
9: if F 6= /0 then

10: Pick 1 class c 2 F probabilistically µ c.weightedroom
11: return {c}
12: else if Job J can fit in multiple classes combined then
13: Pick {c0, . . . ,ck}✓C probabilistically µ c.weightedroom
14: return {c0, . . . ,ck}
15: else
16: Do not pick classes
17: return { /0}
18: end if
19: end function

The clustering algorithm periodically (e.g., once per
day) takes the most recent time series of CPU utiliza-
tions from the average server of each primary tenant, runs
the FFT algorithm on the series, groups the tenants into
the three patterns described in Section 3 (periodic, con-
stant, unpredictable) based on their frequency profiles,
and then uses the K-Means algorithm to cluster the pro-
files in each pattern into classes. Clustering tags each
class with the utilization pattern, its average utilization,
and its peak utilization. It also maintains a mapping be-
tween the classes and their primary tenants.

As we detail in Algorithm 1, our class selection al-
gorithm relies on the classes defined by the clustering
algorithm. When we need to allocate resources for a
job’s tasks, the algorithm selects a class (or classes) ac-
cording to the expected job length (line 3) and a pre-
determined ranking of classes for the length. We rep-
resent the desired ranking using weights (line 6); higher
weight means higher ranking. For a long job, we give pri-
ority to constant classes first, then periodic classes, and
finally unpredictable classes. We prioritize the constant
classes in this case because constant-utilization primary
tenants with enough available resources are unlikely to
take resources away from the job during its execution. At
the other extreme, a short job does not require an assur-
ance of resource availability long into the future; know-
ing the current utilization is enough. Thus, for a short
job, we rank the classes unpredictable first, then peri-
odic, and finally constant. For a medium job, the ranking
is periodic first, then constant, and finally unpredictable.

We categorize a job as short, medium, or long by
comparing the duration of its last execution to two pre-
defined thresholds (line 3). We set the thresholds based
on the historical distribution of job lengths and the cur-
rent computational capacity of each preferred tenant
class (e.g., the total computation required by long jobs

(8) (469) (113) (126) (138) (6) (1)
Number of Concurrent Tasks

Mapper 2
(469)

Mapper 8 Reducer 3
(113)

Mapper 9
(3)

Mapper 10
(2)

Mapper 11
(1)

Reducer 6
(6)

Reducer 7
(1)

Reducer 4
(126)

Reducer 5
(138)

(1)

Mapper 1
(1)

Figure 7: Example job execution DAG.

should be proportional to the computational capacity of
constant primary tenants). Importantly, the last duration
need not be an accurate execution time estimate. Our
goal is much easier: to categorize jobs into three rough
types. We assume that a job that has not executed before
is a medium job. After a possible error in this first guess,
we find that a job consistently falls into the same type.

We estimate the maximum amount of concurrent re-
sources that the job will need (line 4) using a breadth-
first traversal of the job’s directed acyclic graph (DAG),
which is a common representation of execution flows in
many frameworks [1, 29, 40]. We find this estimate to be
accurate for our workloads. Figure 7 shows an example
job DAG (query 19 from TPC-DS [34]), for which we
estimate a maximum of 469 concurrent containers.

Whether a job “fits” in a class (line 8) depends on the
amount of available resources (or the amount of head-
room) that the servers in the class currently exhibit, as
we define below. When multiple classes could host the
job, the algorithm selects one with probability propor-
tional to its weighted headroom (lines 9 and 10). If mul-
tiple classes are necessary, it selects as many classes as
needed, again probabilistically (lines 12 and 13). If there
are not enough resources available in any combination of
classes, it does not select any class (line 16).

The headroom depends on the job type. For a short
job, we define it as 1 minus the current average CPU uti-
lization of the servers in the class. For a medium job, we
use 1 minus Max(average CPU utilization, current CPU
utilization). For a long job, we use 1 minus Max(peak
CPU utilization, current CPU utilization).

4.2 Smart data placement
Modern distributed file systems achieve high data ac-
cess performance, availability, and durability, so there
is a strong incentive for using them in our harvesting
scenario. However, like cluster schedulers, they assume
dedicated servers without primary tenants running and
storing data on the same servers, and without primary
tenant owners deliberately reimaging disks. Thus, we

Algorithm 2 Replica placement algorithm.
1: Given: Storage space available in each server, Primary reimaging
2: stats, Primary peak CPU util stats, Desired replication R
3: function PLACE REPLICAS(Block B)
4: Cluster primary tenants wrt reimaging and peak CPU util
5: into 9 classes, each with the same total space
6: Select the class of the server creating the block
7: Select the server creating the block for one replica
8: for r = 2; r R; r = r + 1 do
9: Select the next class randomly under two constraints:

10: No class in the same row has been picked
11: No class in the same column has been picked
12: Pick a random primary tenant of this class as long as
13: its environment has not received a replica
14: Pick a server in this primary tenant for the next replica
15: if (r mod 3) == 0 then
16: Forget rows and columns that have been selected so far
17: end if
18: end for
19: end function

must (1) modify them to become co-location-aware; and
(2) endow them with replica placement algorithms that
improve data availability and durability in the face of pri-
mary tenants and how they are managed. Again, the first
requirement is fairly easy to accomplish, so we discuss
our implementation in Section 5. Here, we focus on the
second requirement, i.e. smart replica placement.

The challenge is that the primary tenants and the man-
agement system may hurt data availability and durability
for any block: (1) if the replicas of a block are stored
in primary tenants that load-spike at the same time, the
block may become unavailable; (2) if developers or the
management system reimage the disks containing all the
replicas of a block in a short time span, the block will be
lost. A replica placement algorithm must then account
for primary tenant and management system activity.

An intuitive best-first approach would be to try to find
primary tenants that reimage their disks the least, and
from these primary tenants select the ones that have low-
est CPU utilizations. However, this greedy approach has
two serious flaws. First, it treats durability and avail-
ability independently, one after the other, ignoring their
interactions. Second, after the space at all the “good”
primary tenants is exhausted, new replicas would have
to be created at locations that would likely lead to poor
durability, poor availability, or both.

We prefer to make decisions that promote durabil-
ity and availability at the same time, while consis-
tently spreading the replicas around as evenly as pos-
sible across all types of primary tenants. Thus, our
replica placement algorithm (Algorithm 2) creates a two-
dimensional clustering scheme, where one dimension
corresponds to durability (disk reimages) and the other
to availability (peak CPU utilization). It splits the two-
dimensional space into 3⇥ 3 classes (infrequent, inter-
mediate, and frequent reimages versus low, medium,

and high peak utilizations), each of which has the same
amount of available storage for harvesting S/9, where S
is the total amount of currently available storage (lines 4
and 5). This idea can be applied to splits other than 3 ⇥ 3,
as long as they provide enough primary tenant diversity.

The above approach tries to balance the available
space across classes. However, perfect balancing may be
impossible when primary tenants have widely different
amounts of available space, and the file system starts to
become full. The reason is that balancing space perfectly
could require splitting a large primary tenant across two
or more classes. We prevent this situation by selecting a
single class for each tenant, to avoid hurting placement
diversity. The side effect is that small primary tenants
get filled more quickly, causing larger primary tenants to
eventually become the only possible targets for the repli-
cas. This effect can be eliminated by not filling the file
system to the point that less than three primary tenants
remain as possible targets for replicas. In essence, there
is a tradeoff between space utilization and diversity. We
discuss this tradeoff further in Section 7.

When a client creates a new block, our algorithm se-
lects one class for each replica. The first class is that
of the server creating the block; the algorithm places a
replica at this server to promote locality (lines 6 and 7).
If the desired replication is greater than 1, it repeatedly
selects classes randomly, in such a way that no row or
column of the two-dimensional space has two selections
(lines 9, 10, and 11). It places a replica in (a randomly
selected server of) a randomly selected primary tenant in
this class, while ensuring that no two primary tenants in
the same environment receive a replica (lines 12, 13, and
14). Finally, for a desired replication level larger than
3, it does extra rounds of selections. At the beginning
of each round, it forgets the history of row and column
selections from the previous round (lines 15, 16, and 17).

The environment constraint is the only aspect of our
techniques that is AutoPilot-specific. However, the con-
straints generalize to any management system: avoid pla-
cing multiple replicas in any logical (e.g., environment)
or physical (e.g., rack) server grouping that induces cor-
relations in resource usage, reimaging, or failures.

Figure 8 shows an example of our clustering scheme
and primary tenant selection, assuming all primary ten-
ants have the same amount of available storage. The rows
defining the peak utilization classes do not align, as we
ensure that the available storage is the same in all classes.

5 System Implementations

We implement our techniques into YARN, Tez, and
HDFS. Next, we overview these systems. Then, we de-
scribe our implementation guidelines and systems, called
YARN-H, Tez-H, and HDFS-H (“-H” refers to history).

100

0 0.5 1 1.5 2

Pe
ak

 u
til

iz
at

io
n

(%
)

Reimages / server / month

0

20

40

60

80
Primary tenant
Selected primary tenant

Figure 8: Two-dimensional clustering scheme.

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

RM-H

CS

NN-H

AP

Dedicated

DN-H

NM-H

AM-H

Pr
im

ar
y

te
na

nt

Serverj

CiCiCiCi

Figure 9: Overview of YARN-H (RM-H and NM-H),
Tez-H (AM-H), and HDFS-H (NN-H and DN-H) in a
co-location scenario. Our new clustering service (CS)
interacts with all three systems. The arrows represent in-
formation flow. Ci = Container i; AP = AutoPilot.

5.1 Background
YARN [36] comprises a global Resource Manager (RM)
running on a dedicated server, a Node Manager (NM)
per server, and a per-job Application Master (AM) run-
ning on one of the servers. The RM arbitrates the use of
resources (currently, cores and memory) across the clus-
ter. The (primary) RM is often backed up by a secondary
RM in case of failure. Each AM requests containers from
the RM for running the tasks of its job. Each container
request specifies the desired core and memory alloca-
tions for it, and optionally a “node label”. The RM se-
lects a destination server for each container that has the
requested resources available and the same label. The
AM decides which tasks it should execute in each con-
tainer. The AM also tracks the tasks’ execution, sequenc-
ing them appropriately, and re-starting any killed tasks.
Each NM creates containers and reports the amount of
locally available resources to the RM in periodic “heart-
beats”. The NM kills any container that tries to utilize
more memory than its allocation.

Tez [29] is a popular framework upon which MapRe-
duce, Hive, Pig, and other applications can be built. Tez
provides an AM that executes complex jobs as DAGs.

HDFS [11] comprises a global Name Node (NN) run-
ning on a dedicated server, and a Data Node (DN) per

System Main extensions
YARN Report primary tenant utilization to the RM

Kill containers due to primary tenant needs
Maintain resource reserve for primary tenant
Probabilistically balance load

Tez Leverage information on the observed job lengths
Estimate max concurrent resource requirements
Track primary tenant utilization patterns
Schedule tasks on servers unlikely to kill them
Schedule tasks on servers with similar primaries

HDFS Track primary tenant utilization, deny accesses
Report primary tenant status to the NN
Exclude busy servers from info given to clients
Track primary disk reimaging, peak utilizations
Place replicas at servers with diverse patterns

General Create dedicated environment for main components

Table 1: Our main extensions to YARN, Tez, and HDFS.

server. The NN manages the namespace and the map-
ping of file blocks to DNs. The (primary) NN is typically
backed up by a secondary NN. By default, the NN repli-
cates each block (256 MBytes) three times: one replica
in the server that created the block, one in another server
of the same rack, and one in a remote rack. Upon a block
access, the NN informs the client about the servers that
store the block’s replicas. The client then contacts the
DN on any of these servers directly to complete the ac-
cess. The DNs heartbeat to the NN; after a few missing
heartbeats from a DN, the NN starts to re-create the cor-
responding replicas in other servers without overloading
the network (30 blocks/hour/server).

5.2 Implementation guidelines
We first must modify the systems to become aware of
the primary tenants and their priority over the servers’
resources. Because of this priority, we must ensure that
the key components of these systems (RMs and NNs) do
not share their servers with any primary tenants. Second,
we want to integrate our history-based task scheduling
and data placement algorithms into these systems.

Figure 9 overviews our systems. The arrows in the
figure represent information flow. Each shared server re-
ceives one instance of our systems; other workloads are
considered primary tenants. Table 1 overviews our main
extensions. The next sections describe our systems.

5.3 YARN-H and Tez-H
Design goals: (G1) ensure that the primary tenant al-
ways gets the cores and memory it desires; (G2) ensure
that there is always a reserve of resources for the pri-
mary tenant to spike into; and (G3) schedule the tasks on
servers where they are less likely to be killed due to the
resource needs of the corresponding primary tenants.

Primary tenant awareness. We implement goals G1
and G2 in YARN-H by modifying the NM to (1) track the
primary tenant’s core and memory utilizations; (2) round
them up to the next integer number of cores and the
next integer MB of memory; and (3) report the sum of
these rounded values and the secondary tenants’ core and
memory allocations in its heartbeat to RM-H. If NM-H
detects that there is no longer enough reserved resources,
it replenishes the reserve back to the pre-defined amount
by killing enough containers from youngest to oldest.
Smart task scheduling. We implement goal G3 by im-
plementing a service that performs our clustering algo-
rithm, and integrating our class selection algorithm into
Tez-H. We described both algorithms in Section 4.1.

Tez-H requests the estimated maximum number of
concurrent containers from RM-H. When Tez-H selects
one class, the request names the node label for the class.
When Tez-H selects multiple classes, it uses a disjunc-
tion expression naming the labels. RM-H schedules a
container to a heartbeating server of the correct class
with a probability proportional to the server’s available
resources. If Tez-H does not name a label, RM-H selects
destination servers using its default policy.
Overheads. Our modifications introduce negligible
overheads. For primary tenant awareness, we add a few
system calls to the NM to get the resource utilizations,
perform a few arithmetic operations, and piggyback the
results to RM-H using the existing heartbeat. The clus-
tering service works off the critical path of job execution,
computes headrooms using a few arithmetic operations,
and imposes very little load on RM-H. In comparison
to its querying of RM-H once per minute, every server
heartbeats to RM-H every 3 seconds. Tez-H requires a
single interaction with the clustering service per job.

5.4 HDFS-H
Design goals: (G1) ensure that we never use more space
at a server than allowed by its primary tenant; (G2) en-
sure that HDFS-H data accesses do not interfere with the
primary tenant when it needs the server resources; and
(G3) place the replicas of each block so that it will be
as durable and available as possible, given the resource
usage of the primary tenants and how they are managed.

Note that full data durability cannot be guaranteed
when using harvested storage. For example, service en-
gineers or the management system may reimage a large
number of disks at the same time, destroying multiple
replicas of a block. Obviously, one can increase durabil-
ity by using more replicas. We explore this in Section 6.
Primary tenant awareness. For goal G1, we use an ex-
isting mechanism in HDFS: the primary tenants declare
how much storage HDFS-H can use in each server.

Implementing goal G2 is more difficult. To make our

changes seamless to clients, we modify the DN to deny
data accesses when its replica is unavailable (i.e., when
allowing the access would consume some of the resource
reserve), causing the client to try another replica. (If all
replicas of a desired block are busy, the block becomes
unavailable and Tez will fail the corresponding task.) In
addition, DN-H reports being “busy” or available to NN-
H in its heartbeats. If DN-H says that it is busy, NN-
H stops listing it as a potential source for replicas (and
stops using it as a destination for new replicas as well).
When the CPU utilization goes below the reserve thresh-
old, NN-H will again list the server as a source for repli-
cas (and use it as a destination for new ones).
Smart replica placement. For goal G3, we integrate our
replica placement algorithm (Section 4.2) into NN-H.
Overheads. Our extensions to HDFS impose negligible
overheads. For primary tenant awareness, we add a few
system calls to the DN to get the primary tenant CPU uti-
lization, and piggyback the results to NN-H in the heart-
beat. Denying a request under heavy load adds two net-
work transfers, but this overhead is minimal compared
to that of disk accesses. For smart replica placement,
our modifications add the clustering algorithm to the NN,
and the extra communication needed for it to receive the
algorithm inputs. The clustering and data structure up-
dates happen in the background, off the critical path.

6 Evaluation

6.1 Methodology
Experimental testbed. Our testbed is a 102-server
setup, where each server has 12 cores and 32GB of mem-
ory. We reserve 4 cores (33%) and 10GB (31%) of mem-
ory for primary tenants to burst into based on empiri-
cal measurements of interference. (Recall that perfor-
mance isolation technology at each server would enable
smaller resource reserves.) To mimic realistic primary
tenants, each server runs a copy of the Apache Lucene
search engine [26], and uses more threads (up to 12) with
higher load. We direct traffic to the servers to reproduce
the CPU utilization of 21 primary tenants (13 periodic,
3 constant, and 5 unpredictable) from datacenter DC-9.
We also reproduce the disk reimaging statistics of these
primary tenants. For the batch workloads, we run 52
different Hive [33] queries (which translate into DAGs
of relational processing tasks) from the TPC-DS bench-
mark [34]. We assume Poisson inter-arrival times (mean
300 seconds) for the queries.

We use multiple baselines. When studying schedul-
ing, the first baseline is stock YARN and Tez. We call it
“YARN-Stock”. The second baseline combines primary-
tenant-aware YARN with stock Tez, but does not im-
plement smart task scheduling. We call it “YARN-PT”.

We call our full system “YARN-H/Tez-H”. Given the
workload above, we set the thresholds for distinguishing
task length types to 173 and 433 seconds. Jobs shorter
than 173 seconds are short, and longer than 433 sec-
onds are long. These values produce resource require-
ments for the jobs of each type that roughly correspond
to the amount of available capacity in the preferred pri-
mary tenant class for the type. We use HDFS-Stock with
YARN-Stock, and HDFS-PT with the other YARN ver-
sions. The latter combination isolates the impact of pri-
mary tenant awareness in YARN from that in HDFS.

When studying data placement and access, the first
baseline is “HDFS-Stock”, i.e. stock HDFS unaware of
primary tenants. The second baseline is “HDFS-PT”,
which brings primary tenant awareness to data accesses
but does not implement smart data placement. We call
our full system “HDFS-H”. We use YARN and Tez
with HDFS-Stock, and YARN-PT and Tez with the other
HDFS versions. Again, we seek to isolate the impact of
primary tenant awareness in HDFS and YARN.

Simulator. Because we cannot experiment with en-
tire datacenters and need to capture long-term behaviors
(e.g., months to years), we also built a simulator that
reproduces the CPU utilization and reimaging behavior
of all the primary tenants (thousands of servers) in the
datacenters we study. We simulate servers of the same
size and resource reserve as in our real experiments. To
study a spectrum of utilizations, we also experiment with
higher and lower traffic levels, each time multiplying the
CPU utilization time series by a constant factor and sat-
urating at 100%. Because of the inaccuracy introduced
by saturation, we also study a method in which we scale
the CPU utilizations using nth-root functions (e.g., square
root, cube root). These functions make the higher uti-
lizations change less than the lower ones when we scale
them, reducing the chance of saturations.

When studying task scheduling and data availability,
we simulate each datacenter for one month. When study-
ing data durability, we simulate each datacenter for one
year. We use the same set of Hive queries to drive our
simulator, but multiply their lengths and container usage
by a scaling factor to generate enough load for our large
datacenters (many thousands of servers) while limiting
the simulation time.

In the simulator, we use the same code that imple-
ments clustering, task scheduling, and data placement
in our real systems. The simulator also reproduces key
behaviors from the real systems, e.g. it reconstructs lost
replicas at the same rate as our real HDFS systems. How-
ever, it does not model the primary tenants’ response
times. We compare our systems to the second base-
line (YARN-PT) in task scheduling, and the first baseline
(HDFS-Stock) in data placement and access.

Figure 10: Primary tenant’s tail latency in the real testbed
for versions of YARN and Tez.

6.2 Performance microbenchmarks
The most expensive operations in our systems are the
clustering and class selection in task scheduling and data
placement. For task scheduling, clustering takes on av-
erage 2 minutes for the primary tenants of DC-9, when
running single-threaded. (Recall that this clustering hap-
pens in the clustering service once per day, off the criti-
cal scheduling path.) The clustering produces 23 classes
(13 periodic, 5 constant, and 5 unpredictable) for DC-9.
For this datacenter, class selection takes less than 1 msec
on average. For data placement, clustering and class se-
lection take on average 2.55 msecs per new block (0.81
msecs in HDFS-Stock) for DC-9. (Clustering here can
be done off the critical data placement path as well.)

6.3 Experimental results
Task scheduling comparisons. We start by investigat-
ing the impact of harvesting spare compute cycles on the
performance of the primary tenant. Figure 10 shows the
average of the servers’ 99th-percentile response times (in
ms) every minute during a five-hour experiment. The
curve labeled “No Harvesting” depicts the tail latencies
when we run Lucene in isolation. The other curves depict
the Lucene tail latencies under different systems, when
TPC-DS jobs harvest spare cycles across the cluster. The
figure shows that YARN-Stock hurts tail latency signif-
icantly, as it disregards the primary tenant. In contrast,
YARN-PT keeps tail latencies significantly lower and
more consistent. The main reason is that YARN-PT ac-
tually kills tasks to ensure that the primary tenant’s load
can burst up without a latency penalty. Finally, YARN-
H/Tez-H exhibits tail latencies that nearly match those of
the No-Harvesting execution. The maximum tail latency
difference is only 44 ms, which is commensurate with
the amount of variance in the No-Harvesting execution
(average tail latencies ranging from 369 to 406 ms). The
improved tail latencies come from the more balanced uti-
lization of the cluster capacity in YARN-H.

Another key characteristic of YARN-H/Tez-H is its
smart scheduling of tasks to servers where they are less

Figure 11: Secondary tenants’ run times in the real
testbed for versions of YARN and Tez.

likely to be killed. Figure 11 shows the execution times
of all jobs in TPC-DS for YARN-Stock, YARN-PT, and
YARN-H/Tez-H. As one would expect, YARN-Stock ex-
hibits the lowest execution times. Unfortunately, this per-
formance comes at the cost of ruining that of the primary
tenant, which is unacceptable. Because YARN-PT must
kill (and re-run) tasks when the primary tenant’s load
bursts, it exhibits substantially higher execution times,
1181 seconds on average. YARN-H/Tez-H lowers these
times significantly to 938 seconds on average.

In these experiments, YARN-H/Tez-H improves the
average CPU utilization from 33% to 54%, which is a
significant improvement given that we reserve 33% of
the CPU for primary tenant bursts. The utilization im-
provement depends on the utilization of the primary ten-
ants (the lower their utilization, the more resources we
can harvest), the resource demand coming from sec-
ondary tenants (the higher the demand, the more tasks
we can schedule), and the resource reserve (the smaller
the reserve, the more resources we can harvest).

Overall, these results clearly show that YARN-H/Tez-
H is capable of both protecting primary tenant perfor-
mance and increasing the performance of batch jobs.
Data placement and access comparisons. We now in-
vestigate whether HDFS-H is able to protect the per-
formance of the primary tenant and provide higher data
availability than its counterparts. Figure 12 depicts the
average of the servers’ 99th-percentile response times
(in ms) every minute during another five-hour experi-
ment. As expected, the figure shows that HDFS-Stock
degrades tail latency significantly. HDFS-PT and HDFS-
H reduce the degradation to at most 47 ms. The reason is
that these versions avoid accessing/creating data at busy
servers. However, HDFS-PT actually led to 47 failed ac-
cesses, i.e. these blocks could not be accessed as all of
their replicas were busy. By using our smart data place-
ment algorithm, HDFS-H eliminated all failed accesses.

6.4 Simulation results
Task scheduling comparisons. We start our simulation
study by considering the full spectrum of CPU utiliza-

Figure 12: Primary tenant’s tail latency in the real testbed
for versions of HDFS.

Figure 13: Secondary tenants’ run time improvements in
DC-9 under YARN-H/Tez-H for root and linear scalings.

tions, assuming the size and behavior of our real pro-
duction datacenters. Recall that we use two methods
to scale utilizations (up and down) from the real utiliza-
tions: linear and root scalings. To isolate the benefit of
our use of historical primary tenant utilizations, we com-
pare YARN-H/Tez-H to YARN-PT. Figure 13 depicts the
average batch job execution time in DC-9 under both sys-
tems and scalings, as a function of utilization. Each point
along the curves shows the average of five runs, whereas
the intervals range from the minimum average to the
maximum average across the runs. As one would expect,
high utilization causes higher queuing delays and longer
execution times. (Recall that we reserve 33% of the re-
sources for primary tenants to burst into, so queues are
already long when we approach 60% utilization.) How-
ever, YARN-PT under linear scaling behaves differently;
the average execution times start to increase significantly
at lower utilizations. The reason is that linear scaling
produces greater temporal variation in the CPU utiliza-
tions of each primary tenant than root scaling. Higher
utilization variation means that YARN-PT is more likely
to have to kill tasks, as it does not know the historical uti-
lization patterns of the primary tenants. For example, at
45% utilization, YARN-PT under linear scaling kills 4⇥
more tasks than the other system-scaling combinations.

Because YARN-H/Tez-H uses our clustering and
smart task scheduling, it improves job performance sig-
nificantly across most of the utilization spectrum. Un-
der linear scaling, the average execution time reduction

Figure 14: Secondary tenants’ run time improvements
from YARN-H/Tez-H for root and linear scalings.

Figure 15: Lost blocks for two replication levels.

ranges from 0% to 55%, whereas under root scaling it
ranges between 3% and 41%. The YARN-H/Tez-H ad-
vantage is larger under linear scaling, since the utilization
pattern of each primary tenant varies more over time.

To see the impact of primary tenants with different
characteristics than in DC-9, Figure 14 depicts the min-
imum, average, and maximum job execution time im-
provements from YARN-H/Tez-H across the utilization
spectrum for each datacenter (five runs for each utiliza-
tion level). The average improvements range from 12%
to 56% under linear scaling, and 5% to 45% under root
scaling. The lowest average improvements are for DC-
0 and DC-2, which exhibit the least amount of primary
tenant utilization variation over time. At the other ex-
treme, the largest average improvements come for DC-1
and DC-4, as many of their primary tenants exhibit sig-
nificant temporal utilization variations. The largest max-
imum improvements (⇠90% and ⇠70% under linear and
root scaling, respectively) also come from these two dat-
acenters, regardless of scaling type.
Data placement and access comparisons. We now con-
sider the data durability in HDFS-H. Figure 15 shows
the percentage of lost blocks under two replication lev-
els (three and four replicas per block), as we simulate
one year of reimages and 4M blocks. Each bar depicts
the average of five runs, and the intervals range from the
minimum to the maximum percent data loss in those sim-
ulations. The missing bars mean that there is no data loss
in any of the corresponding five simulations. Note that a
single lost block represents a 10�5 (< 100⇥1/4M) per-
centage of lost blocks, i.e. 6 nines of durability.

Figure 16: Failed accesses under linear scaling.

The figure shows that HDFS-H reduces data loss more
than two orders of magnitude under three-way replica-
tion, compared to HDFS-Stock. Moreover, for one of
the datacenters, HDFS-H eliminates all data loss under
three-way replication. The maximum number of losses
of HDFS-H in any datacenter was only 81 blocks (DC-3).
Under four-way replication, HDFS-H completely elimi-
nates data loss for all datacenters, whereas HDFS-Stock
still exhibits losses across the board. These results show
that our data placement algorithm provides significant
improvements in durability, despite the harvested nature
of the disk space and the relatively high reimage rate for
many primary tenants. In fact, the losses with HDFS-
H and three-way replication are lower than those with
HDFS-Stock and four-way replication for all but one dat-
acenter; i.e. our algorithm almost always achieves higher
durability at a lower space overhead than HDFS-Stock.

Our data availability results are also positive. Fig-
ure 16 depicts the percentage of failed accesses under
the two replication levels and linear scaling, as a func-
tion of the average utilization. The figure includes range
bars from five runs, but they are all too small to see. The
figure shows that HDFS-H exhibits no data unavailabil-
ity up to higher utilizations (⇠40%) than HDFS-Stock,
and low unavailability for even higher utilization (50%),
under both replication levels. At 50% utilization, HDFS-
Stock already exhibits relatively high unavailability un-
der both replication levels. Around 66% utilization, un-
availability starts to increase faster (accesses cannot pro-
ceed if CPU utilization is higher than 66%). More inter-
estingly, our smart data placement under three-way repli-
cation achieves lower unavailability than HDFS-Stock
under four-way replication below 75% utilization. The
trends are similar under root scaling, except that HDFS-
H exhibits no unavailability up to a higher utilization
(50%) than with linear scaling. Regardless of the scaling
type, HDFS-H can achieve higher availability at a lower
space overhead than HDFS-Stock for most utilizations.

7 Experiences in Production

As a first rollout stage, we deployed HDFS-H to a pro-
duction cluster with thousands of servers eleven months

ago. Since then, we have been enabling/adding features
as our deployment grows. For example, we extended
the set of placement constraints beyond environments to
include machine functions and physical racks. In addi-
tion, we initially configured the system to treat the replica
placement constraints as “soft”, e.g. the placement algo-
rithm would allow multiple replicas in the same environ-
ment, to prevent the block creation from failing when
the available space was becoming scarce. This initial
decision promoted space utilization over diversity. Sec-
tion 4.2 discusses this tradeoff.

Since its production deployment, our system has elim-
inated all data losses, except for a small number of losses
due to corner-case bugs or promoting space over diver-
sity. Due to the latter losses, we started promoting diver-
sity over space utilization more than nine months ago.
Since then, we have not lost blocks. For comparison,
when the stock HDFS policy was activated by mistake in
this cluster for just three days during this period, dozens
of blocks were lost.

We also deployed YARN-H’s primary tenant aware-
ness code to production fourteen months ago, and have
not experienced any issues with it (other than needing
to fix a few small bugs). We are now productizing our
scheduling algorithm and will deploy it to production.

In the process of devising, productizing, deploying,
and operating our systems, we learned many lessons.
1. Even well-tested open-source systems require ad-
ditional hardening in production. We had to create
watchdogs that monitor key components of our systems
to detect unavailability and failures. Because of the non-
trivial probability of concurrent failures, we increased
the number of RMs and NNs to four instead of two. Fi-
nally, we introduced extensive telemetry to simplify de-
bugging and operation. For example, we collect exten-
sive information about HDFS-H blocks to estimate its
placement quality.
2. Synchronous operations and unavailability. Syn-
chronous operations are inadequate when resources or
other systems become unavailable. For example, our
production deployments interact with a performance iso-
lation manager (similar to [24]). This interaction was
unexpectedly harmful to HDFS-H. The reason is that
the manager throttles the secondary tenants’ disk activity
when the primary tenant performs substantial disk I/O.
This caused the DN heartbeats on these servers to stop
flowing, as the heartbeat thread does synchronous I/O to
get the status of modified blocks and free space. As a
result, the NN started a replication storm for data that it
thought was lost. We then changed the heartbeat thread
to become asynchronous and report the status that it most
recently found.
3. Data durability is king. As we mention above, our
initial HDFS-H deployment favored space over diversity,

which caused blocks to be lost and the affected users to
become quite exercised. By default, we now monitor the
quality of placements and stop consuming more space
when diversity becomes low. To recover some space, we
still favor space usage over diversity for those files that
do not have strict durability requirements.
4. Complexity is your enemy. As others have sug-
gested [6], simplicity, modularity, and maintainability
are highly valued in large production systems, especially
as engineering teams change and systems evolve. For
example, our initial task scheduling technique was more
complex than described in Section 4.1. We had to sim-
plify it, while retaining most of the expected gains.
5. Scaling resource harvesting to massive datacenters
requires additional infrastructure. Stock YARN and
HDFS are typically used in relatively small clusters (less
than 4k servers), due to their centralized structure and
the need to process heartbeats from all servers. Our goal
is to deploy our systems to much larger installations, so
we are now in the process of creating an implementation
of HDFS-H that federates multiple smaller clusters and
automatically moves files/folders across them based on
primary tenant behaviors, and our algorithm’s ability to
provide high data availability and durability.
6. Contributing to the open-source community.
Though our techniques are general, some of the code we
introduced in our systems was tied to our deployments.
This posed challenges when contributing changes to and
staying in-sync with their open-source versions. For ex-
ample, some of the YARN-H primary tenant awareness
changes we made to Hadoop version 2.6 were difficult to
port to version 2.7. Based on this experience, we refac-
tored our code to isolate the most basic and general func-
tionality, which we could then contribute back; some of
these changes will appear in version 2.8.

8 Conclusion

In this paper, we first characterized all servers of ten
large-scale datacenters. Then, we introduced techniques
and systems that effectively harvest spare compute cycles
and storage space from datacenters for batch workloads.
Our systems embody knowledge of the existing primary
workloads, and leverage historical utilization and man-
agement information about them. Our results from an
experimental testbed and from simulations of the ten dat-
acenters showed that our systems eliminate data loss and
unavailability in many scenarios, while protecting pri-
mary workloads and significantly improving batch job
performance. Based on these results, we conclude that
our systems in general, and our task scheduling and data
placement policies in particular, should enable datacen-
ter operators to increase utilization and reduce TCO.

Acknowledgments

We thank our shepherd, Michael Stumm, for his help in
improving the paper and his patience with us. We also
thank Paulo Tomita, Sekhar Pasupuleti, Robert Grandl,
and Srikanth Kandula for their help with our experimen-
tal setup. We are indebted to Karthik Kambatla for his
help with open-sourcing some of our changes to YARN.
We are also indebted to Sriram Rao, Carlo Curino, Chris
Douglas, Vivek Narasayya, Manoj Syamala, Sameh El-
nikety, Thomas F. Wenisch, and Willy Zwaenepoel for
our many discussions about this work and their com-
ments to our paper. Finally, we thank Gaurav Sareen and
Eric Boyd for their support of this project.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: A System for Large-Scale Machine Learn-
ing. In Proceedings of the 12th USENIX Sympo-
sium on Operating System Design and Implemen-
tation, 2016.

[2] L. Abraham, J. Allen, O. Barykin, V. Borkar,
B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss,
S. Subramanian, J. L. Wiener, and O. Zed. Scuba:
Diving into Data at Facebook. Proceedings of the
VLDB Endowment, 2013.

[3] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Tarazu: Optimizing MapRe-
duce on Heterogeneous Clusters. In Proceedings of
the 17th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, 2012.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle. The Dat-
acenter as a Computer: An Introduction to the De-
sign of Warehouse-Scale Machines. Synthesis Lec-
tures on Computer Architecture, 2013.

[5] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes.
Long-term SLOs for Reclaimed Cloud Computing
Resources. In Proceedings of the ACM Symposium
on Cloud Computing, 2014.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Transactions on
Computer Systems, 2008.

[7] R. B. Clay, Z. Shen, and X. Ma. Accelerating Batch
Analytics With Residual Resources From Interac-
tive Clouds. In Proceedings of the 21st Interna-
tional Symposium on Modelling, Analysis and Sim-
ulation of Computer and Telecommunication Sys-
tems, 2013.

[8] C. Curino, D. E. Difallah, C. Douglas, S. Krish-
nan, R. Ramakrishnan, and S. Rao. Reservation-
based Scheduling: If You’Re Late Don’T Blame
Us! In Proceedings of the ACM Symposium on
Cloud Computing, 2014.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters.
In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, 2013.

[10] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In Proceedings of the 19th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2014.

[11] A. Foundation. HDFS Architecture Guide, 2008.

[12] A. Goder, A. Spiridonov, and Y. Wang. Bistro:
Scheduling Data-Parallel Jobs Against Live Pro-
duction Systems. In Proceedings of the USENIX
Annual Technical Conference, 2015.

[13] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D.
Nguyen. ApproxHadoop: Bringing Approxima-
tions to MapReduce Frameworks. In Proceedings
of the 20th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, 2015.

[14] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Tor-
res, and R. Bianchini. GreenHadoop: Leveraging
Green Energy in Data-processing Frameworks. In
Proceedings of the 7th ACM European Conference
on Computer Systems, 2012.

[15] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-Resource Packing
for Cluster Schedulers. In Proceedings of the 2014
ACM SIGCOMM Conference, 2014.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. In Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, 2011.

[17] M. Isard. Autopilot: Automatic Data Center Man-
agement. SIGOPS Operating Systems Review,
2007.

[18] K. Karanasos, S. Rao, C. Curino, C. Douglas,
K. Chaliparambil, G. M. Fumarola, S. Heddaya,
R. Ramakrishnan, and S. Sakalanaga. Mercury:
Hybrid Centralized and Distributed Scheduling in
Large Shared Clusters. In Proceedings of the
USENIX Annual Technical Conference, 2015.

[19] H. Kasture and D. Sanchez. Ubik: Efficient Cache
Sharing with Strict Qos for Latency-Critical Work-
loads. In Proceedings of the 19th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2014.

[20] M. A. Laurenzano, Y. Zhang, L. Tang, and
J. Mars. Protean Code: Achieving Near-Free On-
line Code Transformations for Warehouse Scale
Computers. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microar-
chitecture, 2014.

[21] J. Leverich and C. Kozyrakis. Reconciling High
Server Utilization and Sub-Millisecond Quality-of-
Service. In Proceedings of the 9th European Con-
ference on Computer Systems, 2014.

[22] H. Lin, X. Ma, J. Archuleta, W.-C. Feng, M. Gard-
ner, and Z. Zhang. MOON: MapReduce On Op-
portunistic eNvironments. In Proceedings of the
19th ACM International Symposium on High Per-
formance Distributed Computing, 2010.

[23] M. J. Litzkow, M. Livny, and M. W. Mutka.
Condor-A Hunter of Idle Workstations. In Proceed-
ings of the 8th International Conference on Dis-
tributed Computing Systems, 1988.

[24] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42nd An-
nual International Symposium on Computer Archi-
tecture, 2015.

[25] J. Mars, L. Tang, R. Hundt, K. Skadron, and
M. L. Soffa. Bubble-Up: Increasing Utilization in
Modern Warehouse Scale Computers via Sensible
Co-locations. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microar-
chitecture, 2011.

[26] M. McCandless, E. Hatcher, and O. Gospodnetic.
Lucene in Action: Covers Apache Lucene 3.0.
Manning Publications Co., 2010.

[27] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic,
and R. Bianchini. DeepDive: Transparently Iden-
tifying and Managing Performance Interference in
Virtualized Environments. In Proceedings of the
USENIX Annual Technical Conference, 2013.

[28] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and
R. Hundt. Google-Wide Profiling: A Continuous
Profiling Infrastructure for Data Centers. IEEE Mi-
cro, 2010.

[29] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, and C. Curino. Apache Tez: A Uni-
fying Framework for Modeling and Building Data
Processing Applications. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data, 2015.

[30] B. Sharma, T. Wood, and C. R. Das. HybridMR:
A Hierarchical MapReduce Scheduler for Hybrid
Data Centers. In Proceedings of the 33rd Interna-
tional Conference on Distributed Computing Sys-
tems, 2013.

[31] L. Tang, J. Mars, and M. L. Soffa. Compiling for
Niceness: Mitigating Contention for QoS in Ware-
house Scale Computers. In Proceedings of the 10th
International Symposium on Code Generation and
Optimization, 2012.

[32] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa.
ReQoS: Reactive Static/Dynamic Compilation for
QoS in Warehouse Scale Computers. In Proceed-
ings of the 18th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, 2013.

[33] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy.
Hive: A Warehousing Solution Over a Map-Reduce
Framework. Proceedings of the VLDB Endowment,
2009.

[34] Transaction Processing Performance Council. TPC
Benchmarks.

[35] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Back-
filling Using System-Generated Predictions Rather
Than User Runtime Estimates. IEEE Transactions
on Parallel and Distributed Systems, 2007.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Balde-
schwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th An-
nual Symposium on Cloud Computing, 2013.

[37] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale Cluster
Management at Google with Borg. In Proceedings
of the 10th European Conference on Computer Sys-
tems, 2015.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-
flux: Precise Online QoS Management for In-
creased Utilization in Warehouse Scale Computers.
In Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013.

[39] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay Scheduling: A
Simple Technique for Achieving Locality and Fair-
ness in Cluster Scheduling. In Proceedings of the
5th European Conference on Computer Systems,
2010.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Comput-
ing with Working Sets. In Proceedings of the 2nd

USENIX Workshop on Hot Topics in Cloud Com-
puting, 2010.

[41] W. Zhang, S. Rajasekaran, S. Duan, T. Wood, and
M. Zhuy. Minimizing Interference and Maximizing
Progress for Hadoop Virtual Machines. SIGMET-
RICS Performance Evaluation Review, 2015.

[42] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU Perfor-
mance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference
on Computer Systems, 2013.

[43] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang.
SMiTe: Precise QoS Prediction on Real-System
SMT Processors to Improve Utilization in Ware-
house Scale Computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014.

