SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Yunqi Zhang, Michael A. Laurenzano, Jason Mars, Lingjia Tang

Clarity-Lab
Electrical Engineering and Computer Science
University of Michigan
Houston, we have a problem

- Warehouse scale computers are expensive
- Host large-scale Internet services
- Inefficiency due to low utilization
- Co-location can solve the problem

Server utilization distribution of a Google cluster.
Keep calm and make predictions

- CMP co-location
 - Interference caused by contention on shared cache and memory bandwidth

- Precise QoS prediction for co-location
 [Bubble-Up 'MICRO2011, Bubble-flux 'ISCA2013, Whare-Map 'ISCA2013, Paragon 'ASPLOS2013, Quasar 'ASPLOS2014]
 - Identify “safe” co-locations
 - Improve server utilization

It is only going to be 1% QoS degradation
What about SMT

- **No** prior works on SMT co-locations
- Significantly more challenging than CMP co-location
 - Fine-grained resource sharing
 - Many more shared resources
- SMT is ubiquitous in modern WSCs
“For the Horde”

- Precise QoS interference prediction on **real-system** SMT processors
- Identify “safe” co-locations to improve server utilization
Is SMT co-location really different from CMP co-location?
Prior work for CMP co-location

- One pressure score to quantify the contention
 - unified approach
 - limited # shared resources
- Can we still use the same approach for SMT co-location?
Is it really different

- More resource sharing dimensions
 - private cache(s)
 - memory ports
 - functional units

Hmm, it is hard to say…
What if they correlate

• No, different resources do not correlate

• A Unified approach cannot capture

Absolute Pearson correlation coefficient. **97%** of the pairs < 0.8.

A **decoupled** approach is required to quantify the contention for SMT co-location.
Throw some PMUs and a little regression to the problem
PMUs and regression models

- Regression model based on PMU measurements
- 14% prediction error on average

A direct measurement of contenting behavior is desirable for SMT co-location
A decoupled approach is required to quantify the contention for SMT co-location.

A direct measurement of contending behavior is desirable for SMT co-location.
Ruler-based approach

- Carefully designed set of micro-benchmarks
- Decouples contending behavior into each individual dimension in isolation
- Each one is extremely contentious in one specific resource sharing dimension
Ruler for functional units

- Port-specific instructions in commodity server designs
- Stream of independent instructions
- Achieve max utilization on specific port

--

loop:
 mulps %xmm0, %xmm0

 mulps %xmm7, %xmm7

 jmp loop

(a) FP_MUL (PORT0)
Use of Rulers

As shown in Figure 9(e), the L1 and L2 cache sensitivity curve for all working set sizes can be accurately approximated by the constant c_0 because the impact of other resources also cause performance interference, which are approximated by the coefficient c_i. This linear relationship assumes that functional units and memory subsystem are co-located. In order to design decoupled functional units, we use stride dimension. The linear model reflects the assumption that the amount (weight) that each sharing dimension causes by other resources not captured in the model. A constant term c_0 is introduced to approximate the performance interference caused by other resources not captured in the model. A constant term c_0 is used because the impact of other resources not captured in the model. A constant term c_0 is used because the impact of other resources. A constant term c_0 is used because the impact of other resources. A constant term c_0 is used because the impact of other resources. A constant term c_0 is used because the impact of other resources.
SMiTe prediction

- Regression model based on Ruler characterization
- Evaluated on real-system SMT processors
- **2%** prediction error on average (14% PMU-based)
Putting in all together

- Close to Oracle
- 42% Improvement

- <2% Violation
- QoS Awareness
Conclusion

• A decoupled methodology to quantify contention is required for precise interference prediction
 • more shared resources in SMT co-location
 • contending behaviors in different dimensions do not correlate

• Ruler-based approach provides precision on real systems
 • 2% prediction error

• Improve warehouse scale computer utilization
 • 42% server utilization improvement
Questions