Challenges and Opportunities in Multi-Sensing Microsystems – A Case Study

Yogesh B. Gianchandani
Engineering Research Center for Wireless Integrated MicroSystems (WIMS),
The University of Michigan, Ann Arbor, MI 48109-2122, USA
Email: yogesh@umich.edu

Microsensor arrays deployed in distributed networks are expected to revolutionize fields ranging from medical instrumentation\(^1\) for neural interfaces to environmental monitoring\(^2\) for industrial effluents, weather, and homeland security. This paper reports on an effort to develop a generic multi-sensor environmental monitoring platform which has stimulated substantial research at all levels, ranging from materials, fabrication methods, and packaging, to sensor, actuator, circuit, and system design.

A prototype multi-sensor node will consist of a cube\(^3\) assembled from a micromachined wafer (of silicon or other material) around a stack of micromachined sensors and circuits (Fig. 1). Electrical and fluidic interconnects will be embedded into the walls of cube and interleaved between the devices in the stack. The system-level architecture\(^4\) (Fig. 2) bears similarity to the IEEE 1451 transducer network standard; it is intended to be modular, and to support local signal conditioning and data conversion. A low-power wireless interface based on the IEEE 802.15.4 Zigbee\(^*\) standard is being developed. The long-term performance goals for the network nodes are ambitious, partly to force paradigm changes: they include accuracy to 16 bits, size of 1-2 cm\(^3\), wireless range of upto 1 km, and lifetime of 6-12 months. Of course, battery performance turns power consumption into a limiting constraint on each of the other specifications. The target for average power consumption is <1 mW, which will be achieved by the appropriate use of low power circuits and components, power-gated modules, and power-saving modes. Reduction to 100 µW would permit energy scavenging to be an option\(^5\).

A wide variety of microsensors are being explored for this application, including pressure, temperature, humidity, acceleration, air quality (gas analysis), nuclear radiation (Geiger-Muller counter), and others. The use of capacitive transduction methods for the first four of these variables facilitates extremely low energy operation (down to a few nJ per measurement), and the concomitant availability of electrostatic actuation provides self-test capability\(^6,7\). With interface circuits that can read 0.1 fF, the resolution achieved for pressure, temperature, and humidity sensors ranges from 10-100 ppm of the dynamic range, whereas the accelerometers are able to resolve <1 µg. Gas analysis is being performed by a micromachined gas chromatograph\(^8\) (Fig. 3). Gas is pumped through a particle filter and into a pre-concentrator, from which the target molecules are thermally desorbed and driven through one or two micromachined columns (upto 3 m in length), in which they become separated due to varying temporal characteristics of interaction with the walls. The emerging concentration peaks are detected by a chemi-resistor array which provides an additional level of differentiation. An early version of this uses boron-doped bulk Si dry-etched channels anodically bonded to a glass substrate, whereas a newer version provides better thermal isolation, achieving 100°C at 10 mW. The chemi-resistor arrays are also being improved with the use of gold-thiolate nanoclusters with varying terminal groups for specific selectivities. A micromachined gas pump is being developed for this instrument\(^9\). Other pumping mechanisms have also been explored, leading, for example, to the first fully micromachined Knudsen pump\(^10\). Associated projects in vapor sensing and gas delivery have focused on high-speed spectral measurements of arc discharges\(^11\). The Geiger-Muller counter\(^12\)
(Fig. 4) is fabricated from a glass-Si-glass stack of wafers that enclose an electrically biased cavity with trapped He or Ne gas. As a beta particle passes through, the bias field generates electron cascades, resulting in a current pulse or "count". A prototype die of 2 cm2 houses 6 independent chambers ranging in size from 8x8 mm2 to 1x3 mm2. The device has been successfully tested with Uranium-238, 90Sr, 60Co, and 204Tl, all beta emitting isotopes. A micromachined high-voltage generator is also being explored to bias this device\(^9\). Despite the progress made by this and other research teams in recent years, many challenges remain in processing materials for sensing for wafer-scale packaging; in developing sensitive and selective sensors; in developing power-efficient fluidic actuators; in the design of low power circuits for data acquisition and signal conditioning, and wireless communications.

The author gratefully acknowledges Profs. K. Wise, K. Najafi, E. Zellers, R. Sacks, C. Wilson, A. Mason from UM and other universities and the many other faculty, students, and staff who have contributed to the effort. This work is supported in part by the Engineering Research Centers Program of the National Science Foundation award #EEC-9986866, and by various associated grants and contracts.

References: