TWO APPROACHES TO MICROMACHINING SI HEAT EXchanger FOR JOULE-THOMSON CRYOSURGICAL PROBES

Weibin Zhu1*, Michael J. White2, Daniel W. Hoch3, Gregory F. Nellis2, Sanford A. Klein2, Yogesh B. Gianchandani1

1Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
2Department of Mechanical Engineering, University of Wisconsin, Madison, USA
3Department of Engineering Technology, University of North Carolina, Charlotte, USA

ABSTRACT

This paper describes results from two types of micromachined recuperative heat exchangers intended for Joule-Thomson (J-T) cryosurgical probes, which require high stream-to-stream thermal conductance while restricting parasitic stream-wise (axial) conduction. In design A, rows of fins composed of high conductivity silicon are bonded onto a 100 µm thick base plate composed of low conductivity Pyrex glass. This planar device has a footprint of 6x1.5 cm² and 2.5 mm thickness, and is fabricated using a 5-mask process. In design B, numerous high-conductivity silicon plates alternating with low-conductivity Pyrex spacers are stacked together. This has a footprint of 1x1cm², a length of 1.4 cm, and is fabricated using a 3-mask process. Preliminary experiments show that the primary performance constraint for design A is imposed by the compromise between mechanical robustness and transverse conductance of the thin glass base plate that separates the high pressure and low pressure streams. Design B enhances the robustness of the device and can sustain higher pressure.

I. INTRODUCTION

In cryosurgery, cancerous tumors or other pathological tissues are locally destroyed by repeated freeze/thaw cycles [1]. This procedure is minimally invasive: a narrow cryoprone is inserted through a small incision and creates a well-controlled cryolesion. The ablated tissue is subsequently absorbed or sloughed by the body. By avoiding excision, operative blood loss and discomfort are minimized.

Recent development of miniature cryoprobees with large refrigeration capacity [2-4] and techniques for real-time monitoring using ultrasound or magnetic resonant imaging [5-7] are allowing cryosurgical techniques to be extended to the treatment of cancers in areas that are not readily accessible [8]. This requires cryoprobees to be miniaturized to a size that permits them to be inserted through a very small incision. This effort examines the possibility of fabricating cryoprobees with micromachining technologies. However, the cooling performance of the cryoprobe must not be compromised: it is known, for example, that temperatures below -50 °C are always necrotic for pathological tissue [9-11]. In addition, a rapid cool-down rate [1, 12] between 25-50 °C/min. and multiple freeze-thaw cycles [13] are preferred to decrease the likelihood of cell survival.

A fully integrated micromachined cryosurgical probe can have significant advantages over the conventional cryosurgical probes in terms of thermal performance, size, flexibility and cost. The Joule-Thomson cooling cycle can meet these requirements with high thermodynamic efficiency [14]. In this cycle (Fig.1), cold, high-pressure fluid leaving a recuperative heat exchanger expands through a valve, resulting in a temperature drop through the valve if the state of the fluid lies below the inversion curve before expansion. Due to the absence of cold moving parts, this cycle can be potentially implemented with reliable structures that are simple enough to be micromachined from silicon and glass.

![Fig. 1: Joule-Thomson Refrigeration Cycle](image)

Corresponding author: 1301 Beal Ave., Ann Arbor, MI, 48109, USA; Tel: (734) 763-5914, Fax: (734) 763-9324. E-mail: zhuwb@umich.edu
A major challenge in this process is to etch the fin structure on each side of the wafer stack by DRIE. The etch must clear the narrow regions between rows, etch between the tightly packed fins, and also clear the perimeter of the device, which has no masked features, and etches faster. A two-step DRIE process, as described in Fig. 3, is used to compensate this DRIE artifact. This etch will ultimately lead to the creation of the basal strip along each row that is illustrated in the magnified part of Fig. 2a in the second DRIE step. This basal strip also adds benefit of strengthening the attachment of the fins to the glass base plate. A similar two-step DRIE process is completed on the other side of wafer stack. Figure 4a shows a fabricated planar heat exchanger.

Design B (Fig. 2b) uses numerous high-conductivity silicon plates alternating with low-conductivity glass spacers. Narrow slots are etched into the Si plate in order to provide two streams with a larger amount of surface area for heat exchanger. Each plate is divided into two regions by glass spacer. The high and low pressure regions are sealed from each other between Si plates and glass spacers. The heat transferred from the high pressure fluid into the silicon plate is conducted through the silicon plate into the low pressure region where it is finally transferred to the low-pressure channels while restricting stream-wise conduction to allow a large enthalpy difference between the two streams and thus achieve high cooling performance. Fortunately, the thermal properties of silicon and Pyrex, respectively, compare favorably with oxygen-free high conductivity (OFHC) copper and stainless steel that are used in conventional heat exchangers. This combination of very high and low thermal conductivity suggests that a silicon and Pyrex composite heat exchanger will be attractive. Two designs (Fig. 2) of Si-glass heat exchanger are developed.

The planar design A (Fig. 2a) uses rows of fins composed of high-conductivity silicon, anodically bonded above and below a thin base plate of low-conductivity Pyrex. The heat transferred from the high pressure fluid into the silicon fin structure is conducted through the thin Pyrex base plate into the low pressure fin structure where the heat is finally transferred into the low pressure fluid. Theoretical models [18, 19] show that the Pyrex base plate between the high- and low-pressure channels must be ≥100 μm to maintain adequate refrigeration power. This compromises the structural integrity of the device at elevated pressure difference between two streams.

A five-mask process required two Si wafers and three glass wafers is developed for design A and shown in Fig. 3. Fabrication process of planar heat exchanger in design A. Si/glass/Si wafer stack is anodically bonded together. PECVD oxide mask is then coated and patterned on both sides. An oxide layer and a subsequent layer of 10 μm conformal photoresist serve as masks in a two-step DRIE process. This thick resist layer is used to protect the oxide pattern in the first DRIE step. Si channels between each fin row are etched down 20 μm by DRIE before the photoresist is stripped. Si fins is fabricated in the second DRIE step. A glass cap is bonded with glass frit (G1017, from Vitta Corp.) onto the glass base plate after the two-step DRIE process is finished on each side. The glass caps are fabricated from 1.1 mm thick glass wafers. With 500 Å/5000 Å Cr/Au layer as a mask, the wafer is immersed in the HF: HNO₃ solution to create a recess that is 100 μm deep. Inlet and outlet holes are drilled with an electrochemical discharge drilling method.
Fig. 5: Fabrication process of heat exchanger in design B. The geometries of this design, including number and size of the slots, distance between slots, number of plates, etc., have been numerically optimized [20].

A three-mask fabrication process of design B (Fig. 5) uses KOH wet-etching of (110) Si to obtain vertical sidewalls in the slots on Si plates, and HF:HNO₃ wet etching of glass wafers to fabricate spacers. In order to achieve deep etching in both KOH step and HF:HNO₃ wet etching step, the wafers are patterned and simultaneously etched from both sides until the openings are formed. Figure 6 shows an SEM of the slot structure etched by KOH. The Si wafer and Pyrex wafer is then anodically bonded together. Dies that are diced from the wafer are then stacked together and bonded with STYCAST 2850FT epoxy (Emerson & Cuming) at room temperature. The planar heat exchanger of design A was installed into a macro-scale self-cooling system (Fig. 7) after leak test. In this experiment, the heat exchanger is placed in a cavity within a piece of Styrofoam insulation and surrounded by fiberglass insulation. The inlet is provided with a flow of butane from a high pressure bottle at room temperature. The pressure, flow rate, and temperature (T₁) of this flow are measured. The high pressure butane passes through the heat exchanger where it is pre-cooled by the low pressure butane returning from the cold end. The butane is expanded through an orifice (a precision jewel installed in a blank gasket) located at the cold end of the system; by varying the size of the orifice, it is possible to control the flow rate through the heat exchanger. The temperatures on either side of the orifice (T₂ and T₃) are measured using thermocouples that penetrate the butane stream.

Figure 8 illustrates the temperature difference between the cold end and the inlet as a function of orifice area for three different inlet pressures. The optimal orifice size is 0.2 mm². The temperature difference as a function of inlet pressure for this optimal orifice is shown in Fig. 9.

The perforated plate heat exchanger of design B was installed in a similar self-cooling setup and is currently being test at pressures much higher than design A.

IV. DISCUSSION

The self-cooling data of design A was limited to very small temperature differences relative to a practical device that is useful for cryosurgery. This is because the pressure...
difference between two streams anticipated for a cryosurgical probe may be as high as 1400 kPa (200 psi) whereas the testing was limited to 70 kPa (10 psi) in order to avoid fracturing the base plate. Theoretically, this thickness of the base plate should be able to sustain larger pressure differences, but in practice this is not true due to fabrication limits. A thicker base plate would provide greater structural integrity, but the increased transverse fabrication limits. A thicker base plate would provide a 2.5x reduction in heat transfer area as well as a 5x increase in the pressure drop across the heat exchanger. The predicted and measured effectiveness of design A as a function of mass flow rate (based on the hot side energy balance) is illustrated in Fig. 10. The effectiveness of the heat exchanger is defined as the ratio of the heat transferred within the heat exchanger to the maximum possible amount of heat that could have been transferred had the heat exchanger been perfect (i.e., the heat transferred if T_4 was equal to T_1). The effectiveness can be computed based on either the hot- or cold-side balance (ε_h or ε_c, respectively):

$$\varepsilon_h = \frac{q_{HX,h}}{q_{HX,max}} \quad \text{or} \quad \varepsilon_c = \frac{q_{HX,c}}{q_{HX,max}}$$

where q_{HX} is the actual heat transfer and $q_{HX,max}$ is the ideal heat transfer in perfect conditions. This measured result properly matches the theoretical model.

Preliminary experiments show that the heat exchanger of design B can sustain much higher pressure than design A because the region between two streams is a more than 700µm wide layer with alternating Si and glass. The cooling performance is not sacrificed in this design because the glass layers maintain a high thermal resistance along the flow direction. Simulations [20] show that the predicted cooling performance of design B is close to commercial available cryosurgical probes.

V. SUMMARY

A planar micro heat exchanger of design A with a footprint of 6x1.5 cm2 and 2.5 mm thickness was fabricated in a 5-mask process using three glass wafers and two Si wafers. In our tests, the self-cooling performance of the micro heat exchanger was mainly limited by (i) mechanical robustness of the glass base plate and (ii) Si fin height that was constrained by the uniformity of DRIE. However, the effectiveness of the heat exchanger varied from 0.8 at a mass flow rate of about 0.01 g/s to 0.6 at 0.075 g/s, which matched the developed theoretical model. A perforated plate design with a footprint of 1x1 cm was then fabricated in a 3-mask process to avoid a fragile base plate when maintaining high thermal resistance along the flow direction. If successful, the robustness, flexibility and performance associated with this new micromachined design may result in the application of cryosurgery to new biomedical areas.

ACKNOWLEDGEMENT

This work was funded in part by a grant from the US National Institutes of Health (R33 EB003349-04).

REFERENCES