A MICROMACHINED CHEMICAL SENSOR FOR SEA FLOOR ENVIRONMENTS: INITIAL RESULTS
Tao Li1*, Kang Ding2, William E. Seyfried, Jr.2, and Yogesh B. Gianchandani1
1Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI
2Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN

ABSTRACT
This paper reports a micromachined chemical sensor intended for harsh environments such as those near hydrothermal vents at the sea floor. The sensor is intended to measure the pH, dissolved H2, and H2S, and temperature. The device is 12 mm in diameter and 6 mm in effective length, including packaging. A YSZ|HgO|Hg solid electrode is used as a common electrode for measurement of the three chemical quantities. The YSZ diaphragm used for this electrode is <500 µm thick, allowing sufficient ion conductance at temperatures >35°C. The other electrodes are thin-film metal electrodes fabricated on the same YSZ diaphragm: an Ag|AgCl reference electrode for pH sensing, an Ag|Ag2S electrode for H2S sensing, and a Pt electrode for H2 sensing. The two temperature sensors are thin film Pt resistors. Initial tests have been performed to test the functionality of the pH and H2S sensors; measurements are in line with expectations.

INTRODUCTION
In situ chemical sensing in harsh geological environments is important for many applications. One example is the exploration of hydrothermal vents located at mid-ocean ridges. On the adjacent sea floor, these vents not only create rich mineral deposits that drive mining interests, but also nurture more than 1300 previously-unknown biological species that do not depend on the sun [1]. Knowledge of chemical components and quantities, especially pH and redox (e.g. dissolved H2 and H2S), can provide invaluable insight into such biological communities and lead to better understanding of the bio-geochemical environments at these locations [2-3]. Rapid and direct in situ measurement of these quantities is essential to obtain accurate and meaningful readings. However, these measurements also present significant challenges due to high temperature and high pressure that are typical in these and other geochemical environments.

Chemical sensors designed to meet the needs in these extreme geochemical conditions are few [2-5]. A sensor based on yttria-stabilized-zirconia (YSZ) ion-conductive ceramic was reported for sensing of pH, dissolved H2, and dissolved H2S, and deployed at deep-sea hydrothermal vents at temperatures up to 400°C and pressure levels up to 40 MPa [2-3]. This conventional sensor had 2.5 cm diameter and >30 cm length. Reduced sensor size is desirable to allow more precise measurement of high-gradient conditions. It can also enable spatial distribution of sensor clusters to allow simultaneous characterization at multiple sites in a biological community near the vents.

This paper reports the design and initial results of a micromachined chemical sensor based on a thin YSZ diaphragm for measurement of pH, dissolved H2, dissolved H2S and temperature (Fig. 1). The sensor design is intended to provide compatibility with environments that have high pressure (>10 MPa) and relatively high temperature (≥150°C), such as that in a typical biological community near the vents (Fig. 2). The sensor has 12 mm diameter and ≥6 mm effective length with packaging. The design details are described, along with the fabrication process. Preliminary tests of the sensor have been performed in regular laboratory settings to verify the validity of the design and the functionalities of the sensor. The measurement results are reported.

DEVICE CONCEPT
The micromachined sensor is intended to sense pH, dissolved H2, dissolved H2S, and temperature. To measure the three chemical quantities, three electrochemical cells are included (Table I). The YSZ|HgO|Hg solid electrode is a common electrode used in all three electrochemical cells. It is used for pH sensing with a Ag|AgCl reference electrode. The ion conductance of the YSZ ceramic in the electrode allows measurement of the activity of H+ ions in fluid with presence of other chemical components [6]. This electrode is also used as a reference electrode to eliminate the effect of pH on output voltage potentials, both in the measurement of dissolved H2 with a Pt sensing electrode, and in the measurement of dissolved H2S with a Ag|Ag2S sensing electrode. The voltage potential between the electrodes in each cell is related

Figure 1: Schematics of the micromachined sensor proposed for analysis of geofluids in harsh environments. (a) Perspective view of the full device, showing sensing electrodes and temperature sensors (RTDs) on the thin YSZ disk and the Φ12 mm titanium housing. (b) Exploded view showing individual components inside the Ti housing.
to the corresponding target chemical quantity by [3,7]:

\[V_{pH,T,P} = V_{pH} - \frac{2.303RT}{F} \left(\log a_{H_2} - \frac{1}{2} \log a_{H_2O} - \mathrm{pH} \right) \]

\[V_{H2,T,P} = V_{H2} + \frac{2.303RT}{2F} \log \left(\frac{K_H \gamma_{H_2} m_{H_2}}{a_{H_2}} \right) \]

\[V_{H2S,T,P} = V_{H2S} + \frac{2.303RT}{2F} \log \left(\frac{K_H \gamma_{H_2S} m_{H_2S}}{a_{H_2S}} \right) \]

where \(V_{pH,T,P} \), \(V_{H2,T,P} \), and \(V_{H2S,T,P} \) are measured voltage potentials in corresponding cells, \(V_{pH} \) and \(V_{H2S} \) are the standard cell potentials at the appropriate temperatures and pressure and the values can be determined from the standard state potentials of Ag|AgCl, Ag|Ag2S and Hg|HgO electrodes (i.e. \(V_{Ag|AgCl} \), \(V_{Ag|Ag2S} \) and \(V_{Hg|HgO} \), respectively), \(a \) is the activity of the chemical component, \(R \) is the gas constant, \(F \) is the Faraday constant, \(T \) is temperature in K, \(pH \) is the pH to be measured, \(K_H \) is the Henry’s law constant, \(\gamma_{H_2} \) and \(\gamma_{H_2S} \) are the activity coefficients of \(H_2 \) and \(H_2S \), and \(m_{H_2} \) and \(m_{H_2S} \) are the dissolved \(H_2 \) and \(H_2S \) concentrations, respectively. With a DC measurement of the corresponding cell potential at the target temperature and pressure, direct sensing of each chemical quantity can be obtained. Temperature sensing is performed by two Pt-film resistance-temperature-detectors (RTD) through a measurement in resistance change of the Pt films.

The schematics of the sensor design are shown in Fig. 3 and Fig. 4. All sensor components are integrated at the end of a titanium tube. A thin YSZ disk/diaphragm is used for ion conduction to the underneath Hg|HgO paste electrode. The thickness of the YSZ should be small enough (<<1 mm) to allow sufficient ion conduction for the sensing purpose at temperatures below 100°C. The disk is also a common substrate for other thin metal-film electrodes (Ag|AgCl, Pt and Ag|Ag2S) and RTDs. Electrical connections from these electrodes/RTDs run over a 10°-tapered sidewall of the YSZ disk to the backside. No through-hole or cavity is present on the YSZ surface to avoid leakage under pressure. The YSZ disk is supported by a Macor® ceramic disk, which has feedthroughs for electrical connection from the backside of the YSZ disk to a commercial TO-5 holder for cable wiring. The Hg|HgO paste is sealed inside a cavity in the Macor disk by ceramic epoxy, with a Pt wire going out for electrical connection (Fig. 3). The Ti tube covers all sidewalls of internal components, and a Ti collar wraps around the edge of the YSZ front surface, minimizing potential leak path. High-strength vacuum-sealing Stycast epoxy encapsulates all internal components and seals the Ti housing. Selective coating of parylene or other polymers provides additional device sealing and electrical insulation for RTDs.

DEVICE FABRICATION

The YSZ disks were custom-made using Type ZDY-4 material (CoorsTek, Inc., CO, USA). In order to deposit thin-film metal electrodes/RTDs on the surface of the YSZ disk, a shadow mask was used. The metal films, including Pt and Ag on the front side and Au on the backside of the disk, were sequentially deposited by sputtering or evaporation through the corresponding patterns on the shadow mask. The thicknesses of the metal films are 200/1000 Å for Ti/Pt, and 500/20000 Å for Ti/Ag, and 500/5000 Å for Ti/Au. Features were included on the shadow...
mask to allow alignment between different metal films. The thin-film RTDs consist of 30 µm-wide folded Pt lines and have a resistance of \(\approx 200 \) Ω each. The 10°-tapered edge of the YSZ disk allowed metal to be deposited on the slope to make the electrical connection to the backside of the disk.

The Hg|HgO paste was formed by mixing Hg (99.9998% purity) and HgO (99.998% purity) (Alfa Aesar, MA, USA). The Macor ceramic disk was custom-made by micromilling using material obtained from McMaster, NJ, USA. The disk has a thickness of 1.588 mm. The center cavity on the disk for Hg|HgO paste and ceramic epoxy has a diameter of 3 mm. The electrical feedthroughs/vias have a diameter of 500 µm. The Ti tube and collar were custom-machined from Grade 5 Ti alloy (Ti-6Al-4V, McMaster, NJ, USA), which has excellent mechanical strength and corrosion resistance. A photo of an integrated device is shown in Fig. 4. The effective length of the sensor from the YSZ disk to the TO-5 holder is \(\approx 6 \) mm.

After the sensor components were integrated, the 2 µm-thick Ag films on the YSZ disk were activated by chlorination and sulfurization, turning the Ag films into AglAgCl and AglAg2S electrodes, respectively. For silver chlorination, the sensor was dipped into an HCl solution with a concentration of 0.1 M (Fig. 5a). The counter electrode was a silicon wafer evaporated with a platinum coating of 5000 Å thickness. The Ti tube and collar were custom-machined from Grade 5 Ti alloy (Ti-6Al-4V, McMaster, NJ, USA), which has excellent mechanical strength and corrosion resistance. A photo of an integrated device is shown in Fig. 4. The effective length of the sensor from the YSZ disk to the TO-5 holder is \(\approx 6 \) mm.

As shown in Fig. 6, the plot of measured \(V_{pH,T,P} \) vs. pH has a slope of 122.3 mV/pH. This slope is about double the Nernst slope of 61.14 mV/pH at 35°C. This is due to the presence of both H⁺ and Cl⁻ ions in the solutions. The YSZ|HgO|Hg electrode is sensitive to H⁺ ions while the AglAgCl electrode is sensitive to Cl⁻ ions. In a regular laboratory environment, the strong HCl acid can generate equal concentrations of H⁺ and Cl⁻ ions. For pH>4, \(V_{pH,T,P} \) saturates. This may be due to activity of H⁺ and OH⁻ from H₂O at higher pH, and also of low Cl⁻ for AglAgCl electrode.

EXPERIMENTAL RESULTS

The chlorination procedure was characterized using a Ag film coated on a glass substrate. This Ag film was deposited by sputtering in the same session when the Ag films on the YSZ disks were deposited. The obtained AglAgCl film is shown in the upper portion of Fig. 5(b). The AgCl layer has a grain size of \(\approx 1 \) µm as expected and is uniformly coated on the remaining Ag layer. Energy dispersive spectroscopy (EDS) was done to characterize the electrode and the obtained spectrum is shown in the lower portion of Fig. 5(b). According to the EDS quantification result, the electrode has 45.6% atom percentage for Ag and 24.98% for Cl, suggesting a ratio of \(\approx 1 \) between Ag and AgCl.

As a common electrode for all three chemical sensing functions, the YSZ|HgO|Hg solid electrode is the core component of the sensor. It also presented the most challenge in the fabrication of all four electrodes. pH measurements in a regular laboratory setting using this electrode can provide direct verification of its integrity and functionality. In these measurements, hydrochloric acid solutions with pH ranging in 2-5.5 were used. The pH values were verified with a double-junction pH meter (Oakton® pHTestr 3+), which has an accuracy of 0.1. Before it was used, the meter was calibrated with certified pH buffer solutions from Fisher Scientific. The HCl solutions were heated on a hotplate to 35°C, and a thermocouple was used to monitor the solution temperature. The voltage potential between the AglAgCl and YSZ|HgO|Hg electrodes on the sensor was read out by an Agilent 34401A multimeter with its input resistance set at \(>10 \text{ GΩ} \).

Assume the activity of H₂O in the regular lab environment is 1,

\[
\log a_{H^+} = \log a_{H^+} = -pH, \quad (4)
\]

Figure 6: Measured potential between the AglAgCl and YSZ|HgO|Hg electrodes, vs. pH of HCl solutions at 35°C. The straight line plots double the Nernst slope of 61.14 mV/pH at 35°C for comparison. This slope is due to the effect of both H⁺ and Cl⁻. For pH>4, \(V_{pH,T,P} \) saturates. This may be due to activity of H⁺ and OH⁻ from H₂O at higher pH, and also of low Cl⁻ for AglAgCl electrode.
Equation (1), which provides the relationship between the measurement voltage potential and pH, can be simplified as

\[V_{\text{pH, T, P}} = V_{\text{ph}} + 2 \times \frac{2.303RT}{F} \log_{10}(\text{H}_2\text{S}) \]

This indicates that the expected slope of \(V_{\text{pH, T, P}} \) vs. pH is double the Nernst slope. At 35°C, the expected slope is 122.3 mV/pH, and the measured value is comparable to it. This indicates the validity of the pH sensor design and the integrity of the YSZ|HgO|Hg core electrode.

Also shown in Fig. 6, \(V_{\text{pH, T, P}} \) saturates at pH values >4. This may be due to activity of H⁺ and OH⁻ from H₂O at higher pH, and also low Cl⁻ activity at low HCl concentration for the Ag|AgCl electrode.

H₂S sensing was tested using hydrogen sulfide water (Grainger, Inc., USA) with varying concentration estimated in the range of 2-12 mMol/kg. The sensor output potential was taken between the YSZ|HgO|Hg and Ag|Ag₂S electrodes at 35°C. The sensitivity of the sensor - i.e. the change in output potential per unit change in the H₂S concentration - was typically 26-45 mV/log(mol/kg) (Fig.7). The ideal value is 30.6 mV/log(mol/kg) according to Equation 3. Differences from the ideal value are related to uncertainty in the H₂S concentration, which can vary from the estimated value due to reasons such as oxidation of dissolved sulfide into sulfate.

DISCUSSION

As described in the experimental results, the sensor responds to both H⁺ and Cl⁻ concentrations in the pH measurement without a buffer solution that provides a constant Cl⁻ concentration for the Ag|AgCl electrode. This makes it difficult to use the sensor in regular applications, though approaches such as a coating of KCl gel on the Ag|AgCl electrode can provide simple solutions [8]. However, in the target environments at hydrothermal vents, the sea water presents a saturated Cl⁻ concentration that is mostly constant, rendering these additional techniques unnecessary.

The sensor has been tested for pH and H₂S measurement in a laboratory environment. Although the sensor is designed for high pressure and relatively high temperature applications, its performance in harsh environments remains to be evaluated. This, together with the sensing function for dissolved H₂ and temperature, will be verified in future efforts.

CONCLUSIONS

A micromachined chemical sensor intended for applications in harsh environments has been design and implemented. Sensing functions for pH, dissolved H₂ and H₂S, and temperature are included. Techniques for silver chlorination and sulfurization have been developed and characterized to activate the AglAgCl reference electrode for pH sensing and the AglAg₂S sensing electrode for H₂S sensing. Initial measurement results for pH and H₂S sensing in a regular laboratory environment indicate validity of the sensor design and the integrity of the YSZ|HgO|Hg core component. Further characterization of sensor functions as well as device testing under harsh environments will be pursued in future effort.

ACKNOWLEDGEMENT

The research effort was supported in part by the National Science Foundation. Facilities used for this research include the Lurie Nanofabrication Facility (LNF) operated by the Solid-State Electronics Laboratory (SSEL) at the University of Michigan.

REFERENCES

CONTACT

Tao Li, 1301 Beal Ave., Ann Arbor, MI, 48109, USA; tel: 1-734-615-7983; fax: 1-734-763-9324; email: litz@umich.edu