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Design of Corrugated Waveguide Filters by Fourier- 
Transform 

Abstract-A new, approximate, corrugated waveguide filter design 
method is developed for thin film optical waveguides. The method de- 
termines both the corrugation period and depth, measured along the 
guide’s surface, given a specification of the filter’s reflection coefficient. 
The design technique is based on a combined effective index approach 
and Fourier transform, inverse-scattering theory for one-dimensional, 
dispersionless, dielectric media. Use of the general technique is illus- 
trated by the design of two corrugated waveguide filters. The design 
results are compared with those obtained using the first Born approx- 
imation, nonlinear renormalization, and the exact Gel’fand-Levitan- 
Marchenko method for two component inverse-scattering systems. 

I. INTRODUCTION 
ORRUGATED thin film waveguides play a major C role in lightwave devices [ 11. Applications include 

distributed feedback lasing [2], bistable switching [3], 
phase matching in nonlinear materials [4]-[6], grating 
coupling [7], and optical filtering [8]-[15]. In many of 
these applications, the corrugation is periodic. In an aper- 
iodically-corrugated thin film waveguide, however, the 
frequency-dependent coupling between waveguide modes 
can be used to produce a corrugated waveguide filter 
(CWF) which has a specified spectral response [ 111. This 
response is often written as r ( A ) ,  where r is the reflection 
coefficient of the filter and A is wavelength. Techniques 
to determine the required corrugation, or equivalently the 
aperiodically-varying coupling coefficient, given r ( A ) ,  
have been previously proposed by Matsuhara et al. [ 161- 
[17] and Song and Shin [18]. Matsuhara’s approximate 
technique relies on the theory of linearly chirped gratings, 
while Song’s method uses an exact quantum-mechanical 
inverse-scattering technique. In this paper, we develop a 
new design approach based on Fourier transform inverse- 
scattering methods [ 191-[24] and the effective-index the- 
ory of waveguide modes [25]. 

The technique of Matsuhara and Hill starts with the 
well-known fact that the exchange of power between two 
contradirectional waveguide modes can be described by a 
pair of coupled-mode equations [25]. The unknowns in 
these equations are the spatial variation of the corrugation 
period and its depth measured along the guide. Their tech- 
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nique is based on three assumptions. First, at any wave- 
length A, significant coupling between the two waveguide 
modes occurs only at the corrugation point z ( A ) ,  where 
the Bragg condition is satisfied. Secondly, in regions cen- 
tered about point z (  A ) ,  the corrugation can be modeled 
as a constant depth, linearly chirped, grating. Thirdly, the 
reflection coefficient at wavelength h can be computed as 
if the extent of the linearly chirped grating were infinite. 
Using these three approximations, a relationship is de- 
rived between the corrugation period and the corrugation 
depth at each point along the guide. Once the corrugation 
depth profile is given, the required corrugation period can 
be determined. As Matsuhara and Hill point out, their 
technique uses only the magnitude of the reflection coef- 
ficient, and thus it cannot be applied when the filter’s 
phase response is specified. More importantly, the tech- 
nique does not indicate how to choose the corrugation 
depth profile. Furthermore, Matsuhara and Hill give ex- 
amples where an inappropriate choice yields a poor de- 
sign. 

The method of Song and Shin uses the Gelfand-Levi- 
tan-Marchenko (GLM) exact inverse-scattering tech- 
nique, which was developed for quantum mechanics [26]. 
The goal of the quantum mechanical problem is to deter- 
mine the Schrodinger wave equation potential function 
from the reflection coefficient. The Gelfand-Levitan-Mar- 
chenko (GLM) technique reformulates this inverse-scat- 
tering problem as a solution to an integral equation. For 
the one-dimensional Schrodinger equation, this integral 
equation reduces to a set of linear simultaneous equations. 
These equations can be solved numerically in a straight- 
forward manner when the reflection coefficient is a ra- 
tional function of wavelength. The GLM integral equa- 
tion has also been applied to inverse scattering problems, 
where the scattering system is modeled as a pair of cou- 
pled-mode equations. Noting this fact, Song and Shin 
adopted the technique for CWF design. They showed that 
the GLM integral equation for the coupled-mode case also 
reduces to a set of linear simultaneous equations, and that 
these can be solved numerically for rational reflection 
coefficients. The technique is powerful but complex. In 
addition, it requires that the reflection coefficient be ex- 
pressed as a rational polynomial function of wavelength. 

The CWF-design method presented in this paper is a 
natural extension of the Fourier-transform inverse-scat- 
tering technique, developed by Delano [19] and Sossi 
[20]-[24], for one-dimensional, dispersionless, dielectric 
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media. This Fourier-transform technique has been suc- 
cessfully applied to dielectrics by Dobrowski et al. 1271- 
[29], Bovin and D. St. Germain [30], and Jaggard and 
Kim 1311. By establishing a connection between CWG fil- 
ters and one-dimensional, stratified, dielectric media, we 
show that the Fourier-transform technique can be ex- 
tended to CWF design. 

The outline of this paper is as follows. In Section I1 
optical propagation through a CWF is analyzed, along the 
lines of Basu and Ballantyne 1321, using an effective index 
method. A two by two transfer matrix is derived for a 
small section of the guide, whose thickness measured per- 
pendicular to the direction of propagation, is much less 
than the corrugation period. This matrix is shown to be 
identical to the corresponding matrix of a single-layer, 
homogeneous, dielectric slab provided: ( 1) the refractive 
index of the slab equals the local effective index of the 
guide, N e f f ,  and (2) the slab thickness is equal to the thick- 
ness of the guide section. 

The value of Ne,  is computed based on the local cor- 
rugation height of the guide section, the parameters of the 
guide, and the dispersion equation for a three material 
waveguide. Although the equivalent dielectric slab will 
exhibit some wavelength dispersion, this effect is small 
enough to be neglected. Thus, with the above provisions 
satisfied, the correspondence between propagation through 
one-dimensional, dispersionless, stratified, dielectric me- 
dia and corrugated waveguides is established. 

In Section 111 Fourier-transform inverse-scattering 
techniques are introduced for one-dimensional, disper- 
sionless, dielectric media. Three different approximate 
solutions are derived, based upon the direct problem of 
determining the reflection coefficient r ( A )  given a one- 
dimensional refractive-index profile n ( z ) .  Each of the so- 
lutions establishes a Fourier-transform relationship be- 
tween n ( ~ )  and a function of r (  A ) .  

Section IV combines the results of the previous two 
sections to yield an analytic procedure for the design of 
CWF. First, given a desired reflection coefficient r ( A )  
the refractive index profile n ( z )  is found using the Fou- 
rier-transform techniques of Section 111. Next, the equiv- 
alent effective index profile Neff  (z )  is evaluated from n ( z )  
using the results of Section 11. Finally, the waveguide cor- 
rugation is determined from NeE(  z)  by applying the wave- 
guide dispersion equation. 

In Section V two design examples are presented based 
on the above procedure, and good results are demon- 
strated. Fabrication issues are also briefly discussed. In 
Section VI our designs are compared to those obtained 
using the first Born approximation, a nonlinear renormal- 
ization technique, and the exact Gel'fand-Levitan-Mar- 
chenko approach for two-component scattering systems. 
These comparisons indicate that our technique is consid- 
erably more accurate than the first Born approximation, 
virtually identical to the nonlinear renormalization ap- 
proach, and nearly as accurate as the more complex GLM 
method. Finally, Section VI1 contains a summary of our 
results. 

11. THE EFFECTIVE INDEX METHOD 
Consider the planar, thin film waveguide shown in Fig. 

1. This is a three-layer dielectric guide, consisting of 
cover, film and substrate layers, having refractive indexes 
n,, nf, and n,, respectively. The interface between the 
film and cover layers has a shallow surface corrugation, 
which is quasi-periodic. The film thickness of the guide 
is given by h ( z )  = ho + A h ( z ) ,  where ho is the film 
thickness in the unperturbed regions. Light of free-space 
wavelength X is confined to the film region by total inter- 
nal reflection at the film-cover and film-substrate inter- 
faces ( n ,  < n, < nf). 

It is assumed that the film is sufficiently thin so that the 
guide only supports two TE-polarized, contradirectional, 
guided waves of the lowest order mode. These TE-polar- 
ized waves have an electric field component only along 
the y direction. Following a standard perturbation theory 
analysis, we write the electric field as 

where 

The time dependence of the fields is assumed to be exp 
[ i w t ] .  In (2.1)-(2.3), the subscripts F and B denote the 
fonvard-propagating (i.e.,  +z direction) and backward- 
propagating (i.e.,  - z  direction) waves, respectively. 
E(x) is the normalized mode profile supported by the 
guide in the unperturbed regions. 6 (z )  is the propagation 
constant, and it is given by the dispersion equation below 
1251 

1/11 - b] ' l2  = tan-' [ b / ( l  - b ) ~ ' ' ~  

+ tan-' [ ( b  + a ) / ( l  - b)]"2 (2.4) 

where 

(2.5) 

a = ( n f  - n:) / (n f  - n f ) .  (2.8) 

Neff(z) is the local-effective index of the guide. We de- 
compose the corrugated region of the film into N thin, 
parallel slabs of equal width A W, = z, - z, - with the 
geometry of the ith slab as indicated in Fig. 1. This slab 
is centered about the point p ,  = ( z ,  - + z,)/2, and it is 
assumed to be sufficiently thin so that h ( z )  = h ( p , )  = 
h,, P ( z >  = P ( p , >  = P,, A ( z )  = A ( p , )  = 4, B ( z )  = 
B ( p , )  =B, ,andNeff (z )  = N e ~ ( z , )  = N,forz , - l  I z 5 
2,. In the ith slab (2.2) and (2.3) can then be rewritten as 

Y ,  z) = E ( x )  exp [ -jPI (z - p l ) ]  (2'9) 

EBl(x, Y ,  z )  = B,E(X) exp [jP,(z - p , ) ] .  (2.10) 
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Fig. 1. Geometry of cormgated waveguide. 

From Maxwell's equations it follows that 
V x E  = -jwuH (2 .11)  

where U is the permeability of free space and therefore 

Combining (2.15)-(2.18) yields 

where 

Mi = ViUiVIT1 (2.20) 

Note that (2.19) relates the complex amplitude of the for- 
ward- and backward-propagating guided waves at the be- 
ginning of the corrugated section z = z o  to the corre- 
sponding waves at the end z = zN = z o  + L. The CWF 
reflection and normalized transmission coefficients r ( X )  
and t (  A ) ,  respectively, are defined below for a guided 
wave incident at z = z o .  

Let zlT and z: denote the values of z just to the left of and 
to the right of zi ,  respectively. The electromagnetic 
boundary conditions require that Ey and H, be continuous 
across interface between the ( i  - 1) th  and ith slabs. 
Therefore, it follows from (2.6), (2.13), and (2.14) that 

where the matrix Vi is given by 

(2.16) 

It also follows immediately from (2.9) and (2.10) that 
propagation across the ith slab can be written as 

where the matrix Vi is given by 

lo 
(2 .18)  

(2 .21)  

and 

E F y ( X ,  Y ,  zN+)n(zN+) 
E&, Y ,  zO)n ( zO> 

r ( X )  = 

with EBy(x ,  y, z;) set to 0. (2.22) 

It can be shown that the above effective-index tech- 
nique is valid for TE-mode propagation [33], and that it 
yields results equivalent to those obtained from a coupled- 
mode theory analysis [34]. The development given above 
can be paralleled for TM-modes, and (2.16), (2.18), 
(2.19), and (2.20) would be obtained unaltered. It is 
known, however, that this result is inconsistent with cou- 
pled-mode theory [25]. As noted by Verly et al. [35] this 
discrepancy occurs because the effective index method 
does not account for the boundary conditions at the cor- 
rugated surface-coverplate interface. For TE-modes this 
fact is not significant, since the E and H fields are always 
continuous across this interface. For TM-modes, how- 
ever, there is a periodic discontinuity in E, at the inter- 
face. This periodic discontinuity gives rise to an addi- 
tional coupling term, which the effective-index analysis 
neglects. It is easy, however, to modify the effective-in- 
dex method to include this effect [35], and thus extend 
our design technique to TM modes. 

Consider now a dielectric of infinite extent in the x and 
y dimensions. Assume that the refractive index variation 
of the dielectric is only along the z-direction and that a 
normally incident plane wave strikes its front surface. It 
is clear that the analysis and the equations given above 
will remain valid, provided that: (1) E ( x )  is replaced by 
a constant and (2) Ni is replaced by the refractive index 
of the ith slab at wavelength A. Thus, TE-mode propa- 
gation through a CWF is equivalent to propagation 
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through a one-dimensional, stratified, dielectric media 
with refractive index n ( z )  = Ne,  ( z ) .  

Ne,  ( z )  is a function of wavelength A,  and therefore the 
refractive index in the equivalent dielectric medium must 
exhibit dispersion. In most cases, however, the dispersion 
can be neglected over the filter band of interest. This fact 
is shown below by bounding the dispersive term in the Ui 
and Vi matrices. We start with the following two expres- 
sions, which are derived in the Appendix. 

(2.23) 
AxNeff(z) - -- h(z)  (nj - NZff(z)) A A  - 

Neff(z) heff(z) NZff(z) A 

(2.24) 

Ah Ne,  (z)  and Ah Ne,  (z)  are the changes in effective in- 
dex due to wavelength, and film thickness changes AA 
and Ah, respectively. h,,(z) is the effective film height 
and is given by [25] 

AhNeff(z) h ( z )  ( n j  - N&(z)) Ah - 
Neff(z) heff(z) NZff(z) ho’ 

(v + b-”2(Z) + ( a  + b(z))-’I2).  (2.25) 
heff(z) = 

27r 1 1 2  
- [ n j  - n f ]  x 

he,(z) equals the actual film height h ( z )  plus the l / e  
amplitude penetration depths of the guided mode into the 
substrate and coverplate regions. Typically, he, ( z )  < 
2 h ( z ) .  

Consider first the Vi matrix. In general, AX/h is quite 
small compared to the maximum values of Ah/h(z) ,  
which are typically a few percent [8]. For insta!ce, if the 
desired filter has a reflection bandwidthoof 10 A and the 
band center is at a wavelength of 5000 A,  then AA/A = 

It therefore follows from (2.23) and (2.24) that 
AhNeff(z) << AhNe,(z). Thus, the effect of AhNeff(z) 
can usually be neglected in the Vi matrices. 

Next, we will examine the Ui matrix. Using the fact 
that h ( z )  < h e f f ( z ) ,  (2.23) can be rewritten as 

2 ’  < I n s  

(2.26) 

Consider now the phase factor (27r/A)NiAW, in the U, 
matrix. The change of this factor, due to a change AA in 
wavelength, is given by 

2n 27r 
x2 --Ni(AW) (AA) + y (AANi) (Awl). (2.27) 

The first and second terms in this expression represent the 
nondispersive and the wavelength dispersive phase con- 
tributions, respectively. In practice, the film index, nf, is 
often close in value to the substrate index n,. Thus from 
(2.26), it follows that the wavelength dispersive term in 
Vi is usually small compared to the nondispersive contri- 
bution. 

111. INVERSE SCATTERING USING THE FOURIER 
TRANSFORM 

Consider an isotropic dielectric slab of infinite extent 
in the x and y dimensions. Along the z direction, the slab 
is bounded by the z = 0 and z = L planes. The refractive 
index, n(z) ,  is constant in the half spaces z 5 0 and z 1 
L ,  continuous everywhere, and varies only as a function 
of z. A plane wave traveling in the + z  direction is nor- 
mally incident upon the slab interface z = 0. The total 
electric field E , ( x ,  y,  z )  can be written as 

Ey(x, Y ,  z )  = EFy(x, y, z) + E B y ( x ,  Y ,  z )  ( 3 . 1 )  

where the electric fields E F y ( x ,  y, z )  and E B y ( x ,  y, z )  cor- 
respond to plane waves propagating in the +z  and - z  
directions, respectively. The reflection and normalized 
transmission coefficients r and t ,  for a forward-propagat- 
ing wave incident at z ,  are defined by 

(3.2) 

and 

Note that R(  A )  = 1 r ( A, 0) l 2  is the fraction of incident 
power reflected at the z = 0 boundary. Similarly, T (  A )  
= 1 t (  A, 0) l2  = 1 - R (  A )  equals the fraction of incident 
power transmitted through the z = L surface. 

The goal of one-dimensional inverse scattering is to ob- 
tain n ( z )  given r ( A, 0)  data. Many techniques are avail- 
able to perform this task, each having a different degree 
of accuracy and complexity. We have restricted our anal- 
ysis to Fourier based methods since they are (1) simple to 
understand, (2) very easy to implement, (3) numerically 
stable, and (4) yield reasonably accurate results. The ex- 
act GLM technique, which is considerably more com- 
plex, is discussed in Section VI. The following Fourier 
design relationships will be used to design corrugated 
waveguide filters. 

provided l r (  A, O ) (  << 1 (3 .4)  

where k = 27r/A, the prime denotes a derivative, and n ( s )  
equals the refractive index, given as a function of twice 
the optical path length s; s and sL are given below: 

s ( z )  = 2 i l n ( u ) d u  ( 3 . 7 )  

sL = 2 i L  . ( U )  du. (3 .8 )  
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Observe that (3.7) can also be written as 

1 
= so 2n(s) ds. (3.9) 

Defining f( k )  by either 

f ( k )  = r ( h ,  0) for I r ( X ,  0)1 << 1 (3.10) 

or 
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or 

f ( k )  = tant-l ( r (  A, 0)) (3. 
and letting L + 00, (3.4)-(3.6) can be rewritten as 

Inversion of this Fourier transform yields 

n’(s) 1 
f ( k )  elks ds (3.14) 

wheref( - k )  b f * ( k ) ,  k 2 0. 
Equation (3.14) is the approximate solution to the one- 

dimensional, inverse scattering problem for dispersion- 
less, dielectric media. Given r (  A, 0)  or T ( k ) ,  (3.14) to- 
gether with either (3. lo), (3.1 l ) ,  or (3.12) can be used to 
determine n ( s ) .  The refractive index profile is then com- 
puted, as a function of z ,  from (3.9). The Fourier-trans- 
form relationship between n ( z )  and f( k ) ,  expressed by 
(3.11) and (3.14), will be applied in Section IV to design 
CWG filters. For comparison purposes designs based on 
(3.10) and (3.12) will also be examined. Equations (3.11) 
and (3.12) will be found to yield designs of nearly equal 
accuracy, while (3.10) will produce a significantly infe- 
rior result. Equation (3.4) is the well-known first Born 
approximation. In the literature [3 11, the design technique 
based on (3.6) is sometimes referred to as nonlinear re- 
normalization. 

Equations (3.5) and (3.6) were first derived by Sossi 
[20] and Greenewalt er al. [36], respectively. The deri- 
vation of (3.4) and (3.6) follows directly from the Ricatti 
differential equation for r ( h,  s )  [37]. (Below we omit the 
explicit dependence of r on X for notational simplicity.) 

n ‘ b >  
2 n ( s )  

r ’ ( s )  = - [ I  - r 2 ( s ) ]  + i k r ( s ) .  (3.15) 

For low reflectivity (i.e.,  I r (0)  l 2  << 1 ), the r2(  s )  term 
can be neglected in (3.15), and direct integration then 
yields (3.4). At higher reflectivities, we observe [31] 

(3.16) 

Equation (3.16) is recognized as the first term in a Taylor 
series expansion of r ( s )  about the complex point r (  s) = 

0, since 

for z a complex number 
d 1 
- t a d - ’  ( z )  = ~ 

dz 1 - 2  

(3.17) 

and tanh-l (0) = 0. It also follows from (3.17) that 

Combining (3.15), (3.16), and (3.18) yields 

n’(s) + ik tanh-’ [ r ( s ) ] .  (3.19) 
d 
- tanh-’ ( ~ ( s ) )  __ 
d S  2 n  (SI  

Direct integration of (3.19) now produces (3.6). The de- 
rivation of (3.5) can be found in [20], [21]. 

IV. CWG FILTER DESIGN 
The results derived above will now be applied to the 

design of CWG filters. In view of the conclusions of Sec- 
tion I1 (3.13) and (3.7) become 

s(z) = 2 N , f f ( U )  du. (4.2) i o  

We now write Nefi( s )  in the following form: 

Neff(s) = + ANefi(s) (4.3) 

where we assume that 

I I << N O .  (4.4) 

This assumption is consistent with a requirement that the 
depth of the surface corrugation not exceed a small frac- 
tion of the waveguide height. In most cases of practical 
interest, the desired reflection coefficient r ( A,  0 )  is only 
nonzero over a small wavelength interval. For example, 
consider a sharp cut-off reflection filter centered at 5005 
A with a bandwidth of 10 A 

1 for 5000 A 5 X 5 5010 A i 0 elsewhere. 
r ( h )  = 

In these cases, it follows from (4.1) that d ( A N e f i ( s ) ) / d s  
is the Fourier transform of a narrowband function f ( k ) ,  
and therefore A N , , ( s )  is quasi-sinusoidal. Thus we can 
write 

ANeff(s) = SN,,,(s) cos [kos  + 0(s)] (4.5) 
where ? r / ( k i N o )  is the nominal period of the surface grat- 
ing. Note that this nominal period satisfies the Bragg con- 
dition for light of wavelength 2 a / h o .  Combining (4. l ) ,  
(4.3), and (4.4) yields 

ik 
f ( k )  = S sNef,(s) cos (kos + e(s)) e-’’’ ds 

-m 

(4.6) 
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n w  

(4.7 1 
The second integral in (4.7) contains the complex expo- 
nential e - i  ( k  + k o b  which varies very rapidly as a function 
of s, and therefore this integral is nearly zero. Hence, 
(4.7) can be written as 

.. ” O D  

where 

A k  = k - ko. (4.9) 
Inversion of (4.8) yields 

(4.10) 

It follows from (4.2) and (4.4) that 

s z 2Noz. (4.11) 

Combining (4.10) and (4.11) gives our final result 

(4.12) 

(4.13) 

Once No and ko are specified, A Ne, ( z )  is easily com- 
puted from either (4.12) or (4.13). We also note that these 
computations are numerically stable. Normally ko will be 
choosen to lie near the center of the reflection coefficient’s 
wavelength band. This choice will produce a 0, which is 
a slowly varying function of 2. 

The A N e f f (  ( z )  given by (4.12) can be physically real- 
ized by corrugating the waveguide height h.  The relation- 
ship between the local height corrugation A h ( z )  and 
A N , , ( z )  is given by (2.24). With I ANeff(z) 1 << No, this 
equation becomes 

Equations (4.13) and (4.14), together with the f( k ) ’ s  
specified by (3.10), (3.11), or(3.12), constitute the CWG 
filter design solution. 

Finally, we note that an almost-periodic square wave 
can be represented as the sum of an infinite number of 
quasi-sinusoidal terms. At most a single quasi-sinusoidal 
term in this representation will contribute to the integral 

of (4.1). The remaining terms will make negligible con- 
tributions since they will not be phase matched to the 
complex exponential e - I k s  appearing in the integrand. 
Therefore, the quasi-sinusoidal A Ne#( z )  can be replaced 
by a quasi-periodic square wave without affecting r ( h, 
0). Each cycle of this square wave will have the same 
period as the corresponding sinusoid, but an amplitude 
which is smaller by a factor of ~ / 4 .  This ~ / 4  factor is 
the reciprocal of the first coefficient in the Fourier series 
expansion of a square wave. 

V. DESIGN EXAMPLES 

In this section, two CWG filter design examples are 
presented. The designs are performed using Sossi’s Fou- 
rier transform technique as described by (3. l l )  and (4.13). 
The design process proceeds in five steps. First, the de- 
sired filter reflectance R ( A )  is specified. Second, A N,R( z )  
is computed using (4.13) and (3.11), with 4 ( k )  set to 
zero, and the required integration performed numerically. 
Third, the period A ( z )  of each cycle of the resulting quasi- 
sinusoidal effective index profile is computed as 

Fourth, the filter length is truncated at the point where 
I 6Neff(z) I falls below approximately 10% of its maxi- 
mum value. Fifth, the quasi-sinusoidal profile is replaced 
by a quasi-periodic square wave profile. Each cycle of 
this square wave has the same period as the corresponding 
sinusoid, but an amplitude which is smaller by a factor of 
~ / 4 .  Finally, the reflectance of the resulting filter is de- 
termined using the matrix-based effective index method 
described in Section 11. 

Two filters, one “linear” and one “parabolic,” were 
designed using the technique described above. Good re- 
sults were obtained in both cases as indicated by Figs. 2 
and 3. The design computations were performed in less 
than one minute on a MACIIx personal computer. For the 
“linear” filter ho and No were chosen to be 0.5005 pm 
and 1.5, respectively. Similarly, for the parabolic design 
A. = 0.5000 pm and No = 1.5. The amplitude 6 N e f f ( z )  
and the period A ( 2 )  for the linear filter design are plotted 
in Figs. 4 and 5. Figs. 6 and 7 are the equivalent plots for 
the parabolic design. A negative value for 6 Ne, ( z )  in Fig. 
6 indicates a T phase shift in the sinusoidal grating cor- 
rugation. Note that the period is constant in Fig. 7. This 
constant periodicity follows directly from (4.13), since 
0 ( z )  will be either 0 or 7~ whenf( k )  is symmetrical about 

Fabrication of nonperiodic corrugated waveguide filters 
is clearly a difficult task given the feature sizes involved. 
Below, we present some preliminary thoughts on the pro- 
cess. Two parameters define the filter, the effective index 
“variation’ ’ 6 Neff ( z  ) and the period A ( z  ) . A careful ex- 
amination of the analysis presented in Section I1 of this 

k0. 
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paper indicates, however, that it’s the optical thickness of 
a corrugation cycle, as opposed to its physical thickness, 
A(z),  which is the important quantity. The optical thick- 
ness, OT(z), is defined as the average effective index of 
a cycle times its physical thickness. For effective index 
variations of the form given by (4.4), the average effec- 
tive index No is constant. Thus, OT(z) is controlled solely 
through A ( z )  as indicated by the equation below: 

O T ( Z )  = NoA(z). ( 5 . 2 )  

In practice, however, the waveguide corrugation is fab- 
ricated by etching into the top surface of the guiding layer 
through a metal patterning mask. As a result, one half of 
each corrugation cycle has the uncorrugated film/cover- 
plate interface as its upper boundary. Thus, if the corru- 
gation depth is not constant in z, then the average effective 
index is also a function of z .  In this case, the effective 
index and the optical thickness profiles are given by 

Neff(z) = Nav(z) + 6Neff(z) 

OT(z) = Na,(z) A ( z ) .  (5.3) 
The implications of (5.3) and (5.4) are mixed as far as 
fabrication is concerned. On the positive side they allow 
the required optical thickness profile to be easily realized 
through control of the corrugation depth, while maintain- 
ing a fixed physical thickness for each corrugation cycle. 
This point is important, because the required optical 
thickness variations are simply too small to be realized 
through changes in physical thickness alone (see Fig. 5 ) .  
On the negative side, the corrugation depth profile affects 
both 6Ne,( z )  and optical thickness simultaneously. Thus, 
these two parameters cannot be controlled independently. 
The fabrication of almost-periodic waveguide filters may 
require a several step process. First, the physical height 
of the uncorrugated guiding layer is slowly tapered. This 
tapering can be accomplished by etching the waveguide 
surface through a computer controlled movable slit. Sec- 
ond, a metal submicron periodic mask is created on the 
surface of the waveguide using holographic exposure 
techniques on photoresist, followed by metal evaporation. 
Finally, the periodic pattern is etched into the guiding 
layer, with an etch depth which depends on position z. 
This z dependence can be realized using either the slit 
approach discussed above or focused ion beam etching. 
By choosing the waveguide taper function and the etch 
(depth) profile properly, 6Ne,(z) and O T ( z )  can be con- 
trolled separately as needed. 

VI. COMPARISON WITH OTHER DESIGN TECHNIQUES 
In this section, our design results are compared with 

those obtained using 1) the first Born approximation Fou- 
rier-transform method [(3.10) and (4.13)], 2) the nonlin- 
ear renormalization Fourier-transform method] (3.12) and 
(4.13)], and 3) the exact Gel’fand-Levitan-Marchenko 
technique for two-component scattering systems. 

Figs. 8 and 9 show the results of a “linear” filter de- 
sign based on the first Born approximation and the non- 
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Fig. 9 .  Linear corrugated waveguide filter. 

linear renormalization Fourier -transform methods, re- 
spectively. The first Born approximation is known to be 
inaccurate when the reflection coefficient is large. Thus, 
as Fig. 8 indicates, the first Born approximation method 
compares unfavorably with Sossi’s technique. Fig. 9 in- 
dicates, however, that nonlinear renormalization and Sos- 
si’s method yield results of comparable accuracy. This is 
not surprising, since the f( k )  functions given by (3.11) 
and (3.12) are nearly identical as Table I indicates. Fi- 
nally, note that the nonlinear renormalization approach 
has the advantage of being able to include the phase of 
the reflection coefficient in the design process. 

The Gel’ fand-Levitan-Marchenko technique is an exact 
method for waveguide filter design. The detailed theory 
of this method can be found in [18] and [37] and will not 
be repeated here. In the following discussion we wish only 
to outline the general approach, indicate its complexity, 
and apply it to the design of the “linear” filter described 
in Section V. 

Propagation through corrugated waveguide filters can 
be modeled by the following pair of coupled-mode equa- 
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TABLE I 
ACCURACY OF THE APPROXIMATION tanh ~ ’ [ r ]  = 

[0 .5 (  1 / T  - T ) ] ’ ”  

r tanh-’ ( r )  [ 0 . 5 (  I / T  - T ) ] ’ ”  - G (  - K : )  d; ,n(z )  exp ( - K : z ) .  (6 .4)  

0 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1 .ooo 

0 
0.100 
0.203 
0.309 
0.423 
0.549 
0.692 
0.866 
1.095 
1.467 
W 

0 
0.100 
0.202 
0.307 
0.423 
0.540 
0.679 
0.852 
1.099 
1.593 
W 

tions [25] 

+ i6( A) B ( z )  = q ( z )  A ( z )  (6 .1)  dz 

~- d A ( z )  i6( A) A ( z )  = q * ( z )  B ( z )  (6.2) 
dz 

where B ( z )  is the electric field amplitudes of the fonvard- 
propagating mode. A ( z )  represents the electric field am- 
plitude of the backward-propagating mode. @ (  A )  is the 
propagating constant of the mode in the uncorrugated 
guide. 6 (  A )  = /3( A,) - p (  A ) ,  where A, is some fixed 
reference wavelength lying within the bandwidth of the 
filter, and q ( z )  = U ( Z )  is the coupling coefficient 
of the corrugation. 

The filter design problem reduces to determining q ( z )  
given the reflection coefficient A ( O ) / B (  0 )  depending 
upon 6. When the reflection coefficient r ( 6 )  can be writ- 
ten as a rational function of 6 (and when several other 
conditions described in [18] are satisfied) it is possible to 
determine g ( z )  exactly by solving sets of simultaneous 
linear equations [18]. The procedure is as follows. First, 
let U = -i6 and express r ( U )  as a rational function G ( U )  
= P ( u ) / Q ( u )  where Q ( u )  is a polynomial of order N 
and P ( u )  is a polynomial of order N - 1 or less. Sec- 
ond, find the N roots of Q (  U )  in the complex plane and 
denote them by p I ,  p2,  . . , p N .  Third, form the poly- 
nomial F ( u )  = Q ( u )  Q*( -U*) - P ( u )  P*( - U * ) ,  and 
find the 2 N  roots of P ( u )  in the complex plane. Denote 

Fourth, solve the following system of 2 N  simultaneous 
linear equations 

these roots by K ~ ,  K ~ ,  * * , K,,,; K : ,  - K ; ,  . . . , -.;. 

where II = 1, . , N (6.3) 
for values of z measured along the corrugated waveguide 
structure. Fifth, compute the coupling coefficient using 
(6.4) below. 

We have applied the above GLM technique to the “lin- 
ear” filter described in Section V.  We start by observing 
that 

= - N ( h , ) ( A  2 A  - A,) 
A:, (6.7) 

where N (  A )  is the effective index of the uncorrugated 
waveguide at wavelength A. In our design we choose A. 
= 0.5005 pm, N (  A,)  = 1.5, and used (6.7) to determine 
6 (  A ) .  The reflection coefficient of the filter was defined 
by 

[ [ 350( A - 0.5000) + 0.35]I’* 

0.5000 pm I A < 0.5010 pm (6.8) 

0 elsewhere. 

r ( A )  = 

A fifth order, polynomial, least squares fit to r ( 6 )  was 
performed over the wavelength range between 0.5000 and 
0.5010 pm ( i .e . ,  -0.01883 5 6 5 0.01883). The result 
is 

r ( 6 )  = P ( 6 )  = 9.354e0765 - 1.342e06h4 

- 1.8839e0463 + 19.168a2 + 17.5986 

+ 0.60691. (6.9) 

The denominator function Q ( 6 )  was chosen to be a sixth 
order Butterworth filter with cut-off at 6 = 0.01883. This 
Butterworth filter effectively drives G ( A )  to zero for 
wavelengths lying outside the region between 0.5000 to 
0.5010 pm. Fig. 10 shows a plot of the desired corrugated 
waveguide filter reflectance 1 r ( A )  l 2  and the correspond- 
ing rational approximation P (  A)/Q( A) described above. 

The coupling coefficient q(  t) was computed using (6.3) 
and (6.4) for z sampled every 1.5 pm, up to a total filter 
length of 750 pm. This calculation took approximately 10 
minutes to complete on a MacIIx personal computer. The 
filter reflection coefficient was then reconstructed by nu- 
merically integrating the pair of coupled-mode equations 
(6.1) and (6.2). The reconstructed result is shown in Fig. 
10, and is nearly identical to the rational reflection coef- 
ficient fit. Since the GLM technique is exact, the fit would 
have been perfect had the length of the filter not been 
truncated. Figs. 11 and 12 show the amplitude, 6Ne,(z)  
and the period A (z) of the waveguide filter corresponding 
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to the coupling coefficient q ( z ) .  The plots were generated 
using the following relationships [25]. 

(6.10) 

(6.11) 
1 

R ( z )  = 
E o  1 d y ( z )  +-- 

A0 2~ dz 

6Nef f (Z)  = N o a ( z )  N z ) / 2  
(6 .12)  

with A. = 0.5005 pm and No = 1.5. 
Note that the GLM technique described above is not 

truly exact, since its accuracy is limited by the rational 
polynomial fit to the reflection coefficient. Of course, the 
fit error can be made arbitrarily small, but only at the ex- 
pense of increasing the number of design computations. 
As N gets large, numerical problems may also occur. For 
the examples studied in this paper, the GLM technique 
performed no better than the simpler Fourier-transform 
method. 

VII. CONCLUSION 

Coupling between forward- and backward-propagating 
modes of a thin film waveguide can be accomplished by 
corrugating the surface of the guide. The strength of the 
coupling interaction is a function of both the wavelength 
h and the surface corrugation. The reflection coefficient 
r ( A )  defined as the ratio of the complex amplitudes of 
the backward to the forward-propagating guided modes, 
specifies the filter. The goal of corrugated waveguide fil- 
ter design is to determine the needed surface corrugation 
given an r ( A ) .  The resulting corrugation is generally 
nonperiodic. 

In this paper a new filter design technique has been de- 
veloped for surface-corrugated waveguides. The tech- 
nique is based on one-dimensional, Fourier-transform 
methods of inverse scattering theory and the effective in- 
dex method for waveguide propagation. The approach is 
a direct extension of inverse scattering techniques previ- 
ously applied to one-dimensional, dispersionless, dielec- 
tric media. The design method places only minor restric- 
tions on the desired filter response. Furthermore, the 
design procedure is computationally fast, easy to imple- 
ment, and numerically stable. The procedure is illustrated 
with two design examples. One of these designs has a 
parabolically-shaped reflectivity response I r ( A )  l 2  while 
the response shape of the other design is linear. In both 
cases, good results are obtained. 

The design of surface corrugated waveguide filters may 
also be performed using the Gel’fand-Levitan-Marchenko 
inverse scattering method for two component systems. In 
principle, this design method is exact when the reflection 
coefficient is in the form of a rational polynomial func- 



~ 

1928 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 26, NO. 11, NOVEMBER 1990 

tion. Since this condition is usually not satisfied, the GLM 
technique is inexact in practice. The accuracy of the tech- 
nique is no better than one’s ability to fit a rational poly- 
nomial function to the reflection coefficient data. Further- 
more, this fit can only be improved by increasing the 
degree of the polynomials, which in turn, increases the 
number of computations required to perform the design. 
The examples considered in this paper indicate that the 
simpler Fourier-transform method can often produce ad- 
equate designs with much less computations. 

APPENDIX 
In this appendix, (2.23) and (2.24) of Section I1 are 

derived. These two equations relate the incremental 
change in waveguide effective index to an incremental 
change in either wavelength or corrugation height. 

The derivation of (2.24) begins with the dispersion re- 
lationship, given below, for the TE modes of a waveguide 
1251 

V[1 - b]Ii2 = tan-’ [b / ( l  - b ) ]  ’ / 2  

+ tan-’ [ (b  + a ) / (  1 - b ) ] ’ / 2  ( A . l )  
where 

- 1 1 1 - b  ‘ / 2 ( 1 - b ) + ( b + a ) d b  - 

b + a 2  -(-) b + a  (1  - b)’ d h  
- 

1 +- 
I - b  

+ b i ( 4 )  ( 1  - b f  d h  
1 1 1 - b  ‘ ” ( 1  - b )  + b d b  - 

1 + -  
1 - 6  

- _  - 1 1  1 1 ) @  ( A . 6 )  [ 1 - b ] ’ / *  (b’/z + ( b  + a ) ’ / 2  d h ’  

It follows from (A.2)-(A.4) that 

(‘4.7) 

(A.8)  

1 - b =  (A.9)  n; - nf ’ 

dV 27r 1 / 2  - = - [nf - 113 
d h  X 

dNe f f  - (nj - n:) - -  
d b  2Neff  

n j  - N:ff 

Multiplying both sides of (A.6) by 1 1  - bl’/2 ( d h )  
( d N e , / d b j  and then using (A.7)-(A.9) yields 

nj - N2ff ( V  + b-‘l2 + ( b  + U)- ’ / ’ )  
dh = dNeff 

Ne, 2 a  ’ / 2  - [nj - n f ]  
A 

( A .  
It now follows from (A. 10) that 

This establishes the desired result since (2.24) and (A. 11) 
are identical. 

The derivation of (2.23) proceeds in a similar manner. 
The dispersion relationship (A. 1) is differentiated with re- 
spect to X to yield 

d b  
(b-’12 + ( b  + a ) - ’ / 2 )  - 

[ l  - b]’ /2  d X ‘  
1 1  - -  - 

(A.13)  

Multiplying both sides of (A.13) by [ 1 - b ] ’ j 2  
( d N e , / d b ) ,  and then using (A.8), (A.9), and (A.12) pro- 
duces the desired result 

dN,ff(z) - h ( z )  (n f ’  - N % ) )  dX (A.14)  - - 
N e f f ( z )  he f f ( z )  N,2f f (z)  ’ 
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