Effective-index method and coupled-mode theory
for almost-periodic waveguide gratings:

a comparison

Kim A. Winick

Contradirectional propagation through active, first-order, almost-periodic, corrugated waveguide grat-

ings is analyzed by using both coupled-mode theory and a combined effective-index/impedance-matching

matrix technique. For TE-mode operation, which is near the first-order Bragg wavelength, the

equivalence of the two techniques is analytically demonstrated for shallow surface corrugations.
Keywords: Effective-index method, coupled-mode theory, corrugated waveguide gratings.

I. Introduction

The propagation of optical modes in periodic and
almost-periodic waveguide gratings is a topic of consid-
erable interest. Applications include waveguide filter
design,’® distributed feedback (DFB) laser struc-
tures,”® phase matching for nonlinear interactions,’
grating couplers,’ pulse compression, and soliton
generation.”” Propagation in periodic corrugated
waveguides can be analyzed exactly by using the
Floquet-Bloch theory.’*** For almost-periodic wave-
guide gratings the exact Floquet—Bloch theory can no
longer be applied, and approximate methods must be
used. For contradirectional coupled-wave interaction
near the Bragg wavelength, both coupled-mode the-
ory and effective-index techniques have been applied.
It is of interest to know when these methods will yield
equivalent results.

In coupled-mode theory® a pair of first-order cou-
pled differential equations is derived that approxi-
mately relates the amplitudes of the forward- and
backward-propagating modes. These equations in-
clude a dephasing term 3, a coupling coefficient k, and
a material gain factor g as parameters. The 3 equals
the deviation of the mode propagation constant from
the local Bragg condition, and k indicates the strength
of the coupling between the modes. For an almost-
periodic grating, 9, k, and g may be functions of the

i

The author is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, Michigan
48109-2122,

Received 4 April 1990.

0003-6935/92/060757-08$05.00/0.

© 1992 Optical Society of America.

position that is measured along the guide. The k can
be evaluated from an overlap integral that involves
the induced polarization fields in the grating region
and the field profiles of the unperturbed or local
guided modes. In general the pair of coupled differen-
tial equations must be solved numerically, although
approximate solutions have been developed under
restrictive assumptions.*'® The pair of first-order
differential equations can also be combined into a
single second-order Ricatti differential equation,’
which too must be solved numerically. When the
grating is periodic, the coupled-mode equations can
be solved analytically. Closed-form solutions are ob-
tained, and these are in agreement with the more
exact Floquet—Bloch theory.

For almost-periodic gratings an alternate approach
is to divide the grating into a large number of thin
sections, each of which is assumed to have a constant
value of 8, k, and g. Within each of these sections
analytic solutions are obtained by using coupled-
mode theory for periodic gratings, and these solutions
are used to generate a 2 X 2 transfer matrix for the
section. This matrix relates the forward- and back-
ward-propagating field amplitudes that are measured
at the front of the section to those that occur at the
back. The transfer matrix for the entire corrugation
is generated by multiplying the individual transfer
matrices together."® It should be recognized that
this approach is simply a numerical method for
solving the coupled-mode equations.

Wang?® proposed an effective-index technique for
solving the contradirectional mode-coupling problem.
This technique is conceptually simpler than the cou-
pled-mode formalism described above. Basu and Bal-
lantyne® recast the effective-index method into a
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convenient matrix form and used it to study random
fluctuations in first-order grating filters. Recently
Bjork and Nilsson® used this approach to study the
properties of asymmetric phase-shifted DFB lasers.
Basu and Ballantyne’s approach is a direct applica-
tion of the effective-index method combined with
impedance matching. Each period of the waveguide
grating is divided into thin sections, and the guide
height and material gain are assumed to be constant
within the section. The section is treated as a three-
layer waveguide, and the standard b versus V disper-
sion relationships'™ are used to compute the propagat-
ing modes that are supported by this guide. A 2 x 2
transfer matrix for the section is then derived by
matching the tangential E and H fields (which corre-
spond to these modes) at the interfaces between
sections. Finally, the transfer matrix for the complete
structure is obtained by multiplying together the
individual transfer matrices.

Verly et al.?®** derived the effective-index method in
periodic corrugated gratings directly from Maxwell’s
wave equation and a local normal mode expansion of
the field.” In this way they were able to examine the
approximations inherent in the effective-index tech-
nique. They demonstrated that it was a relatively
accurate theory for TE modes and could be modified
to give correct results for the TM case. Finally, they
combined the effective-index technique with coupled-
wave theory for one-dimensional dielectrics. Using
this combined approach, they obtained results that
were identical to those obtained by use of the coupled-
mode theory for periodic waveguide gratings.

We analytically demonstrate by direct computation
that the coupled-mode theory technique is equivalent
to the TE-mode effective-index/impedance-matching
method. We do this for almost-periodic waveguide
gratings, which may have gain. As opposed to Verly’s
method, the coupled-wave theory results for one-
dimensional dielectrics are not used in our develop-
ment. Contradirectional propagation through an al-
most-periodic, corrugated waveguide grating is
assumed, as is operation near the first-order Bragg
wavelength.

. Impedance-Matching Matrix Method

Consider the planar, thin-film waveguide shown in
Fig. 1. This is a three-layer dielectric guide, consisting
of cover, film, and substrate layers, with refractive
indices n,, n, and n, respectively. The interface
between the film and cover layers has a shallow,
surface corrugation, which can be modeled as an
almost-periodic square-wave grating. For simplicity
we divide the grating into slabs, numbered 0 through
N + 1 asindicated in Fig. 1. The width of the %th slab
is w,, and its height is A,. Light of free-space wave-
length \ is confined to the film region by total internal
reflection at the film—cover and film—substrate inter-
faces (n, < n, < n,). It is assumed that the corruga-
tion eﬁ'ectlvely couples only two contradirectional,
TE-polarized, guided waves. These TE- polarlzed
waves have an electric field component only along the

758 APPLIED OPTICS / Vol. 31, No. 6 / 20 February 1992

y

— ,—] ﬂ |—U—|l|—‘]§_.l—|. | l———

N !
wk—> <-. .
PN

2:;.; .kk+1-

% ZkT Zke1 ZN41

Ns

Fig. 1. Almost-periodic waveguide grating.

y direction. We write the y component of the electric
field in the kth slab as

E\(x,y, 2) = Eg(x,y, 2) + Eg(x, y, 2), 1

where |
En(x, y,2) = AEn(x) exp(—iBy2), @
Ep(x,y, 2) = BiEp(x) exp(iB:2), (3)

and E, and E,, denote the forward (+z direction) and
backward (—z direction) propagating fields. The time
dependence of the fields is assumed to be exp(iw?).
E,(x) and B, are the transverse-mode profile and the
propagation constant, respectively, for an uncorru-
gated guide of height 4,.

The propagation constant 8, can be computed by
using the standard, three-layer guide, dispersion equa-
tion given below':

V(1 — b)"? = tan'[(b, + a)/(1 — B
+ tan~'[B,/(1 = B2 + v, (4)

where

2
Vk = Twhk(nfz bt n‘2)1/2, (5)
a=@®r-nd/0f-nb, (6)

Nk2 - n,2
b= @
2w

Blz =3 TNk’ (8)

and v is an integer denoting the mode number.
Observe that N, is the effective index of the &th slab.
Using Maxwell’s equation, we obtain

V X E = —jwuH, 9)

where u is the permeability of free space. The x
component of the magnetic field in the kth slab,



H,(x,y,2), is given by
Hk(x’ y’ Z) = HFk(xr y) Z) + HBk(x» y: Z), (10)
where
_Bk
Hplx,y,2) = — " En®, 3, 2), (11)
Hy(x,y,2) = &E (x,y, 2) 12)
Be\%, Y, ou » Y, 2).

Let z,” and z,* denote the values of z just to the left of
and to the right of z,, respectively, where 2, lies on the
boundary between the (2 — 1)th and kth slabs. The
electromagnetic boundary conditions require that E,
and H, be continuous across the interface between
the (2 — 1)th and kth slabs. Therefore, it follows from
Egs. (1), (8), and (10)—(12) that

Ep 1(x,y,2,7) Endx,y, 2.
P41 =7 ) (13)
Epix, 5,27 Epx, 5,2,
where the matrix 7; is given by
1 1
7 = . (14)
_Nk Nk

It also follows immediately from Egs. (2) and (3) that
propagation across the kth slab can be written as

Eqx, y, 3k+)}

Enlx, y, Zk+1-)}

=4y (15)
Ep(x,y,2.") Ep(x,y, 2p417)
where the matrix %, is given by
2w 0
exp |w;, I.TN;, - g
% = (16)

exp

0 w5 - ” '

and g, denotes the material gain, if any, in the kth -

slab. Combining Eqs. (13) and (15) yields

Ep 1,5, 2,7) En(x,y, 2417)
= (%1 %) . amn
Epa(x,3,2,7) B, ¥, 24417)
Defining the one period transfer matrix .#, as
My = V41"V (18)
and using Eq. (17) repeatedly, we can write
En,y,2,7)|  (3e Ew(x, y, zn417) :
= ( Mﬂ—l"%ﬁ) N (19)
Epo(x,5,2,7) = Epn(x,y, 2v417)

where we have assumed that N is even. Thus the .#,
matrices completely characterize the propagation
through the waveguide grating. Their product relates
the fields at the beginning of the grating to those at

the end. For example, the reflection coefficient r(\), as
defined by

_ EBO(x, y’ 21_)
) = En(x,5,2) (20)

with Ep,(x, ¥, 2y.,”) set to 0, can be calculated directly
from the .#, matrices by using Eq. (19).

IIl.  Evaluation of .7,
Combining Egs. (8), (14), (16), and (18) yields

(1 - 48, )exp[w (@B — g4)] = exp[—w(B: — gl
2B,- * * 2841
o ABs explw,@B; — gl (1 - A8, )exp[ —wi(iBr — g1l
2B #(EBr — & T @Bx — 8
21)
where
ABy = B4y — B (22)

Therefore, the transfer matrix for a single period of
the surface corrugation is given by

a b
My = d k=1,3,5..., (23)
c
where
A AR+
a=[1- 25’3:) (1 - 2Bé 1) expli(y,wy + Yi+1Wes1)]
BIH-I
2Bk—1 28, —a eXPl—i(vaw: — Vinira)], (24)
b=(1 ZBT 1) Bé“exp[t(wwk YVis1Wi+1)]
ABkﬂ.
1-——— 2B, l3 exp[ (YpeiWise1 + vaws)l, (25)

ARy
c= (1 - 2ng l) 2BB_ expli(yswy + Yis1lss1)]

(1 ABk ABI;+1

2Bk ) VirWrs)], (26)

eXP[—i(v’.w» -

AB ABy.
d= (1 - 2BI:1) (1 bl 2[; 1) exp[ l('thk + ‘Yk+1wk+1)]
ABy,
* zﬁf 1 2[; lEXp[t(-ykwk VeaWeD], @27
v = By + ig;. 28)

The expressions for a, b, ¢, and d given above can be
simplified. First, we observe that for an almost-
periodic grating,

Wy, = Wiy, (29)
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ABy = — ARy, 30)
8k = Br+1e 31)

Second, we assume that the depth of the surface
corrugation is small compared with the average
waveguide height so that

|AB,|

B, <1 (32)

and that the gain per slab section is small so that
& < 1. (33)

Finally the deviation 8, from the local first-order
Bragg condition is defined by

2sk=<m+m+l)—w1h’ k=1,3,5,..., 34)

and we assume that the Bragg condition is nearly
satisfied, or equivalently,

[dwy] < 1. (35)

Combining Eqgs. (24)-(35) now yields the following
first-order expressions for a, b, ¢, and d:

a = —exp[2w,(id, — g)l, (36)
o QB

b= B, (37
AB,

€T T 38)

d = —exp[—2w,(id, — gJl. (39)

In deriving relations (36)-(39) we used the fact that

e?=1+4+q forlg| <1

and neglected terms of the form (AB/BY'(dw)”* (gw)?
when pl + p2 + p3 > 1. This degree of approxima-
tion is consistent with the conditions given by inequal-
ities (32), (83), and (85). Combining Egs. (17), (18),
and (23) and approximations (36)—(39) yields

Eper(x, 3, 2¢7) ~expl2w,@, ~ g1 —%
E o L k
51155, 24 B, —expl—2w,(i5, — g)]

Epn(x,y, 21427)

X -+ (40)

B, ¥, 242)

We now define the functions R (2) and S(2) as follows:
Eg(x,y, 2) = R(2) explid(2)z] exp[—iB,.(2)z], (41)

Ep (2,3, 2) = S(2) exp[—i5(2)z] expliB,.(2)2], (42)
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where

+ Bra
B, (2) = ‘3"—23‘“—‘ for z,<z<2zu. k=135,..., (43)
Br +Brsy ™
8) = 2 T ow, o

for 2, <z<2z,, k=1385.... (44)

Combining relations (29), (34), and (40) and Egs.
(41)-(44) (along with the fact that 3§, , = 3, and
B, , = B, = B, ., for an almost-periodic grating) yields
R(z,") = expl2w, (i, — &) R(z,427)
+ -A—& exp
(]

B

.
4 ZU_;,z") S@2), (45)
A
S@z) = —;fexp (—iwlhz,,)R(zk,,z')
+ exp[—2w, (@3, — g1 S(z,..7). (46)

Without loss of generality we set z, (the z coordinate
at the beginning of the grating) to zero; then

£l

-1
z = > w, 47

J

i
|

The grating is assumed to be almost periodic. There-
fore

-1 for keven,

= [+i(k — )w] = 48)
P ] Ll for k& odd. (

. T
exp | £t Ez,,

Combining approximations (45), (46), and (48) yields
to first order

Rz)| | TPEED 8] 28 R
5G|~ 28, P Sy
* B eXP[—zwk(iah - gk)] ke2
(49)
for & odd.

IV. Coupled-Mode Theory

Based on a coupled-mode theory analysis, R(z) and
S(2), as defined by Eqs. (41) and (42), are solutions to
the following pair of differential equations®:

R'(2) + [i3(2) — g(@IR(2) = — k(2)S(2), (50)
S'(z) — [i3(2) — g(2)1S(2) = — k(2)R(2), (51)

where the prime denotes differentiation with respect
to z and k(z) is the coupling coefficient. For TE-mode
propagation in the guide, the coupling coefficient k(z)
for an almost-periodic, square-wave, surface corruga-
tion (see Fig. 1) is given by"®

2Ry — hunf — N2

S T W,

forz, <z <z, k=1305..., (62)



where h.q is the effective height of the guide and is
approximately equal to'®

V,+ b2+ (b, + a)?

2w
~ (ns — n,

k=1,3,5,.... (563)

h’eﬁ" =
2)1/2

It is assumed in approximation (52) that the corruga-
tion depth is shallow, and therefore the electric field
of the uncorrugated waveguide mode is taken to be
constant over the corrugation depth. For operation
near the first-order Bragg wavelength, Egs. (8) and
(34) and inequalities (32) and (35) can be combined to
yield

2
XN,,2w,, = 1, (54)

Thus it follows from approximation (52) and approxi-
mation (54) that

e nf2 - N,
2w, = = N £E=1,3,5,.... (55)
It is now shown that
AB,
K,,2wsz’ k=13,5,.... (56)

We start by differentiating between both sides of Eq.
(4) with respect to k. The result is

_Xm bllz_lvﬁ 1 = 1 ll—bm
G VR AT bra2lpta
1+
1-b
(1—b)+(b+a)£lg+ 1 l( —b)”z(l—b)+b%
a-b? dh b 2\ b (1-b7? db
1+—
1-b
1 1 1 1 db
“za-ompr T Grar|an O
It follows from Eqs. (5) and (7) that
dV 2w
i (nf — n Y, (58)
dN (/-n)
B 2N (59)
2 _ N2 )
1-b="t——. (60)
nf—n,

Multiplying both sides of Eq. (57) by [1 — b]'* (dh)
(dN/db) and then using Eqs. (58)-(60) yield

nf-N*  [V+b+(b+a)"]
N dh = 2m dN.
A

(61)

[n,2 _ n82]1/2

Tt now follows from Egs. (8) and (61) and approxima-
tion (53) that

B i T (62)

Combining approximation (55) and Eq. (62) yields the
desired result

A
Kk2wk=%’ k=13,5,.... (56)

Since R(z) and S(z) change little over the distance
of one grating period, we can write

R(z,7) = Rz ) — R'(2442 ) 2wy, (63)

S8(z,7) = S8z4e) — S’ (2h42)2w,. (64)

Combining Egs. (50) and (51) and approximations
(63) and (64) yields

R(z,) = R(z.y") + 2w, (@8, — )R (z4427) + 1,200,8(2127)s (65)

S(Zk_) = S(zk+2-) - 2wh(18k - g;,)S(z,,,,{) + K,,2ka(zk+2'). (66)

Recall from inequalities (33) and (35) that g,w, < 1
and |3,w,| < 1. Therefore,

expl*2w,(id, — g1 = 1 = 2w, (3, — g). 67

Combining approximations (56) and (65)—(67) yields

Re) exp[2w,(id; — &) AR,
S(z,7) = % B
* Br expl—2w, (8, — gu)]
R(z4427)
. (68
8 {S(zuz_) ©®

Finally we observe that and approximations (68)
(49) are identical. Therefore an identical result for
the one-period transfer matix.#,.#,,, is derived by
using either the effective-index/impedance-matching
technique or coupled-mode theory.

Approximations (49) and (68) indicate that the
effective-index method and coupled-mode theory yield
nearly identical results for almost-periodic corru-
gated waveguides in the vicinity of the first-order
Bragg wavelength. Our analysis, however, has been
restricted to grating profiles that have a square
shape. In coupled-mode theory an arbitrary grating
profile is handled by decomposing the profile into its
Fourier series components. The fundamental compo-
nent has the same grating period as the original
profile, and the periods of the remaining components
are integer fractions of the fundamental. It is well
known in coupled-mode theory that these remaining
components can be neglected, since they do not
achieve phase matching at the first-order Bragg wave-
length. Thus a shallow grating profile of arbitrary
shape can be replaced by an equivalent square profile.
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The only restriction is that the fundamental Fourier
components of the two profiles have the same ampli-
tude and period. Therefore the effective-index method
and coupled-mode theory will produce nearly identi-
cal results even for shallow grating profiles of arbi-
trary shape. The effective-index analysis, however,
must be performed on the equivalent square profile as
defined above.

V. Recursion Methods

A simple recursive technique is widely used in thin-
film design to determine the reflection coefficient of a
multilayer dielectric structure in terms of the reflec-
tion coefficients of the individual layers.?® This recur-
sive procedure is often referred to as the Airy summa-
tion technique or Rouard’s method. In Refs. 17 and
18 an Airy-like summation procedure is used to
analyze corrugated waveguides, but no mathematical
justification for the technique is provided. Below we
show that the recursion method is equivalent to first
order to a numerical integration of the coupled-mode
equations.

Using approximation (67), we can write approxima-
tions (65) and (66) in the following matrix form:

R@) _ exp[2wk(i8k—gk)] 2w,k
S(z7) - 2wk, expl—2w, (i3, — gl
Rev)l 6o
X .
S(4s7)

If we define the reflection coefficient r, of the com-
bined %2 and £ + 1 layers as

S(Z,,-)

" R@O) |5, om0 (70
it follows from Eq. (69) that
ry = 2w;k, expl—2w, (@5, — g)l. (71)

Furthermore, if we let p, denote the reflection coeffi-
cient of the grating as seen when looking in the
positive z direction at position z = 2,7, then

_ S(Z);_)
Pr = RG)

(72)

S(ys1")m0r

Combining Egs. (69) and (72) yields

2kah
exp[—2w, (@8, — gu)]

[R (2427)

[R(Zk-)
PR (2,)

exp[2w, (5, ~ g,)]
- 2kak

X . (73)
PrseB(2hes” )]

It immediately follows from approximation (73) that

_ 2wk + prsp eXPl—2w, (18, — 8]

= - 74
Pu exp[2w, (@8, — 8] + pre22wix, 74

Equation (71) and approximation (74) may now be
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.combined to yield

_ Tt Praa exp[—4w, (i3, — g,)] i

= 75
P 1+ ripree (75)

Approximation (75) is the desired recursion relation-
ship, and the above analysis indicates that it is
equivalent to first order to a numerical solution of the
coupled-mode equations.

VI. TM Case

We have shown that for TE polarization the com-
bined effective-index/impedance-matching technique
yields the same result as the coupled-mode theory
does. The development shown above can be paralleled
for the TM polarization, and approximation (49) is
obtained unaltered. It is known, however, that the
coupling coefficients are different for TE and TM
polarization.”” Therefore the effective-index method
and the coupled-mode theory methods do not yield
the same results for TM polarization.” As noted by
Verly et al.** this occurs because the effective-index
method does not account for the boundary conditions
at the grating—cover plate interface. For TE polariza-
tion this is no problem, since the E and H fields are
continuous across this interface. For TM polariza-
tion, however, there is a periodic discontinuity in E,
at the interface. This periodic discontinuity gives rise
to an additional coupling term, which the effective-
index method neglects. It is easy to show that the
coupled-mode theory and the combined effective-
index/impedance-matching technique will yield iden-
tical results provided that the A, /B, term in approxi-
mation (49) is reduced by the following factor:

Navz/n’f2 - lvxavz/nc2 + 1

’ 76
N‘,‘,Z/nf2 + Nm,z/n/“.2 -1 ( )

where
A
Ny=g- B+ B k=135.... W

Vil. Examples

Three corrugated waveguides have been chosen to
compare the effective-index technique with the cou-
pled-mode theory. We implemented the effective-
index technique, using Egs. (4)—(7), (14), (16), and
(19), as described in Section II. The coupled-mode
theory results were found by numerically integrating
Eqgs. (50) and (51), starting at the back of the grating
and moving forward. The integration step size was
~0.2% of the grating length, and k(z) and 3(z) were
evaluated by using Eqs. (4)-(8) and (34) and approxi-
mations (52) and (53). The results are shown in Figs.
2—4, where the reflectivity, |E,, (2,7)/Eq (2,)]% is
plotted versus wavelength. As expected there is excel-
lent agreement between the two approaches.

The waveguide parameters shown in Figs. 2—4 are
specified by using the notation of Fig. 1. In all three
cases the film, substrate, and cover plate refractive
indices are 1.55, 1.5, and 1.0, respectively, and the
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__ coupled mode
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Fig. 2. Periodic grating (n, = 1.0, n, = 1.55, n, = 1.5, w, = 0.247
pm, b, = [1.5 + 0.15(—1)*]um, 2 = 1,2, . . ., 1000 layers}.

average film height, (h,,, + £,)/2, is 1.5 pm. These
values correspond to silver ion-exchanged waveguides
that are made in glass.”” At a wavelength of 1.5 pm
the effective index N,; and the effective guide height
h; are found to be 1.51822 and 2.724 pm, respec-
tively. Waveguide 1 (see Fig. 2) has a constant
corrugation period equal to 0.494 pm and a constant
corrugation depth, ie., |h,,, — k| , of 0.30 pm. The
device is 247 pm long and consists of 500 corrugation
periods. The second waveguide (see Fig. 3) is also 247
pwm long and consists of 500 corrugation periods. The
corrugation depth, however, has a raised cosine taper,
which yields a maximum depth of 0.30 pm at the
center of the guide and no depth at either end. As
expected, the amplitude taper reduces the sidelobe
levels of the waveguide filter. The third waveguide
(Fig. 4) has a constant corrugation depth of 0.30 um.
The period, however, varies linearly along the length
of the guide, ranging from 0.2445 pm at the begin-
ning to 0.2495 pm at the end. This variation corre-
sponds to a 2% linear chirp over a length of 500

0.8
__ coupled mode

* offective index

0.6

0.41

Reflectivity

0.2

0.0 T
1.48 1.49 1.50 1.51 1.52

Wavelength ()Jm)
Fig. 3. Amplitude-tapered grating (n, = 1.0, n, = 1.55, n, = 1.5,

w, = 0.247 pm, hy = [1.5 + 0.15(— 1] {0.5 + 0.5 coslw(k — 500)/
5001} pm, & = 1,2, ...,1000 layers).

0.7
__ coupled mode

* effective index
0.6

0.51

0.4

0.3

Reflectivity

0.2

0.1

0.0 T v T
1.48 1.49 1.50 1.51 1.52

Wavelength (J.Im)

Fig. 4. Frequency-chirped grating {n, = 1.0, n, = 1.55, n, = 1.5,
w, = [(—0.0025 + 0.0025%/500) + 0.247] pm, h, = [1.5 +
0.15(—1)1 pm, k = 1,2, ..., 1000 layers}.

corrugation periods. As indicated in Fig. 4, the chirp
broadens the spectral response of the waveguide
filter.

VIIl. Conclusions

Periodic and almost-periodic waveguide gratings have
found applications as filters, DFB laser structures,
phase-matching elements, grating couplers, pulse com-
pressors, and soliton generators. Both coupled-mode
theory and a combined effective-index/impedance-
matching technique have been used to analyze propa-
gation through these devices. The coupled-mode the-
ory methods are older and have been applied more
widely. The effective-index/impedance-matching tech-
nique, however, is conceptually simpler. In the matrix-
based effective-index technique, the grating period
region is divided into thin-slab sections. The mode
propagation constants in each of the slabs are evalu-
ated by using the standard & versus V dispersion
relationships for a three-layer waveguide. A two-by-
two transfer matrix for each section is then derived by
matching the tangential E and H field components at
the interface between slabs. We have shown by direct
computation that the matrix-based effective-index/
impedance-matching technique is equivalent to cou-
pled-mode methods for TE polarization.
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