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Waveguide Grating Filters for Dispersion
Compensation and Pulse Compression

Jose E. Roman and Kim A. Winick, Member, IEEE

Abstract—Dispersion compensation and pulse compression is
theoretically demonstrated using aperiodic waveguide gratings.
The gratings are designed to have both a flat amplitude and a
quadratic phase response over the pulse bandwidth. This re-
sults in nearly transform-limited compressed pulses. The ap-
propriate waveguide grating parameters are obtained by ap-
plying the Gel’fand-Levitan-Marchenko inverse scattering
method to the coupled mode equations which describe propa-
gation. The technique is illustrated by designing an aperiodic
grating, which compresses a 60 ps pulse by a factor of three.
Limitations and possible extensions of the general method are
discussed.

I. INTRODUCTION

long distance optical communication systems, fiber
group velocity dispersion degrades system performance
by either limiting the maximum data rate or by requiring
a shorter distance between repeaters. These limitations can
be particularly serious for systems operating at 1.5 pm,
where large fiber dispersion values of 15 to 20
ps/km/nm, are typical. With a fiber dispersion value of
20 ps /km /nm for example, the width of a 20 ps Gaussian
pulse will increase to 60 ps over a propagation distance
of only 17 km. Group velocity dispersion (GVD) can be
modeled as a frequency-dependent quadratic phase shift.
Therefore, dispersion-induced effects may be eliminated,
in principle, by using dispersion-compensating devices at
the end of the fiber link. These devices must exhibit a
quadratic phase shift over frequencies, which span the en-
tire pulse bandwidth. Furthermore, the shift must be op-
posite in sign to the fiber GVD so the two effects cancel.
It is also known that a quadratic phase shift can be used
to compress linearly chirped pulses.

There are several well known techniques for producing
frequency-dependent quadratic phase shifts. These in-
clude grating and prism pairs [1], Gires Tournois inter-
ferometers [2], and waveguide grating filters [3]-[7]. The
dispersion of a grating pair is negative, and therefore it
may only be used to compensate positive GVD. Unfor-
tunately, fibers have negative GVD in the low loss wave-
length region beyond approximately 1.3 um. In addition,
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the required grating pair separation becomes extremely
large when the pulsewidths are longer than tens of pico-
seconds. Finally, grating pairs are bulky and lossy. Gires
Tournois interferometers can be realized as reflective Fa-
bry-Perot etalons. Recently, partial dispersion compen-
sation in a 5 Gb /s transmission system, operating at 1.5
pm, has been achieved using a reflective, fiber-pigtailed,
Fabry-Perot, optical equalizer [8]. These devices can be
made relatively small and compact. With the rear mirror
reflectivity chosen to be 1, the Fabry-Perot has an all-
pass frequency characteristic. The phase response is a
function of the Fabry-Perot cavity spacing and the reflec-
tivity of the front mirror. Both positive and negative GVD
values can be realized by changing the cavity spacing.
Gires Tournois interferometers, however, can only realize
high levels of GVD over limited bandwidths. This fact
severely compromises their ability to perform transform-
limited pulse compression or dispersion compensation.

Waveguide grating filters have also been proposed for
dispersion compensation and pulse compression. These
devices are particularly appealing because of their small
size and compatibility with fiber technology. Periodic
waveguide gratings, however, suffer from the same prob-
lem as Gires Tournois interferometers. High GVD (either
positive or negative) can be obtained, but only over a very
limited bandwidth [9]. Ouellette [3]-[4] recently demon-
strated that this bandwidth limitation may be removed by
using a linearly chirped grating in place of a periodic
structure.

This paper investigates the design of general aperiodic
waveguide gratings for pulse compression and dispersion
compensation. The Gel’fand-Levitan-Marchenko inverse
scattering technique of quantum mechanics is used to de-
sign waveguide grating filters [10], [11]. These filters
have nearly perfect frequency-dependent quadratic phase
shifts over arbitrarily wide pulse bandwidths.

II. THEORY OF PULSE COMPRESSION AND DISPERSION
COMPENSATION

A. Dispersion Compensation
Consider a Gaussian pulse x (¢) which is centered at fre-
quency w,
2

x(t) = exp <—#> exp (jw.?). (@))]
0
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The Fourier transform X (w) of this pulse can be computed
using the following integral [12]

S €Xp [—axz] exp [—j(bx2 + cx)] dx

x'/? ac?
- @ e

. [_-(lt ~1<’_’>_b—cz>} )
xp| Tz \,) T+ P

where b and c are arbitrary constants and a is any positive
real number. The result is

_ 2,2
X(w) = V277l exp {—w] 3)
and full width half maximum bandwidth Awgwyym of the
pulse is given by

Awpwum = (2(In 2)1/2)/7'0-

The pulse passes through a fiber of length L, which has
dispersion d?/dw? = 2« at frequency w,. Thus, the fi-
ber can be modeled (approximately) as a linear, time-in-

variant filter with transfer function
Hw) = exp [—jaL(w ~ w)’] ©>0. (4

At the end of the fiber the Fourier transform of the output
pulse y(¢) is

Y(w) = H(w) X(w). (&)
Therefore,
2.2 2
() = Aexp (—’2"2 > exp <j 3%) exp (jeol)  (6)
where
s = 4[(r§/2 + (al)’) @)
and
7 (1 _ [2al
A=ﬁexp|\—-j§tan '<T—%>} 8

It follows from (1) and (7) that the pulsewidth has been
increased by a factor of C,, where

21/2
Cd={1+<%>} . C)]

If y(¢) is to be compressed back to its original width, then
it must be placed through a compression filter having
transfer function

H'(w) = H ' (w)

Ct— /2
exp |:](L{T)T(2)(w

- wc)z} w > 0.
(10)

Equation (10) must be satisfied over those frequencies,
which lie within the pulse bandwidth.

B. Pulse Compression
Consider the compression of a linearly chirped pulse
w(r) centered at frequency wc
2

t ,

w(f) = exp <—2—72> exp (j0t?) exp (jw ). (11)
0

In practice, the linear chirp could be produced by self-

phase modulation in an optical fiber. The Fourier trans-

form of w(¢) can be found using (2), and the result is

_ 2.2
W(w) = B exp [—%}
40 N2
- exp [—j 0ro(w — w.) } (12)
U
where
u=1[1+ 40731 (13)
and
N
B= —u—l/—f To €Xp [j % tan_l(207'(2))}. (14)

It follows from (12), that a compressed transform-limited
pulse will be obtained if w(¢) is placed through a filter
having transfer function

075(w — w.)

H? (w) = exp {J } w > 0. (15

u

In the frequency domain the compressed pulse v (f) will
then be given as

V(w) = W(w) H? (w). (16)
Therefore, using (2),
2
t
=D - — jw, .t 17
v() exp { 273/u} exp (jo.!) a7
where
D = u'/*exp [j3tan~' 207)]. (18)

It follows from (11), (13) and (17) that the compression
ratio C, is

C.=~u=1[1+4079)7"" (19)
and thus
c:—1n'2
H?' (w) = exp |:j(—2—'l— i (@ — w()z] w>0
(20)
where
"o
= @1

Thus, the required filter transfer function for either puise
compression or dispersion compensation is given by (20).
C. is the desired compression ratio, and 7418 the 1/e in-
tensity point of the Gaussian pulse following compres-
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sion. We note that the if filter transfer function H, (w) is
multiplied by any linear phase term, exp [ —j(aw + b)?],
then the basic result remains unchanged. The compressed
pulse is simply delayed in time.

In the remainder of this paper, pulse widths and band-
widths will be specified in terms of the separation between
half maximum intensity points. Thus, the pulse described
by (1) and (3) has width and bandwidth given by 2(In
2)'/274 and 2(In 2)'/2 /74, respectively.

III. FILTERS WITH RATIONAL REPRESENTATIONS

It is impractical to design filters which have infinite
bandwidth. Thus, we consider the effect of cascading the
optimum compression filter H?' (w) with a first-order But-
terworth. The transfer function of the two-filter cascade
is

1

1 +.j(w - wc)/w()

H (o) = HY' (w) (22)

and it has a 3 dB bandwidth equal to 2w,. It is a straight-
forward exercise to show (see Appendix A) that the com-
pressed pulse v (r) now becomes

v(r) =D \/é o exp (a5/2) exp (—ag7)

where
BW,
ap = wy7p = VIn 2 B—Wp 24)
T = I/Tf 25)
erf () = | exp (=3 ay. 6)
Vr Jo

In (24) BW, and BW; are he 3 dB bandwidths of the trans-
form-limited compressed pulse and the compression fil-
ter, respectively. The degradation in compressed pulse
shape, due to the insertion of the Butterworth filter (with
@ = 2(2)'/?), is illustrated in Fig. 1. Note that in Fig. 1
the center of the pulse is offset from the point ¢ = 0. This
offset occurs because the Butterworth filter has phase de-
lay. For comparison purposes, the pulse from the ideal
compressor has also been plotted using the same time off-
set. A calculation shows that the Butterworth filter re-
duces the pulse energy by only 5%. In a subsequent de-
sign example, BW,/BW, will be chosen to be 3.4 (i.c.,
oy =2(2)'/?), and as Fig. I illustrates, the resulting deg-
radation will be small.

In filter design it is often useful to approximate a trans-
fer function by a rational representation in the s-plane

M
IT -2z)

HY'(s) = H.(s) = k- , M<N. @270
H (S - pl)
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Fig. 1. Degradation in ideal pulse compression due to Butterworth filter.

Computer optimization techniques can be used to find the
poles p; and zeros z; in (27) which yield the ‘‘best fit’’ to
H{" (w) along the jw axis. The optimum compression fil-
ter, given by (20), is an all-pass filter, since it has a con-
stant magnitude independent of frequency. Thus, if a first-
order Butterworth filter is included as discussed above,
(27) may be rewritten as

k Nje —w) + pk
L+ — w)/w izt jlo — @) = p;

H () = (28)

where * denotes complex conjugation and % is a constant.
The poles p; of the all pass filter can now be chosen by
computer optimization to provide the required quadratic
phase shift. Fortunately, the position of these poles will
not affect the magnitude response of the filter. Thus, the
design of the magnitude and phase responses have been
decoupled.

IV. WAVEGUIDE FILTERS AND THE GLM TECHNIQUE

Consider a corrugated waveguide filter consisting of a
single-mode, planar channel waveguide, which has a
quasi-periodic, corrugation etched into its top surface. The
waveguide thickness can be written as

2
h(z) = hy + Ah(Z) cos <A—“z + A¢(z)> 29)
0

where h, is the nominal waveguide thickness, A, is the
nominal corrugation period, Ah(z) is the corrugation
depth, and A¢(z) is the phase deviation from perfect pe-
riodicity. Propagation through the filter can be modeted
by the following pair of coupled-mode equations {13]

dB(z, 6) .

>T + jB(z, 6) = q(2)A(z, §) (30)
dA(z, 6

% — jbA@8) = ¢*B &) (D)
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where
s
d(w) = B(w) — A (32)
q(2) = a(z) exp (—ja¢ (). (33)

In (30)-(33), A(z) and B(z) are the electric field ampli-
tudes, at frequency w, of the backward and forward-prop-
agating modes, respectively; B(w) = wNeg(w) /c is the
propagation constant in the waveguide when Ah(z) = 0;
and a(z) is the coupling coefficient, which can be related
to Ah(z) by an overlap integral [13]. If we let

Aw = @0 — W, 34)
then, to first order, (32) becomes
w T 1
o(w) = {_c Negr(w) — —} + [* Negr (o)
C AO C
dNr(02)
+ 2 —”—] Aw 35)
c dw

where N.g is the waveguide effective index when Ah(2)
= 0, and c is the speed of light in vacuum. We will as-
sume that the nominal grating period has been chosen such
that

mC
Ag = ————. 36
0 cheff(wc) (36)
Therefore,
Negr (o) AN.ge(wc)
6(w)=< R p e >Aw. 37
c c dw

The amplitude transfer function r(8) of the filter mea-
sured in reflection is defined by

A, §)

r(6) = BO. )

(38)

By direct substitution into the coupled-mode equations
(30) and (31), it can be shown that if r(8) corresponds to
g(z) and b is an arbitrary constant, then r(8/b) corre-
sponds to the new coupling coefficient g (bz) /b.

Given r(6), the Gel fand-Levitan-Marchenko (GLM)
inverse scattering technique can be used to compute the
coupling coefficient g(z). The technique is described in
reference 10 and is briefly outlined below. First, r(d) is
expressed in rational form

M
N _ S
r(s) = = M<N (39)
D(s)
2 bys"
n=1
where s = jb, and the polynomial A (s) is computed
A(s) = D(s)D*(—s*) — N(s)N*(—s*).  (40)

Note that A (s) is a polynomial of degree 2N, and we de-

note its 2N roots by
—kF, o, —kE

*
Ky, Ko, ©° " KN —K,

It can be shown that the coupling coefficient ¢ (z) is given
by
gz = =2 lim sC,(z, s) exp (52),

s >

>0 @)

where C, (z, s) is specified below
[CI @ S):l = N {D*(—S*) {lj‘
C(z, 9) A(s) 0

[Pé‘(z, —5%) B
+ exp (sz)
-P{ (@, —s%

+ [P'(Z’ S)} D*(—s%) — N(s)
A(S) Pz(Z, S)

0
- N*(—s%) L}} exp (—s2).

In (42), P,(z, s) and P,(z, s) are polynomials in s, of
degree at most N — 1, for each value of z. Therefore, we
can write

(42)

N-1

P s) = 2 di,@s" 43)
N-1

Pz s) = 2 d, @ (44)

Combining (39)-(44) yields the following simplified
expression for the coupling coefficient ¢(z) in terms of
dl.N* 1 (Z) and bN-

—2d, y-1(2)

by (45)

q@) =
Finally, it can be shown that for each value of z, Ci(z,9)
and G, (z, s) are entire functions of 5. Thus, Cy,(z, s) and
C, (z, s) have no poles in the complex s plane. Since «;, i
=1,2, -+, Nisaroot of A(s), and since C,(z, s) and
C,(z, s) have no poles in the complex plane, it follows
form (42) that

{O] N GRS [1] . [P;‘(z, _
of T T “o -P¥C,

exp (k,2) + {[PI(Z’ Ki)] D*( *)
: K; kK
P Py(z, ;)

*
;)

il

0
— N(k;)N*(=« ) L}} exp (—«;2). (46)
For each value of z, (46) represents 2N simultaneous lin-
ear equations (i = 1, - -+, N) in 2N unknowns, dy o(2),
c L dino @), dr o), -, dyy-1(2), Once these
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equations are solved for d, y_,(z), the coupling coeffi-
cient g (z) may be computed from (45).

V. PuLse COMPRESSOR DESIGN—AN EXAMPLE
In this section, the Gel’fand-Levitan-Marchenko in-
verse scattering technique is used to design a waveguide
grating filter for pulse compression. We start by observ-
ing from (20) and (37) that the transfer function of the
optimum pulse compressor, is given by

2
H?'(8) = exp | j4(C2 — 1)'/? <§0> j| 47)

where
8 = [6(w, + wp) 48)
1/2
Wy = & (49)
T

This transfer function can be approximated by cascading
a first-order Butterworth filter with an all-pass filter as
noted in Section III. Thus, we write

8 ;
099 j<5_> * <1:v_>
. 0 0
H¥'($) =~ H.(8) = 5 L :
i=1 :
TR N () Y 2
50 60 (O
(50)
This cascaded filter should produce nearly transform-lim-
ited compressed pulses as previously indicated in Fig. 1,

since oy = w7y has been chosen to be 2(2)'/2. Also note
from (37) that

0 0 — w.

8o wy 1)
A compression ratio C, of 3 is selected, and the poles p;
in (50) are chosen to minimize the phase difference be-
tween H?'(8) and H,(8) over the range —0.6 < §/8, <
0.6. This minimization is accomplished using a numerical
optimization routine [14]. It is possible that the routine
finds a local rather than global minimum. Linear and con-
stant phase differences are ignored during the minimiza-
tion, since these factors do not alter the pulse shape, but
result only in a time delay. With a sixth-order all-pass
filter (i.e., N = 6), a residual phase error of less than 0.06
radians is achieved over the range —0.6 < §/§, < 0.6.
The poles p; of the all-pass filter are given in Table I and
Fig. 2, and a plot of the corresponding residual phase er-
ror is shown in Fig. 3(a) and (b). Note that Fig. 3(b) cov-
ers a larger range than Fig. 3(a), but is otherwise identi-
cal. The compressed pulse obtained using this all-pass
filter is shown in Fig. 4. For comparison purposes, the
optimum transform-limited compressed pulse is also
shown. An examination of Figs. 1 and 4 indicates that the
presence of the Butterworth filter, rather than the residual
phase error, is the principal source of pulse shape degra-
dation. Similar results were obtained using a fifth order
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TABLE I
ALL-PAss FILTER POLE LOCATIONS
pi/ oo —0.1368 — j0.6811
P2/ wo —0.3214 + j0.2088
pa/wo ~0.2002 — j0.5332
Pa/wo —-0.3912 — j0.5094
ps/wo —0.2781 — j0.0920
Pe/ w0 —0.2457 — j0.3280
1
x poles
0 zeros
0.5
* [}
)
3
a o
€ - 0
x [
-0.5% . ° o
x 0
-1
-0.4 -0.2 0.0 0.2 0.4
Re (pj/wg)

Fig. 2. All-pass filter pole/zero plot.

all-pass filter. When four or less poles were used, how-
ever, the compressed pulse shape was degraded.

Given (50) and the pole locations specified in Table I,
the Gel’fand-Levitan-Marchenko inverse scattering tech-
nique is used to determine the filter coupling coefficient
q(2). As noted in Section IV, application of this technique
requires the solution of 12 (i.e., 2N) simultaneous linear
equations in 12 unknowns. The results are shown in Figs.
5 and 6 and are normalized by §,, which has units of re-
ciprocal distance.

The performance of the pulse compressor described
above can be compared to that of a linearly chirped
waveguide grating filter. Ouellette [3], [4] has been shown
that the phase response of such a filter is approximately
quadratic in frequency, and thus this filter can be used for
dispersion compensation and pulse compression. The
grating frequency, 27 /A(z), of a linearly chirped filter
can be written as

_2x

2 2 2r AA(Z)
AR Ay +AA@R A, A3

_a F L _ L 5
TA, 2YT25E%3 2
where L and A, are the length and nominal period of the
grating, respectively, and F is the dimensionless chirp pa-
rameter. Using (52), the corresponding A¢ (z) in (33) be-
comes

F§ F  F7?

A6 () = S_L TrdE =+ (53)

/2 L2 8 217
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Fig. 3.
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Fig. 4. Pulse compressor performance (GLM design).
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Fig. 5. Pulse compressor coupling coefficient (magnitude).

(radians)

Coupling Coefficient Phase A¢(z)

-15 T T v
0 5 10 15 20

Normalized Distance 352

Fig. 6. Pulse compressor coupling coefficient (phase).

In [3], the magnitude of the coupling coefficient is chosen
to be exponentially tapered, since this appears to improve
the filter phase response. The coupling coefficient in (33)
can then be written as

162> F FZ
q(2) = k exp (—T§‘> exp <_§> exp <"2_zz> (54)

where « is a constant. For a given final pulsewidth 7, the
compression ratio C, is a function of L?/F as indicated
below [3]

r(CI- D'l

F 4NZ )
In (55), N.¢ is the effective index of the waveguide with-
out the grating and is equal to N\/(2Ag). We have com-
puted the filter transfer function r(8) by solving the cou-
pled mode (30) and (31) numerically with g(z) given by
(54). Fig. 7 shows the result of using this filter to com-
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Fig. 7. Pulse compressor performance (linearly chirped waveguide grating
filter design).

press a Gaussian pulse. A comparison of Figs. 4 and 7
indicates, as expected, that the GLM filter design tech-
nique produces a pulse which is more nearly transform-
limited.

Fabrication of the filters described above is possible in
principle, but would be difficult, since it requires precise
control of both grating period and depth. As an example,
we will assume that the filters are to be fabricated in a
glass waveguide having an effective index N,y equal to
1.5 at a wavelength of 1.55 um. We will also make the
reasonable assumption (for glass waveguides) that

w, ANeir(w,) Netr (@)

— <<
c dw c

Equations (24) and (37) can then be combined to yield

Nejt (@) o

C Tf

0 = (56
If the initial pulsewidth is 60 ps full width half maximum
(i.e., 7o = 36 ps) and if a compression ratio of 3 is de-
sired, then the GLM-designed filter given in Figs. 5 and
6 has a length of approximately 17 mm and a maximum
coupling coefficient of 2.36 mm ™~ '. A critical parameter
in assessing the feasibility of fabricating such a filter is
the maximum corrugation depth. If this depth is too large,
than the coupled mode analysis used in this paper is no
longer valid. For simplicity, we will consider a single-
mode (TE), three layer, planar waveguide filter, since its
coupling coefficient may be computed in closed form. The
maximum value of the coupling coefficient for such a fil-
ter is given by [13]

2 2

max Ah(z) iy — Negr(w,)
max [¢(@)| = © = o)
eff ¢

A heff
where ny and h.q are the refractive index and effective
thickness of the waveguide layer, respectively. The val-
ues of ny and ny-Neg(w,) for a typical glass waveguide
formed by potassium thermal ion exchange will be on the

(57
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order of 1.5 and 0.01, respectively. Thus for operation at
a wavelength A, = 1.55 pm, and with max |g(z)| equal
to 2.36 mm ™', (57) implies that the maximum fractional
corrugation depth, max (Ah(z)/h.s), will be approxi-
mately 5.8%. This value is small enough to justify our
use of coupled mode theory.

For the same pulsewidth and compression ratio used
above and with N,z = 1.5, the linearly chirped grating
filter corresponding to Fig. 7 has a length of 29 mm and
a maximum coupling coefficient of either 0.216 or 0.325
mm™~!'. The fractional change in grating period

AL/2) — A(—-L/2 F
fractional change = @/2) A (-L/2) = ZAO
0

(58)

is only 0.34%, and thus fabrication will be difficult. Ac-
cording to (55), the fractional change in grating period
could be made larger by increasing both F and L. How-
ever, the length of the filter is already excessive.

In general, waveguide compression filters designed us-
ing either a chirped grating or the GLM technique have
lengths proportional to the final pulsewidth. In addition,
the peak coupling coefficient increases as the filter length
decreases. Thus, it may be impractical to use waveguide
compression filters in the femtosecond regime, since the
required coupling coefficients will be large.

Finally, we note that it may be possible to design wave-
guide pulse compression filters by cascading together a
series of purely periodic gratings spaced by appropriately
long sections of waveguide [15], [16]. This cascaded ap-
proach uses only periodic gratings, and thus has the po-
tential to simplify filter fabrication.

VI. CoNCLUSION

Waveguide grating filters have been designed for pulse
compression and dispersion compensation using the
Gel’fand-Levitan-Marchenko inverse scattering tech-
nique. The transfer functions of these filters have a nearly
perfect quadratic phase shift over the pulse bandwidth,
and thus produce pulses which are close to transform-lim-
ited. The method employed illustrates a powerful tech-
nique for designing waveguide filters, with arbitrary mag-
nitude and phase responses. The magnitude response is
chosen first, and then the phase is controlled by cascading
the filter with a rational all-pass network, whose poles are
found by computer search. Using this method, a pulse
compressor has been designed to compress a 60 ps pulse
down to 20 ps. The waveguide grating parameters needed
to fabricate the device have also been computed.

APPENDIX
The transfer function H(w) of a first order Butterworth
filter is

1
H(w) = -
1 +j—
Wo

(A-1)
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The impulse response A (#) of this filter is the inverse
Fourier transform of H(w) and is given by

h(t) = wpexp (—wot)u(?) (A-2)

where u (1) is the unit step function. Let g(¢) denote the
output of this filter when the input is f(¢). Then g(?) is
equal to the convolution of f(7) with the filter impulse
response h(t). Therefore,

g = S, f@h@ = v) dv. (A-3)
If f (¢) is the Gaussian pulse
2
f@® = exp <—2—T%> (A-4)
then (A-2)-(A-4) may be combined to yield
T uz
g8 = zg exp (—z7) S exp <~?>
©exp (Zou) du = zy exp (—z¢7)
2 T3 2
. <0 _k
exp<2> S_w exp< 2>du
(A-5)
where
= CO()Tf (A'G)
14
T=—. (A-7)
Ty

Equation (23) now immediately follows from the defini-
tion of the error function erf (x) and (A-5).
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