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Very Noisy Channels,

and Exponentially Optimum Codes

Sangmin Lee and Kim A. Winick, Member, IEEE

Abstract—A very noisy channel (VNC), is a discrete-input
memoryless channel whose capacity is close to zero. Very noisy
channels are of interest, since they serve as models for some
important physical channels. There are two distinct classes of
VNC’s: Reiffen’s class I and Majani’s class IL. It is shown that
the reliability function is known exactly for both classes of
VNC’s, by extending the results previously obtained only for
class L. It is then shown that an exponentially optimum code can
be constructed for a channel if it can be modeled as repeated
uses of a binary-input class I VNC, a binary-input / binary-
output class II VNC or a class II very .noisy binary erasure
channel. The theory developed is illustrated by considering the
direct detection optical channel used with polarization modula-
tion. The capacity, reliability function, and exponentially opti-
mum code, for this channel, are derived.

Index Terms—Very noisy channels, error exponents, reliability
functions, exponentially optimum codes.

I. INTRODUCTION

A VERY noisy channel is a discrete memoryless
channel (DMC) whose capacity is close to zero. Very
noisy channels (VNC’s) were introduced by Reiffen [1] to
model many physical channels operating at low signal-to-
noise ratios. More importantly, a large class of physical
channels, operating at arbitrary signal-to-noise ratios, can
be modeled as repeated uses of a VNC. In particular, this
is true for the infinite bandwidth additive white Gaussian
noise (AWGN) channel [2] and the direct detection Pois-
son optical channel [3], [4].

Majani [5] undertook a systematic study of very noisy
channels. He enlarged Reiffen’s definition of VNC’s to
include two distinct classes. Class I VNC’s are identical to
those defined by Reiffen. The very noisy channel, as
defined by Majani, is a DMC whose transition probabili-
ties, p(yl|x), are given by

p(ylx) = 0(y) + €A(x,y) + O(€?), (1.1)
where x and y are elements of the input and output
alphabets 2 and %, w(y) is a probability distribution on
%, € is a very small number, A(x, y)’s are fixed numbers
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Reliability Functions,
satisfying
Y AMx,y)=0, Vxez, (1.2)
ye¥

and O(e™) is a quantity which contains terms of order n
or larger in e. If we consider the set & defined by
Z={y e %: w(y) =0}, then class I and class IT VNC’s
are defined by the condition .= ¢ and ¥ # ¢, respec-
tively.

In most practical cases, a VNC serves as a model for a
communication channel in which the information effi-
ciency, measured in nats per resource (where the resource
may be any abstract quantity such as energy, area, or
time), is a primary measure of system performance. In
such cases, the € that appears in the definition (1.1) is a
decreasing function of a parameter z, i.e., € = €(2), where
z denotes the resource expenditure per channel use. Con-
sider, for example, binary on/off-keying on the direct
detection Poisson optical channel with hard decision, max-
imum likelihood, demodulation [6]. The channel inputs
are x = 0 or 1, where x = 0 corresponds to the transmis-
sion of no photons and x = 1 corresponds to the trans-
mission of A,A photons. A, is the peak transmitted power
in photons per second (photons/s), and A is the duration
of a channel symbol in seconds. This channel can be
modeled as the binary Z-channel shown in Fig. 1. The
transition probabilities { p(y|x)} for this channel are given

by (1.3) below
p0 p) (1 o 0 o
(p(Oll) p(lll)) h (1 0)+f(_1 1), (1.3
where
e=e(a)=1-¢"" (1.4)

The capacity in nats per channel use (nats/c.u.), C(A),
and the capacity in nats per second (nats/s), C(A)/A, of
this Z-channel are

C(A) =In[1 + e(1 — €)' 79¢]
and
c(a) _ In[l1 +e(1 - )7
A A

respectively. C(A) and C(A)/A are plotted in Fig. 2 as a
function of A for a fixed value of A; = 1 photon/s. Note
that for a fixed peak power A, the channel capacity in
nats/s is maximized as A — 0, and in this limit the

, 1.5)
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Fig. 2. Capacities for the direct detection optical channel.

Z-channel becomes a very noisy channel with the resource
expenditure per channel use being z = A.

The concept illustrated above can be generalized. Con-
sider a code consisting of M code words, where each code
word requires an expenditure, Z, of some resource each
time it is transmitted. Transmission of a code word in-
volves N consecutive channel uses, and each of these uses
expends resource z, where

z=—. 1.6
N 1.6)
Define the code rate, R, of this code, in nats per resource,

as

In M

R= - a.7n

Then the rate R in nats per resource is related to the rate
R in nats per channel use by

R = (1.8)

N~

Thus, the capacity per unit resource, C is defined by

C(z2)
C = sup 7

z>0

(1.9

where C(z) is the capacity in nats per channel use for a
given z. Define C* by

C(z)
C* = lim .

z-0 z

(1.10)

Then, C* is the capacity per unit resource in the very
noise limit as z — 0.

Abdel-Ghaffar and McEliece [7] have modeled several
important physical channels as repeated uses of VNC’s
and computed C*. In many of these channels, C is equal
to C*. They have also constructed codes for very noisy
binary symmetric channel, which achieves C*. Chao [8}
has extended this coding work to include all binary-input
class I VNC’s. Verdu [9] has studied the capacity per unit
resource, C, for memoryless channels, and has given con-
ditions under which C is readily computed. In this paper,
we will extend these coding works to compute the reliabil-
ity function for the channels which can be modeled as
repeated uses of a VNC. We will also construct exponen-
tially optimum codes for some subclass of such channels.

The reliability function E(R) for a DMC is the expo-
nent with which the error probability of the best block
code over the channel may be made to decrease exponen-
tially as the block length, N, gets large. If P(N,R)
denotes the probability of code word error for a block
code of length, N, and code rate, R, and P](N, R) de-
notes the minimum P, for all such codes, then the relia-
bility function, E(R), is defined by

~In P/(N,R)
E(R) = limsup ——
Noo N

It follows from (1.11) that

1.1

PI(N,R) = ¢ NE®TOWN) 39 N » 0, R<C, (1.12)

where ©(-) denotes a function such that @(x)/x — 0 as
x — . When we are interested in the probability of error
in terms of resource expenditure, (1.12) may be rewritten
as

PHZ,R) = e 2EB*O2) 357 5w R < C. (1.13)

where E(R), the reliability function in terms of resource
expenditure, is given by

E(zR)
E(R) = sup . (1.14)
z>0
Let E*(R) be defined by
E(zR)
E*(R) = lin}) (1.15)

Then, E*(R) is the reliability function in the very noisy
limit as z — 0. Codes which achieve the probability of
error bound (1.12) or (1.13) are said to be exponentially
optimum. Thus, in the very noisy limit, exponentially
optimum codes will have the probability of error given by
PH(Z,R) = exp[—ZE*(R) + B(Z)] as Z — .
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The reliability function is, in general, not known ex-
actly, but it has been bounded [10]-[12]. Consider a DMC
with input alphabet 2, output alphabet %/, and transition
probabilities p(y|x). Let q denote the input probability
distribution on 2. For this channel, a lower bound on
E(R) is given by [10]

E(R) = E;(R) = max{E,(R), E,,(R))

i ECX(R)7 0 S R < Rex (1 16
"\ E(R), R, <R<C, 16)
where
E,(R) = max sup [E.(p,q) — pR],
9 p=1
(expurgated error exponent), (1.17)
E(R) = max max [E,(p,q) — pR],
q 0<p<1
(random coding error exponent), (1.18)
E(p,q) = -pln{ Y X q(x)gq(x)
xeZx e
1/p
T \/p(ylx)p(ylx')] BENCRD)
ye¥
1+p
Ey(pr@) = —In ¥, zq(x)p(yu)““*"’] :
yEX L x€Z
(1.20)
and
dE (p,q)
oy = Max Lok (1.2
q ap p=1

Furthermore, it can be shown that [10]

E(R)=E() -R, O0<R<R, (122

dE,(p,q)
TP S, e -1 (1.23)
ap
aEz( P> q)
—_— =0, > 2
5 p>0 (1.24)
where the critical rate R,, is defined by
JEy(p,q)
= max =024 (1.25)
q ap p=1

The results of [11], [12] give the following upper bound on
E(R):

E,(0), R=0,
E(R) <Ey;(R) = {Ey(R), O0<R<Ry, (1.26)
E,(R), R,<R=<C,

649

where

E,,(R) = max sup [E((p,q) — pR],
9 p=0

(sphere-packing error exponent), (1.27)
EsI(R) = Eex(O) - A.vIRr
(straight-line error exponent) (1.28)

and — )\, is the slope of the straight line that passes
through the point E,(0) and is tangent to the curve
E, (R). The point of tangency on the R axis is denoted
R,,. As an illustration, a plot of these upper and lower
bounds is given in Fig. 3 for the case of binary symmetric
channel with cross-over probability p = 0.005. It is known
[11], [12] that these upper and lower bounds are identical,
and therefore tight, for all rates greater than or equal to
the critical rate R, i.c.,

E,(R) = E/(R), (1.29)

For R <R,,, the bounds differ, and further tightening
remains an unsolved problem.

There are only a few channels for which the reliability
function is known exactly at all rates less than capacity.
These are Reiffen’s VNC [12], energy limited channels
considered by Gallager [13], the infinite bandwidth AWGN
channel [2), and the direct detection Poisson optical chan-
nel [3], [4]. Exponentially optimum codes have been con-
structed only for the later two channels. In this paper we
will extend the number of channels for which the reliabil-
ity function is known exactly and will construct exponen-
tially optimum codes for a subclass of these channels.

The remainder of this paper is organized into five
sections. In Section II, it is shown that the reliability
function is known exactly for all class II VNC’s. In Section
III, exponentially optimum codes are conmstructed for
channels that can be modeled as a binary-input class I
VNC. Similar results are in Section IV for channels that
can be modeled as a class II binary-input/binary-output
VNC or a class II binary erasure VNC. The fundamental
performance limits of polarization switching direct detec-
tion optical channel is examined in Section V. The chan-
nel is modeled as repeated uses of a very noisy binary
channel. The capacity, C, and reliability function, E(R),
are determined for this optical channel, and an exponen-
tially optimum code is constructed for all rates less than
the capacity, C. Section VI summarizes our results.

R_<R<C.

cr —

II. RELIABILITY FUNCTIONS FOR VERY NOISY
CHANNELS

In this section we will prove that the reliability function

is known exactly for all VNC’s defined by (1.1) and (1.2).

The proof will rely on the following well known theorem.

Theorem 2.1: The reliability function, E(R), is known

exactly and is equal to E,(R) for all rates R < C, pro-
vided

E,.(0) = E.(0). 2.D

Proof: Tt is known that E(R) = E(R) for R, <R <C
[see (1.29)]. Thus it suffices to consider the region 0 < R
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Fig. 3. Error exponents for BSC (p = 0.005).

<R. NowE(R)=E/(0) - Rfor0 < R <R, [see (1.22)],

y = [920) + Ok, ) + A0, ] + 0D,y &,
pylx)p(ylx) {ezA(x,y)A(x',y) + 0(€?),

Therefore,

. w(y) + 3elA(x,y) + Mx', )] + O(e?),
VP(Y|X)P(YIX) - {6 (/\(x’y)A(xr,y) + O(EZ),

and this straight line is tangent to E,(R) at R=R,.
Thus, if condition (2.1) is satisfied, then R, = R, and
E(R)=E,0-R=E(R)for0<R<R, 0O

We now proceed to show that the reliability function is
known exactly for all VNC’s. Only class II VNC'’s are
considered, since the result is known to be true for class I
VNC’s [12]. We begin by computing E,(0). The random
coding error exponent, E (R), for class I VNC’s has been
derived by Majani [S]. For these channels, E (p,q) is
given by

Ef(p,g) =€ Y | ¥ q(x)Ax,y)
ye&lxeZ

1+
—(Eﬂﬁunw“”ﬂ 1+ouh.&m
134

Therefore, it follows from (1.18), (1.23), and (2.2) that
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E(0) = max max E,(p,q) = maxE,(1,q) (2.3)
q 0<p<i1 q
=maxe ) | Y. q(x)A(x,y)
q

yeFl xeZ

2
—(ZﬂnﬁuJﬂ]+max 2.4
xEZ’

We now compute the zero rate expurgated error expo-
nent, E, (0). It follows from (1.17), (1.19), and (1.24) that

E,.(0) = max sup E,(p,q) = max lim E{p,q) (2.5
p—)oo

9 p>t q

max { Y X g(x)q(x)
q XEX X X

2.6)
ye¥

where (2.6) is derived using L’Hopitals rule. For class II
VNC’s, we have

n| ¥ \/p<y|x>p<y|x'>]},

yes @
y &,
yes (2.8)

It follows from (2.8) that

Y VpGlx) p(ylx)
ye¥
Y VeGlopGlx) + ¥ Vp(ylx)p(ylx)

yes ye¥

Il

Y 00+ = ¥ [AGx y) + Ax, )]

yes 2 yes

+e Y VAMx, AKX, y) + O(e?)

yeS

Il

1—22M@ﬁ+MﬁM
ye¥

+e ) VAlx, IAX,y) + O(e?),

yey

(2.9

where the last step in (2.9) follows from (1.2) and the fact
that w(y) is a probability distribution on % Since In(1 +
z) = z + O(z?), we can write

In Y VpGylx)p(ylx') = -—g Y [A(x, y) + AMx, )]

ye¥ yes&

+e Y, yAx, A, y) + 0(e?). (2.10)

yeF
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Therefore, the expurgated error exponent at zero rate, as
given by (2.6), is

E, (0) = max €

> ( X q(x)/\(x,y))

q ye& ' x€Z
2
( x q(x)\/)\(x,y)) +0(e?). (21D
yeSF ‘xeZ&
It immediately follows from (2.4) and (2.11) that
E(0) =E,(0) ase—0. (2.12)

Thus, by Theorem 2.1 the reliability function for class II
VNC’s is known exactly at all rates less than capacity as
€ — 0 and is given by

E(R)=E(R), R<C. (2.13)

III. ExPONENTIALLY OPTIMUM CODES FOR
BINARY-INPUT CLASS I VNC's

In this section we will construct exponentially optimum
codes for channels that can be modeled as repeated uses
of a binary-input class I VNC with resource expenditure
per channel use z. It is known [5), [10]-[12] that in the
limit as e(z) — 0, the reliability function for binary-input
class I VNC'’s is given by

C(2)

EQR)=E(R) ={ 2

(ve(2) -

where C(z) is the channel capacity in nats/c.u. and is
given by

%) !
i L —5 A0,y — a0, )P

yey @

C(z) =

+ 0(€*(2)).

We will restrict ourselves to channels whose capacity per
resource is nonzero in the very noisy limit, that is,

C(z) - €X(2)
>0 or lim
z-0

3.2)

C* = lim
z-0 Z

=¢, >0, (3.3

where ¢, is a strictly positive constant. Suppose that we
are given a channel that is modeled as repeated uses of a
binary-input class I VNC. Combining (1.10), (1.15), and
(3.1)—(3.3) yields the following expression for the reliabil-
ity function of the channel in the very noisy limit:

E*(R) =

(/C* — VRY',

— R,

where C* is given by

C(z2) 1

z-0 Z

— A0, y) — A1, T

=4
8 yex @ w(y)
(3.5)

In what follows, we construct a binary code for this
channel, and show that the code is exponentially opti-
mum, in the sense that it achieves the probability of code
word error given by P, = exp{—ZE*(R) + O(Z)} as Z
— oo, where E*(R) is as given by (3.4).

Given M, k, let & be an M X (M ) binary matrix, whose

columns are those ( ) binary vectors containing exactly k

ones. For example, for M =5 and k =2, ( . ) = 10 and
the matrix & is given by

1 1 11 0 0 0 0 0 O
10 0 01 110 0O
#=[0 10 0 1 0 0 1 1 0f (36
0 01 001 0 1 01
o0 01 0 01 0 11
Let x,,, denotes the mnth entry of &. We define a binary
code, (M, k), as the set of M binary code words, x,, =
for 0 R !
< —_—
orf®= Cc(z) — 4’ G.1)
¢ 1 R i ’
- < <
) e

Xpa1s Xmzo s Xan)y m = 1,2,--, M, where N = ("k‘)
These #(M, k) codes have been previously examined by
Wyner for use on the direct detection Poisson optical
channel [3], [4]. The following theorem shows that this
family of codes is exponentially optimum on the channel
being considered.

Theorem 3.1: Given a channel that can be modeled as
repeated uses of a binary-input class I VNC satisfying
(3.3), then for any rate R, R < C*, the code #(M, M/2)
with M = exp[RZ] is exponentially optimum in terms of
resource expenditure per nat as Z — .

Proof: The resource per channel use, z, for this code is
given by

Z In M

EFARGEA

Thus for fixed R, M approaches infinity and z approaches
zero as Z — . The first part of the proof relies on a
minor modification of ideas first developed by Abdel-

3.7

z
TN
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Ghaffar and McEliece [7) and later extended by Chao [8],
therefore our discussion will be brief. Consider a binary-
input, L-ary output class I VNC with 2= {0,1} and
#=1{0,1,~,L — 1}. Suppose the code word x, is trans-
mitted and the received N-vector is y = (y, y,,, yn).
Consider maximum likelihood decoding, then a correct
decision is made if

N N
[1p(ylx;) > I1p(ylx;) foralli=1,2,-,M—1.
j=1 i<l

(3.8)

Let N%y), y € % be the number of components in y
equal to y where x,; = 0 and x;; = 1. Similarly let N,'(y),
y € % be the number of components in y equal to y
where x,; = 1 and x;; = 0. With these definition, (3.8)
can be written as

piyl)
N} =
+ N'(y)In 2610

foralli=1,2,-, M — 1.

p(yl0)

Si= p(yID

i )y N2(y)In
ye¥

(3.9

Then the probability, P,, of decoding a code word cor-
rectly satisfies
P.>Pr[S;>0,Vi=12,--,M~-1]. (3.10)

The mean, variance and covariance of the S, may be
computed [8].! The results are

Bs) - 2 0l ¥ L0 ) — A1, )
i) = 46 z yey“’()’) ,‘y s Y
+ 0(e3(2)), (3.11)
Var(s) = ~e2(z) Y L0, y) A1, )
ar(§;) = 25 z yez/Ty) ¥ = 4
+ 0(€3(2)) (3.12)
1
Cov(s;,S;) = 3 Var(§;)) i#j. (3.13)

It follows from (3.2), (3.11), (1.6), and (1.10) that
E(S;) = 2NC(z) + O(€3(z)) » 2ZC*
asZ >~ (i.e., M > xand z > 0.) (3.14)
Similarly,

Var(S,) » 4ZC* or Var(S,)/E(S,) -2 as Z — =.

(3.15)

Invoking the central limit theorem, Chao [8] argues the
S;’s become jointly Gaussian random variables as N

'Although the codes in # are not necessarily triply orthogonal codes,
the method of computation used by Chao for triply orthogonal codes can
also be employed for the codes in € without any significant modifica-
tion.

= ( MA; 2) — , Define a new set of random variable 7; by

. — E(S.
T, = S‘—(’)\/E. (3.16)

y Var (S))

Then the T’s are jointly Gaussian, and it follows from
(3.12), (3.13), and (3.16) that

E(T)=0 (3.17)
Var (7)) =2 (3.18)
Cov(T,,T) =1 i+#]. (3.19)

Thus, the T;’s can be approximated by [8, Lemma 2.4]
T, =W —W,, (3.20)

where W, W,,---,W,,_, are independent, zero mean, unit
variance Gaussian random variables. Combining (3.10)
and (3.14)—(3.16) with this fact yields

P.>Pr|T;> —E(S) Vi=12.,M-1]
~Pr[W,—W,> —V2ZC* Vi=1,2,,M - 1]

(3.21)
In the second part of this proof, P, =1 — P, will be

c

bounded using a technique described in (14, pp. 341-346].
It follows from (3.21) that

as Z — o,

P> fc {pr[w, > -v2zC* + wo]}M_lp(wo)dwo,
(3.22)

where

1
p(x) = o exp (—x2/2). (3.23)

Therefore,

P> [x (PriW, > —al 'pla — V2ZC) da
= [ 1 - Q@) pla ~ V2ZCT) da  (3:24)

Pe=1—P£sfxp(a—\/ZZC*)

{1 -11- 0" }da, (325
where the Q-function is given by
O(a) = %f:exp(—sz/Z)ds (3.26)
and is upper bounded by [14, p. 84]
Q(a) < exp(—a?/2), a > 0. 327D
Note that
1-[1-0(a))" " < (M- 1Q(a)
<Mexp(—a?/2), a>0
(3.28)
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and

1-[1=0)™ ' =1-(PrW,> —aM ' < 1.
(3.29)

Combining (3.25), (3.28), and (3.29) yields
P < [ pla~V2ZC?) da + M| pla - V2ZCF)

cexp(—a?/2)da, (3.30)

where a is an arbitrary constant. The constant a should
be chosen to minimize the right-hand side of (3.30). Tak-
ing the derivative of the right-hand side of (3.30), and
setting it to zero, yields

a>0,

exp(a’/2) =M or a’/2=hM.
Now it follows from (3.23), (3.26), and (3.27) that

(3.3D

szp(a —b)da=Q(b~a) < exp[—(a - b)2/2]

for b > a.
It also follows from (3.23) and (3.26) that

(3.32)

fmp(a - be " da
a

1 b
- _p? - =
=5 exp(—b /4)Q(V2 [a 2}) (3.33)
Combining (3.27) and (3.33) yields

fmp(a - b)exp(—a?/2)da

exp[—b?/4], a<b/2,
) {CXP[‘bz/"f—(a—bﬂ)z], a=b/2.
(3.34)
Now let b be defined by
b =V2ZC*. (3.35)

Combining (3.30)—(3.35) yields

exp[—(a - b)2/2] + exp (a®/2)exp(—b*/4), 0<a<b/2,

fact that
r-2M (3.39)
- — ]
yields
Cc* c*
ZCW[—Z(T—R)], 0<R< T,
P, < e :
2exp[—Z(W—¢iﬁ], TsRsC*
(3.40)

Thus, it follows from (3.40) and (3.4) that the code
% (M, M /2) is exponentially optimum as Z — . ]

IV. ExpoNENTIALLY OpTIMUM CODES FOR CLASS I1
BINARY-INPUT / BINARY-OUTPUT VNC's AND CLASS
11 BinarY ERASURE VNC's

In this section we will construct exponentially optimum
codes for channels that can be modeled as repeated uses
of a class II binary-input/binary-output VNC or a class II
binary erasure VNC. The result for binary-input/binary-
output class II VNC’s depends on a minor modification of
the techniques developed by Wyner for the intensity mod-
ulated direct detection optical channel [3], [4]. The result
of this paper extends Wyner’s result to prove the expo-
nential optimality of the family of code % on class II
binary-input /binary-output VNC’s. A key step in doing
this is the inequality (4.13) which allows us to deal with
Poisson statistics instead of the binomial statistics of
VNCs.

A. Class II Binary-Input / Binary-Output VNC

Without loss of generality the probability transition
matrix for a binary-input/binary-output class II VNC can
be written as

{p(ylx)}=[} g]+e(z)[:{; ﬁ] 4.1)

where A and p are arbitrary numbers with 0 < A < p.
The capacity C(z) of this channel is given by

P, < (3.36)
€ 2
2exp|—(a - b)’/2), b/2<a<b.
Observe that
e 0 z ( Al 0. (337D _—
— | -5|=lea—-35] 20. G =
2 4 2 a 2) = C(2) mqax e(2)goAln At an
Thus,
+q, pln ———— || + 0(*(2)), (4.2)
P 2exp(—b*/4 +4a?/2), 0<a<b/2 Gt + g 1
< . . .
‘ 2exp [ ~(a-b)Y/ 2], b/2 <a <b. (3.38) where g = (g,,q,) is a channel input probability vector.

As in Section III, we restrict ourselves to channels whose

Finally, combining (3.31), (3.35), and (3.38), and using the  capacity per resource is nonzero, when they are operated
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in the very noisy limit, i.e.,

. C(2) o e(2)
C* = lim >0 or lim — =¢,>0, (4.3)
z-0 z z—0 z

where ¢, is a strictly positive constant. Suppose that we
are given a channel that is modeled as repeated uses of a
binary-input /binary-output class II VNC satisfying (4.3).
By direct substitution of (4.1) into (1.20), it is easy to
verify that

Ey(p,q) = e(z)[qOA +q - (qOA]/(1+p)
+qlul/(1+P))1+p] +O(€2(Z)). (4.4)

Then, it follows from (1.18), (2.13), (4.3), and (1.15) that
the reliability function for this channel is given by

E*(R) = max max [cz{qo)t + g — (goAV0+»
q 0O<p<l1

+q, 1 - pR]. 4.5)
In the following theorem, we show that the family & of
binary codes constructed in Section III is exponentially
optimum for channels which can be modeled as repeated
uses of a binary-input /binary-output class I VNC.

Theorem 4.1: Given a channel that can be modeled as
repeated uses of a binary-input/binary-output class II
VNC satisfying (4.3), then for any rate R, R < C*, the
code #(M,q)M), with M = exp[RZ], is exponentially
optimum as Z — =, where ¢° = (g3, ¢) denotes the opti-
mal input probability vector that achieves the maximum in
4.5).

Proof: For any given input probability vector ¢q =
(44,9,), let k=g M. Consider now the code {x, =
(Xppis Xppasm*ts Xya): m = 1,2,---, M} in the family &, with
parameters (M, k) and N = (’;’ ) Note that the resource
per channel use z, for this code is given by

Z In M

(o] =%(KM)'

Thus for fixed R, M approaches infinity and z approaches
zeroas Z — «, For each given m, let S,, = {n € {1,---, N1
X, =1}. Then §,, is the set of positions in the mth
binary code word which are equal to 1. By symmetry each
row of the code matrix .& has the same number of ones.
Furthermore the total number of ones in the matrix is
kN, thus each row (i.e., code word) must contain AN/M
ones. If we let |- | denotes the cardinality of a set, then it
follows that |S,,| = ¢; N and |S.| — g, N as Z — o, where
Sy, is the complement of set S,,. Also note that

S, N SS| k-1 MIM

1/<1+p))“9>

z= (4.6)

M = M = 1 =409
& -5
asM—-oooom +m,
M-2 i(i_i)
1S, N Sl (k—z)_MM M 5
I T
k k (“ﬁ)

asM-o o m+#m,
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M-2
1S5 N Spl M-—k-2

Hi

M
= 1 — 4
(1_ )
M

asM-oowo m+m. (4.7)

Let y = (y,, ¥,,"'*, yn) be the received vector, and let
¥, denote the number of positions in which the code
word x,, and the received vector y are both 1, ie.,
v, =Wnel,2,,Nly, =1, x,, = 1}l. Similarly, let ®,,
denote the number of positions in which the code word
x,, equals 0 and the received vector y equals 1, ie.,
d, =lnel1,2,--,Nly, = 1, x,,, = O}l. Suppose the de-
coding rule is given by

choose x,, iff ¥ >V ., Vm #m.
Given m, define E,,, m' # m, as the decoding error event
{¥,, = ¥,}. Then the probability of decoding error, P, ,,,
given that code word x,, has been transmitted, is
P, .<Pr(u,. .. .E._lx,). (4.8)
This probability of error will now be bounded by using a
modified version of technique developed by Wyner for the
direct detection Poisson channel [3]. Let V, = ¥, and
Vo =®,. Then V = V| + V is the total number of 1’s in
the received vector y. Note that given x,,, V, and V, =V
— V, are mutually independent binomial random vari-
ables with distributions

Pr(V, =l|x,) = b(l; Nq; e(z2) ), 4.9)
Pr(V, = llx,,) = b(l; Ng,; e(2)A), (4.10)

where b(l; n; p) is the binomial distribution
b(l;n; p) = (';)p’(l -p)" 4.11)

Conditioning the probability in (4.8) on the two variables
V and V), we have

N n
Y Y PrlV=n,V,=n]lx,]

n=0n,=0

P

e,m

IA

-Pr[u E _|x

m+m*=~m!<tm>

V=n,V,=n]

N n
Y. Y b(n = ny; Ngy; €(2)N)

n=0n,=0

-b(n,; Nq,; e(2)p)
Pr[ U msmEnXp V=n,V=ny] (412)
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Using the inequality [15, pp. 171-172]

1
b(li n: p) <" (np)

erP+ P, (4.13)

(4.12) becomes

P, . < exp[Ne*(2)(goA* + g, u?) + e(2)(A + w] P,
(4.19)

where

P-1 %

(r?l)”"‘“ -
n=1n;=0
’ Pr[ U m’;emEmlxm7 V=n, V] = nl]’ (4.15)
A = Ne(z)(goA + q, 1), (4.16)
q »
1r = .
oA+ q1 1

The set A and the function Q(n,, n) are now defined as
follows

e AA"

n!

4.17)

A={(n,n):0<n, <n,(n—n)q —nq, <0},
(4.18)
e M, . _—
Q(ny,n) = T("l)ﬂ. (1-a) ' (419)
Then, (4.15) can be written as
P <P, +P}, (4.20)
where
Pi= Y Q(n,n) 4.21)
(ny,n)gA
PE = Z Q(nl’n)Pr[Um'¢mEm'|xman”l]]
(ny,n)eA
< X Q(nl,n)[ Y Pr
(ny,n)eA m+m
P
(E Xy, V=0,V =n/]] ,
0<p<l. (422

We now upper bound P; and P; using the Chernoff
bound as in [3]. Applying the Chernoff bound on P; yields

P, = Pr[V,yq, — V,q, = 0] < E[eo07"107], (4.23)

where 7 is any positive number, and E denotes the
expectation operator. Since ¥, and V; are independent
random variables given that code word x,, was transmit-
ted, (4.23) becomes

P, < E[]E[e~"19"] (4.24)
Nqq Nq,

= Y emnb(l; Ngy; €(2)A) Y e~ ""(l; Ng,; e(2) p).
1=0 =0

(4.25)

Combining (4.13) and (4.25) yields

P, < Texp [ Ne2(2)(go A + g, p2) + e(2)(A + p)],
(4.26)
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where

Negq Al Nag, AL

I < Ze_Ao_ge‘hl"'Ze_Ai_ie’qol"’ (4'27)
Al A
1=0 1=0 :

Ay = Ngoe(2)A, (4.28)

A, = Nq,e(2) . (4.29)

It follows from (4.27) that

o AI o Al
A< Z e—Au__Oe‘h’" Z e—/\1_le“‘Iul‘f
=0 ! 1=0 n

=exp[—(Ay + A + Age™ + Aje™"%]. (4.30)

The right-hand side of (4.30) is minimized by differentiat-
ing it with respect to 7 and setting the result to 0. This
yields

A
o= 100 (4.31)
Aoq,
Combining (4.26)-(4.31), we have
P, < exp[—Ne(2)(goA + g, p — pP'A%)]

-exp [ Ne?(2)(goX* + g, u?) + e(2)(A + w)]

e(z)
= exp —Z—z—(qOA + gy — pPAR) + 8, |, (4.32)

where
8, = Ne2(2)(gyA? + g, u*) + €(2)(A + p)
€2(2)
z

Note that e(z) — 0 and e(z)/z — ¢, as z = 0. Thus, it
follows from (4.33) that

é
_Zl >0 asZ - »(.e,asz—>0).

=7

(goA* + ¢, p2) + (D)X + p). (4.33)

434

Thus, using (4.3), the bound in (4.32) can be written as
P, < e ZEI*O2) a5 7 - =, (4.35)
where
E* = c,(goA + gy — uPAT). (4.36)
We now proceed to bound the term P, given by (4.22).
Pr(E lx,,V =n,V,=n]
=Pr(¥, - V¥, >0>0x,,V=nV, =nl 437

Let W, be the number of positions in the set S, NS,
where y, = 1, ie, W, =(n €[L,2,, Nlnes, NS,
y, = 1}, and W, be the number of positions in the set
§¢ NS, such that y, = 1,ie., W = rn €[1,2,>-, N]n
€S NS, y, = 1}l. Then,

v, -, =W - W, (4.38)

Given x,, n, and nj, the random variables W, and W¢
are independent and have a binomial distribution. It fol-
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lows from (4.7) that |S, NS5l =S5 N S,.| = Ng,q,.
Therefore,

Pr(W, =llx,,.V=n,V, =n]=0bU;n;p,), (439
PriW.=llx,,V=n,V,=n]=b;n - ny;p)

’

(4.40)
where
|Sm N S;;l'l quqﬂ
. = =q,, 4.41
BT T Ng e 44D
1S 0 Sl Ngoqy
. = = =gq,. (4.42

Combining (4.22), (4.37), and (4.38) yields

Pp< )

(n,n)eA

Q(ny,n)| Y Pr(W, - W, >0lx,,

m+m
p
V=n,V1=n1]] , O0<p<l. (4.43)
As was done with the P| term, the right-hand side of
(4.43) is now upper bounded using the Chernoff bound.
The result is [3, pp. 1458-1459]

Py<M?(a+B) " exp[-A + Ala + p)'**]

forany p,0 < p<1, (4.44)

where
a=(qgfm)/*?, (4.45)
B =11 - m)ggl/*? (4.46)

and A and 7 are given by (4.16) and (4.17), respectively.
Combining (4.16), (4.17), and (4.44)—(4.46) yields

P, < M*exp [ —Ne(z){(qo)\ + gy ) — (goA/a+»

1
+q, p/a+e)y +p} + 52]

=exp

-7 €(2) (g A )_( 1/(1+p)
7 90 tq,p g m

+q0)0/<1+o>)””] _ pR} +8,|, 4.47)

where

8, =In [NE(Z)(qOAI/U*P) +q “1/<1+p))“"]
e(z) 1+
=In Z—(qo).lf(”") + g, u/0+e) ?1. (4.48)
zZ

Note that 8,/Z —» 0 as Z — ». Thus, using (4.3), the
bound in (4.47) can be written as

Py < e ZEI(R;ip,)+8(2) o0 7 o,

(4.49)
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where
E5(R; p,) = &;[(goA + g, ) ~ (g, /0
+q0Al/(1+p))I+P] — pR. (450)

Combining (4.14), (4.20), (4.33)—(4.35), and (4.49) yields
the following upper bound on the code word error proba-
bility P, .

P

om < e ZET+8(2) 4 ,-ZEI(Rip,)+O(2)

as Z — oo,

451

E3(R; p, ) can now be upper bounded as indicated below
[3].

EF (R; p,9) < &,[(qoA + 4, ) — (g, w19
+‘10)\1/(1+"))1+p]
2
= Cz[(%'\ g — (‘11\/17' + LIOV/X) ]

2
= CquqO(‘/X - \/;) .
Thus, combining (4.36) and (4.52) yields

(4.52)

Ef — E3(R; p,q) > c;\[(qy + ¢,0) — 129

= ¢, Mgy + gyt) —t91] > 0, (4.53)
where

t= 4\/ % (note that r > 1,since u > A) (4.54)

The last inequality in (4.52) follows from the that ¢ > 1,
t? is concave downward in ¢, and % is tangent to the
straight line g, + g,# at ¢ = 1. Combining (4.53) and
(4.51) yields

—ZE3(R; p,9)+ B(2Z)
P, <e ™

O<p<lasZ — o,
(4.55)

for the code #(M, g, M). Since the bound (4.55) is valid
for any 0 < p < 1 and for any choice of ¢, we have for the
code &(M, g?M)

P, , <exp [_Z{oglff1 E; (R, p,q")} + @(Z)]

(4.56)

Note that the quantity max,_,., E5(R; p, q°) =
max, max, _ ,.; E3(R; p, ¢) in (4.56) is simply that relia-
bility function E*(R) of the channel given by (4.5). Thus
the code is exponentially optimum as Z — oo, a

as Z — o,

B. Class II Binary Erasure VNC

The probability transition matrix for a class II binary
erasure VNC is given by
-1
-1

+ 0(€3(2)).

{p(ylx)}=[g 0 ”+e(z)[(1) 0

4.57)



LEE AND WILNICK: VERY NOISY CHANNELS, RELIABILITY FUNCTIONS, AND EXPONENTIALLY OPTIMUM CODES 657

The capacity C(z) of this channel can be easily computed
and is given by

C(z) = e(2)In2 + 0(€2(2)). (4.58)

Suppose that we are given a channel that is modeled as
repeated uses of a class II binary erasure VNC satisfying
(4.3). By direct substitution of (4.57) into (1.20), it is easy
to verify that

E)p,q) = e(z)[l —(gitr + q}“’)] + 0(e*(2)).
(4.59)

Then, it follows from (1.18), (2.13), (1.15), and (4.3) that
the reliability function for this channel is given by

E*(R) = max max_[c,{1 — (g3*" +¢;**)} — pR].
q 0O<pxl1
(4.60)
Performing the maximization over ¢q in (4.60) yields

E*(R) = max [cy{1 —277) — pR]. (4.61)

<p<

In the following theorem, we show that the family of
binary codes, &, is exponentially optimum for channels
which can be modeled as repeated uses of a class II binary
erasure VNC given by (4.57).

Theorem 4.2: Given a channel that can be modeled as
repeated uses of a class II binary erasure VNC satisfying
(4.3), then for any rate R, R < C*, the code €(M, M/2),
with M = exp[(RZ), is exponentially optimum as Z — .

Proof: Consider the code (M, M/2) = {x, =
(x5 Xmy): m=1,2,...,M} in the family &. The
block length of this code is N = ( MA;Z)’ and the resource
per channel use, z, for this code is given by

Z 1 InM

AR

Thus, for fixed R, M approaches infinity and z ap-
proaches zero as Z — «. Let S,, = {n € [1,2,--, Nlix,,,
= 0}. Then, |S,,| = |S5| = N/2 for the given (M, M/2)
code. Let y = {y;,¥,,"-,yn} be the received N-vector,
and let ¥, denote the number of positions in which the
code word x,, and the received vector y are both 0, i.e.,
¥, ={n e[1,2,--, Ny, = 0, x,,,, = O}|. Similarly, let @,
denote the number of positions in which the code word
x,, and the received vector y are both 1, ie., ®, =[n €
(1,2, N1y, = 1, x,,, = 1}l. Then, given that the code
word x,, has been transmitted, ¥,, and ®,, are mutually
independent random variables with distributions

(4.62)

Pr (¥, = klx,) = b(k, N/2; e(2)),
Pr (¥, = klx,) = b(k, N/2; e(2)),

(4.63)
(4.64)

where b( ) denotes the binomial distribution given by
(4.11). Suppose the decoder uses the following decoding

rule:
choose code word m iff ¥, + &, > ¥, + D,
for all m' + m.
Given m, define E,,, m' # m, to be the event {¥,, + ®,,
> ¥, + ®,}. Then the probability of a decoding error
P, .. can be upper bounded as follows

U Enlxn)

m+m

N/2 N/2
Y Y Pr{¥, =k, &, =IIx,}

k=0 1=0

-Pr{ U Enlx,. ¥, =k, ®, = 1}
m#*m

N/2Z N

X

k=0

/2
0
P
[ Y Pr{E,lx,, ¥, =k, &, = 1}] (4.65)
m#m

P,,=< Pr{

IA

Y b(k, N/2; e(z2))b(l, N/2; €(2))
1=

for any p, 0 < p < 1. In the binary erasure channel, it is
impossible that an input 0 is received as 1 or an input 1 is
received as 0. Thus, given that x,, has been transmitted,
we must have ¥, < ¥, and ®,, < ®,. Therefore, the
event E,, occurs if and only if ¥, =¥, and @, = ®,.
That is, given the error event E,, and the conditioning
event {x,, ¥, =k, ®, =1}, each of the k 0’s in the
received vector y must occur in the common region
S, NS, and each of the I 1’s in the received vector y
must occur in the common region S¢, N S,. Since by (4.7)
IS,, N S,,| = N/4, and since, given that ¥,, = k, each of
the k 0’s are equally likely to occur in any position in S,,,,
it follows that

Pr{k 0’sin S, N S, |¥, =k} =27%.  (4.66)

Similarly,
Pr{l U'sin S5, N SS,|®, = 1) =27,
Combining (4.65)—(4.67) and (4.13) yields

o o«

Ne%(z)+2
Pe,m <e €X(2)+ 2€(2) Z Z
k=01=0

4.67)

Ne(z)\*

)
k!

Ne(z)

!
. e~ Ne()/2 (—'12'—)(M — 1)P2—kp2—lp

< exp[Ne?(2) + 2e(2)IM?
(Ne(z) )k ’
2_p

2
k!

. e~ Ne2)/2 (

~exp[—Ne(D]| ¥
k=0

= exp[Ne?(z) + 2e(z)]exp[ pRZ]
-exp[—Ne(z)(1 — 277)]

= exp [_z{i(z—zlu —-27°) — pR} + 33], (4.68)
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where

2
8; = Ne*(z) + 2¢e(2) = ZE ()

+ 2e(z). (4.69)

Note that §,/Z — 0 as z ~ 0. Thus, using (4.3), we may
write (4.68) as

P, <exp[—Z{c,(1 —277) — pR} + O(2Z)],

(4.70)

Since the bound in (4.70) is valid for any 0 < p < 1, we
have

as Z — oo,

P, ,<exp|-Z 0max1 {c,(1 —277) — pR} + B(2)

<p<
=exp[—ZE*(R) + O(2)], (4.71)

where E*(R) is the reliability function given in (4.61).
Thus the code is exponentially optimum. a

as Z — oo,

V. RELIABILITY FUNCTION AND THE EXPONENTIALLY
Op1riMUM CODE FOR THE POLARIZATION
MODULATED DIRECT DETECTION OPTICAL
CHANNEL (PM DDOC)

The ultimate efficiency of an optical communication
system can be specified as the minimum number of pho-
tons /bit required to achieve an arbitrary small probability
of error. For the intensity modulated direct detection
optical channel (IM DDOC), the message signal modu-
lates the intensity of the laser output, and the receiver
detects photon arrivals. In [3], [4], it is shown that the
most efficient modulation for this channel is binary on /off
keying. At very high data rates, however, it is often
impractical to intensity modulate a laser directly. In these
cases, the laser is run at constant output power, and the
modulation is done externally. Consequently, the laser
output is simply “thrown away” during an off pulse.

For the polarization modulated direct detection optical
channel (PM DDOC), the message signal modulates the
polarization angle, 6(¢), of the optical field instead of its
intensity. Thus, the average power transmitted remains
constant and no laser power is discarded. The receiver
consists of two photon detectors, one for each orthogonal
polarization component (denoted v and u) of the trans-
mitted field. Polarization modulation reduces to intensity
modulation when the receiver consists of only a single
photon detector for either the v or u polarization compo-
nent. Thus, IM is a special case of PM and must have a
lower efficiency. In this section the reliability function of
the PMDDOC will be computed, and an exponentially
optimum code constructed.

For PM, the intensity of the » and u polarization
components can be written as

A1) = A,cos? (1) and A (1) = A sin? 6(r) (5.1)

where A, equals the total number of photons transmitted
per second, and 6(¢) is the polarization angle of the
transmitted field. The channel output consists of two

independent Poisson counting processes, v(¢) and u(¢),
with intensities equal to A, cos® 6(¢) and A, sin? 6(¢), re-
spectively.

A (T,R) code is defined as a set of M = exp[RT]
waveforms {0,,(¢), m = 1,2,---, M} where each waveform
is of duration T seconds, and satisfies the constraint
0<6()<w/2,Vte(0,T]and V m. A decoder map-
ping D is a function D: {(#(8), u(s), 0<t < T} —
{1,2,-, M}. The probability of a decoding error, when
code word 6,(¢) is transmitted and the decoder mapping is
D, is denoted by P, ,({6,(-)}; D). Intuitively, there should
be little loss in performance if the waveforms {6, (1),
m=1,2,--,M} are required to be piecewise constant
over very short intervals. In addition, if the waveforms are
piecewise constant then the number of photons detected
at the receiver in each of these intervals is a sufficient
decision statistic. Thus, we have the following theorem,
which may be rigorously proved using the development
given in [4].

Theorem 5.1: Given T and R, let M = exp[RT]. Let
{6,(t), m =1,2,--, M} be a (T, R) code with decoder
mapping D. Then, for any 8 > 0, there exists another
(T, R) code {6,,(t), m = 1,2,---, M} with a decoder map-
ping D’ for which P, ,({6,}; D) <P, (P, (86,}; D) + 8,
V n, and such that for some sufficiently large N, (a) the
waveform 6,,(¢), for each m, is constant on the subinterval
[(k — 1A, kA), 1 < k < N, and (b) the decoder mapping
D' depends only on N uniformly spaced samples of the
output process, {(v(kA), u(kA)), k =1,2,---, N}, where
A =T/N. o

It follows from Theorem 5.1 that we can model the
PM DDOC as a discrete-time memoryless channel, where
each channel use corresponds to A seconds. The input
alphabet is A, = {6: 0 < 6 < w/2}, and the output al-
phabet is the set of all nonnegative integer 2-tuples
(n,,n,), where n, and n, denote the number of photons
detected by the v and u detectors, respectively, during
the interval of time A. Let y =0, 1, and 2 denote the
channel output events {n, = 1, n, = 0}, {n, =0, n, = 1},
and {n, = 0, n, = 0O}, respectively. The complement of the
union of these three events will be denoted y = 3. The
transition probabilities of the channel are then given by

p(018) = A, A(cos? 8)e™ 44,
p(116) = A, A(sin? §)e ™4,
pQ2l6) =e %, p(3le) =1 —e A% — A Ae™ M2,
(5.2
Since A — 0, (5.2) can be written as
p(0l0) = e(A)cos’ 8,  p(118) = €(A)sin® 0,
p2l6) =1 — e(A) + O(e*(A)),
p(318) = O(€*(A)),

where

(5.3)

e(A) = AA. (5.4)
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The terms of order e?(A) may be neglected in (5.3), and
the channel output reduces to only three possibilities
y =0, lor 2. Note that this is a class II VNC, with
resource per channel use A. The following theorem [16,
pp- 96, 145] may now be invoked.

Theorem 5.2: Let m be the smallest number of inputs
that can be used with nonzero probability to achieve the
capacity (or random coding error exponent) for a
discrete-input memoryless channel whose output alphabet
size is J. Let A be such a set of inputs. Then m < J, and
the input probability assignment on A to achieve capacity
(or random coding error exponent) using only inputs in A
is unique.

It follows from Theorem 5.2 and (2.13) that the capacity
(and the reliability function) of the PM DDOC is achieved
using at most three inputs. Let these three inputs be
denoted by 6,, 8,, and 6,. Then (5.3) reduces to

p(016,) = e(A)z;,  p(116) = e(AX1 - z),
p216) =1 - €(A), i=0,1,2, (5.5)

where

(5.6)

The mutual information of the channel (in nats) may be
calculated and is equal to

2
I(X:Y)= e(A)[h( Eqiz,-)
i=0

z;=cos? 9, i=0,1,2.

2
-y q,»h(z,-)], 5.7
i=0

where h(x) = —xInx — (1 —x)In(1 — x) is the binary
entropy function, and the g; is the probability of the input
6,. By the Kuhn-Tucker conditions the input probabilities
which maximize the mutual information, i.e., achieve ca-
pacity must satisfy [16, p. 87]

I(X:Y 2 2
XYY e(A)[{ln(l - Zq,.z,.) ~In ( Zq,»zi)}
ag; i=0

i=0
Z; — h(z,-)] <const Vi, (58)

with equality if g, # 0. If (g,, g,, and g, are all nonzero,
then the Kuhn—Tucker condition cannot be satisfied. To
see this suppose that the Kuhn—Tucker condition is satis-
fied with q,, g,, and g, all nonzero. Then (5.8) may be
written as

az; — h(z) =c, i=0,1,2, (5.9

where a and ¢ are constants, and no two z;’s are identical.
The z; solutions to (5.9) are given by the intersection of a
straight line, y = az — ¢, with the binary entropy function
y = h(z). The binary entropy function, however, is con-
cave, and consequently it can intersect a straight line at
no more than two points. Thus, the channel capacity is
achieved using only two inputs, say 6, and 6,. Equation
(5.7) then becomes

I(X:Y) = e(Mh(gyzg + q,2,)

—{qoh(zy) + qh(z}]. (5.10)
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The binary entropy function, k, is always positive and has
maximum value In 2, therefore I(X :Y) < €(A)In 2. Thus,
I(X :Y) is maximized by choosing g, = ¢, = 1/2, 2y =0,
and z; = 1, which implies 6, = 0 and 6, = /2. Substitu-
tion of these values in (5.10) yields the capacity C(A), in
nats/c.u., for the equivalent VNC as

C(A) = €(A)In2 nats/c.u. (511

Thus, the capacity in nats/s in the very noisy limit is

. 8(A)In2
im ————

c*=1
A0 A

= A, In2nats/s. (5.12)

Note that since €(A)/A does not depend on A, we have
C = C* for this channel. That is, the channel capacity per
unit time, C of the PM DDOC is achieved in the very
noisy limit as A — 0.

Since this channel is a class Il VNC, E(R) = E,(R) for
R < C by the result of Section IL It follows from Theo-
rem 5.1 that the error exponent, E(R), is achieved using
no more than three channel inputs. According to (1.18),
E(R) is achieved if and only if the inputs and their
probability of use are chosen to maximize E,(p,q), or
equivalently to minimize the function F,(p,q) £
exp[—E,( p, ¢)). The function F is convex cap in ¢ [16, p.
144). Thus it follows from the Kuhn-Tucker conditions
that a necessary and sufficient condition on the probabil-
ity vector g for E,( p, g) to be maximized is

JdF
— < const,

q;

i=0,1,2 (5.13)

with equality if and only if g; # 0. F,(p, q) can be com-
puted using (1.20) and (5.5), and the result is

2 1+p
F(p,q) =1 —e(A) + e(A)[ Eq,-zil/(”")]
i=0

2 I+p
+ e(A)[zqi(l *z,‘)l/““’)] . (5.14)

i=0

Combining (5.13) and (5.14) yields

az/0+9 4 b(1 —z)"/"*? =¢  Visuchthat g, # 0,

(5.15)

P

1 - Zi)l/(1+p)

2 P
o= Zastm) . o= D
i=0

R

i

(5.16)

and c is a constant. Given g; # 0, i = 0, 1,2, however, the
three simultaneous equations (5.15) cannot be satisfied
with three distinct z;’s. To see this let x;, = z}//“*# and
y; = (1 —2z)V4*#_ Then, the simultaneous equations
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(5.15) imply that the line

ax; + by, = ¢ (5.17)
and the convex downward curve
g = (1 —xl+e)l /4P (5.18)

must intersect at three distinct points, (xg, y,), (x1, y1),
and (x,, y,), which is impossible. Thus one of the g,’s, say
q,, must be zero. Then, from (5.14), we have

]1+p

1
Fy(p,q) = (1 — e(A) + e(A)| ¥ g;x;
i=0

]l+p

> (1 — e(A)) + 2€e(A)

1 1+p i 1+p
: [Zqixi] Zqiyi] , (5.19)
i=0 i=0

where the equality holds if and only if

1
E UB A

i=0

+ E(A)[

—

(5.20)

1

1
q;%; = Z q:Yi-
0 i=0

The inequality in (5.19) follows from the fact that the
average of two positive numbers is never smaller than
their geometric mean. For any given 0 < p < 1 we need
to choose the g;’s and z;’s to minimize F,( p, q). Note that
condition (5.20) is satisfied for any given p by g, = g,
1/2, xy =0, and x; = 1. Thus the optimum choice is
8, = 0 and 8, = /2. With this choice Ey( p, ¢) becomes

Ey(p,q) = —In[1 — e(A)(1 - 277)] + O(e*(A))
= (A1 —27°) + O(e¥(A)). (5.21)
Therefore,
E(R) = Jmax. [e(A)(1 —27°) — pR + O(e2(A))],
<p<

0<R=<C(A) (5.22)

Since e(A)/A does not depend on A, it follows from
(5.22), (5.4), (1.14), and (1.15) that

1 p
()
0<R=<C* (523)

Performing the maximization over p in (5.23) yields

E(R) = E*(R) = max

<p<
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Fig. 4. Reliability function for PM DDOC.

which is plotted in Fig. 4. For comparison Fig. 4 also
shows E(R) for the intensity modulation direct detection
optical channel with peak transmission power A, pho-
tons /s [3].

1t follows from the above discussion that the PM direct
detection optical channel can be modeled as repeated
uses of a class II binary erasure VNC with the resource
per channel use being A and €(A) = A;A. Thus, using
Theorem 4.2, we can easily construct an exponentially
optimum code for this channel. For any given rate R < C,
in nats/s, let M = exp[RT] where T is sufficiently large.
We now choose a binary code #(M,M/2) from the
family of codes, #. Let {x,,: m = 1,2,---, M} denotes the
code words of the code #(M, M/2). Then construct a
(T, R) waveform code {6,(t): m = 1,2,---, M} by letting
0,() =(m/Dx,,,t€lln—DA,nA),1<n<N,1<m
< M, where A=T/N and N = (M";z). Using this wave-
form code over the PM DDOC is equivalent to using the
binary code #(M, M /2) over the modeling channel, i.e.,
the class II binary erasure VNC. Thus, by Theorem 4.2,
this code is exponentially optimum.

As a final point, we note that the Bhattacharyya dis-
tance is a useful quantity for designing coded waveforms
and bounding the probability or error in communication
systems. For a channel with input alphabet 2, and output
%, and transition probabilities p(y/x), the Bhattacharyya
distance between two channel inputs x;, x; €2 is given
by

(5.25)

dj=-In Y p(ylx)p(ylx;)

ye¥

We will derive the Bhattacharyya distance for the PM

A, In2
?; - R, 0<R< AS—E—
E(R) = E*(R) = An2\1 R n2 (5.24)
A — 1+ln( : )— A—— <R <A/In2
In2 2
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DDOC. Let the two channel inputs be the polarization
angles 6, and 6, respectively. Then

-in Y ¥ y/p(n.nl0)p(n,.n,0), (526)
0

n,=0n,=

d; =

where n, and n, denote the numbers of photons received
during some observation interval by the v and u detec-
tors, respectively. For a given transmitted polarization
angle, the quantities n, and n, are mutually independent
Poisson random variables. Thus,

"V —
(AT cos?8) e (AT cos™ 0)

p(n,,,nﬂl()) =

n,!

(AT sin? B)"“e"“sT sin? §)

!
ﬂ#.

, (3.2

where A, is the total number of photons transmitted per
second and T is the observation interval. Combining
(5.26) and (5.27) yields

(AT cos 6; cos Oj)"”

n,t!

v

dj=—-In|e "}
n,=0

(A,T sin 6, sin 0])n“

!
n,:

=
X
n,=0

~In [e*).,Te/\,Tcos 8, cos Oje

AT sin 6, sin 8]]

AT[1 = cos (6, - 6))

AT 6, — 6,
— s’ (T)

I

(5.28)

V1. CONCLUSIONS

The reliability function is a fundamental quantity, which
specifies the minimum probability of error obtainable on a
channel as a function of the transmission rate and code
block length. Although the reliability function can always
be bounded, it is known exactly for only a few channels. In
this paper, we have shown that the reliability function is
known exactly for an extended class of very noisy channels
as defined by Majani. Exponentially optimum codes have

been constructed, at all rates less than capacity, for chan-
nels that can be modeled as repeated uses of a binary-
input class I VNC, a binary-input /binary-output class II
VNG, or a class II very noisy binary erasure channel. In
addition, the concept of VNC’s has been used to derive
the capacity, error exponent, and exponentially optimum
code for the direct detection polarization modulated opti-
cal channel.
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