

Risk Stratification for Health-Care Associated *C. diff*

Learning Evolving Patient Risk Processes for *C. diff* Colonization

Jenna Wiens, John V. Guttag and Eric Horvitz*
Massachusetts Institute of Technology

* Microsoft Research

Clostridium difficile (C. diff)

- Bacteria takes over the gut when normal flora gets wiped out
- Transmitted through the mouth
- Causes severe diarrhea, intestinal diseases
- Treatment: metronidazole, oral vancomycin
- 20% of cases relapse within 60-days (Pepin J et al., 2005)

Prevalence

Hospital-acquired:
 178,000/year
 (McDonald et al., 2006)

On par with number of new cases of invasive breast cancer

in the US each year

(American Cancer Society, 2009)

Risk Factors

Time Invariant

- Collected at the time of admission
- e.g., admission complaint, previous admissions, home meds

Time Varying

- Changes during the hospitalization
- e.g., current meds, current procedures, current location, hospital conditions

Representing and reasoning about temporal processes promises to enhance the accuracy of inferences about risk.

Typical Approach in Clinical Literature

Our Approach

Risk Processes

Hypothesis: extracting and analyzing evolving patient risk can lead to a more accurate model for predicting infections

Risk Process:

describes the evolution of risk over the course of a hospital admission

Inferring Risk Processes

- Challenges:
 - No ground truth about risk
 - Retrospective data → not all patients get tested
 - Actual risk on any day is unknowable
 - Thousands of correlated variables

The Data

- Database from a large urban hospital in the US
- In-patient stays from a single year
- Inclusion criteria (see paper for details)
 - Eliminate easily identifiable cases

Population:

- ~10,000 hospital admissions
- ~200 Positive C. diff cases

Experimental Setup

- Training & Testing
 - Randomly subsampled the negative class
 - Split data into stratified training and test sets 70/30.
 - Training set 1,251 admissions (127 positive)
 - Testing set 532 admissions (50 positive)

Features

	Time Invariant				Time Varying		
•	prev. ICD 9 codes	•	patient's age	•	lab results		
•	home medications	•	patient's marital status	•	procedures		
•	prev. admission medications	•	patient's sex	•	location room		
•	patient's city	•	expected surgery	•	location unit		
•	attending MD	•	ER admission	•	medications		
•	Hospital service	•	dialysis	•	vitals		
•	admission source	•	diabetic	•	day of admission		
•	financial class code	•	history of C. diff	•	unit CP		
•	admission complaint	•	num. hospital visits (90 days)	•	hospital wide CP		
•	admission procedure	•	avg., max., total los (90 days)				
•	patient's race						

Features: >10,000 variables for each day of every hospital admission

	Time Invariant			Time Varying		
•	prev. ICD 9 codes	•	patient's age	•	lab results	
•	home medications	•	patient's marital status	•	procedures	
•	prev. admission medications	•	patient's sex	•	location room	
•	patient's city	•	expected surgery	•	location unit	
•	attending MD	•	ER admission	•	medications	
•	Hospital service	•	dialysis	•	vitals	
•	admission source	•	diabetic	•	day of admission	
•	financial class code	•	history of C. diff	•	unit CP	
•	admission complaint	•	num. hospital visits (90 days)	•	hospital wide CP	
•	admission procedure	•	avg., max., total los (90 days)			
•	patient's race					

Representing a hospital stay:

Our Approach to Risk Stratification

Our Approach to Risk Stratification

Learning the Decision Boundary

Learning the Decision Boundary

Note: Simplified illustration. We learn a linear hyperplane in the high dimensional feature space.

Daily Risk -> SVM Continuous Predictions

We consider the distance each feature vector lies from the SVM decision boundary this results in a **continuous** prediction for each day.

$$r_d = \overline{w} \bullet \overline{p_d} - b$$

Our Approach to Risk Stratification

Example Risk Processes

Using Risk Processes for Risk Stratification

- Instantaneous approach:
 - Analogous to typical risk stratification approaches (Dubberke et al., 2011)
 - Considers value of risk process only on day of prediction
- Cumulative approach:
 - Combine estimates from all previous days
 E.g., constant, linear, and quadratic weighted averages

Evaluating Instantaneous Approach

Patient tests positive for *C. diff* on day 8

Consider instantaneous
 estimate for patient risk at a
 constant distance before the
 index event e.g., 2 days

Compute classifier performance by sweeping the decision threshold from min to max.

Evaluating Cumulative Approach

Patient tests positive for *C. diff* on day 8

 Combine estimates for patient risk from the time of admission up to a constant distance from the index event e.g., 2 days

Compute classifier performance by sweeping the decision threshold from min to max.

Defining the Index Event

- - We consider only data collected up to two days before a positive test result
- Negative Examples

 midpoint of admission
 - Considering discharge as the index event can lead to deceptively good results

Results

a)		Approach	Testing AUROC (95% CI)		
umulative		Constant weighted avg.	0.7518 (0.69-0.81)		
mul	\prec	Linear weighted avg.	0.7444 (0.67-0.80)		
Cn		Quadratic weighted avg.	0.7360 (0.67-0.80)		
		Instantaneous	0.6870 (0.61-0.77)		

Results

Patients in the 5th quintile are at >20-fold greater risk than those in the 1st quintile!

Conclusion

- First step in analyzing how patient risk for acquiring
 C. diff may evolve during a hospitalization
 - Improvement over existing methods
- Next steps:
 - Find patterns of risk that lead to worse/better outcomes
 - Investigate application in other contexts (e.g., other HAIs, in-hospital mortality, LOS)

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- National Science Foundation (NSF)
- Quanta Computer Inc.

Works Cited

- McDonald LC, et al. *Clostridium difficile* infection in patients discharged from US short-stay hospitals, 1996-2003. *Emerg Infect Dis* 2006;12:409-15.
- Pepin J, et al. Increasing risk of relapse after treatment of Clostridium difficile colities in Quebec, Canada. Clin Infect Dis. 2005 Jun 1;40(11):1591-7.
- American Cancer Society. Breast Cancer Facts & Figures 2009-2010.
 Atlanta: American Cancer Society, Inc.
- Tanner, J. et al. Waterlow score to predict patients at risk of developing clostridium difficile-associated disease. Journal of hospital infection, 71(3):239-244, 2009.
- Dubberke, E. et al., Development and validation of a clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol 32(4):360-366,2011.