
LEVERAGING
LIGHTWEIGHT
ANALYSES TO AID
SOFTWARE
MAINTENANCE

ZAK FRY

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

Software maintenance can account for up
to 90% of the software lifecycle costs.

Requirements

Design

Implementation

Verification

Maintenance

R.C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Software Technologies, Engineering
Process and Business Practices. Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 2003. 2

90%

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

3

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

4

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

5

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

6

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

7

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

8

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SUMMARY

Add lightweight analyses to specific
tasks to reduce the overall cost of
software maintenance
1. Reducing triage/fix costs by

clustering defect reports
2. Speeding up automatic patch

generation technique
3. Showing that machine-generated

patches are maintainable
9

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

MAINTENANCE PROCESSES IN
PRACTICE

•  Automated techniques have helped.
•  However, the process remains

costly.

Research question: Can we reduce the
effort necessary for specific parts of
the maintenance process, thereby
reducing the overall cost?

10

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY THESIS

Thesis: it is possible to construct usable
and general light-weight analyses using
both latent and explicit information
present in software artifacts to aid in the
finding and fixing of bugs, thus reducing
costs associated with software
maintenance in concrete ways.

11

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY RESEARCH CONSIDERATIONS

•  Generality
•  Focus on a wide range of bugs to increase applicability
•  Could increase aggregate cost savings

•  Usability
•  Minimize additional human effort
•  Ease incremental adoption

•  Comprehensive evaluation
•  Traditional empirical success metrics
•  Human-centric notions of usability and quality

12

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

13

Cluster Duplicate
Automatically-Generated
Defect Reports

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

AUTOMATIC BUG
REPORTING IN PRACTICE

•  Manual bug reporting is costly
•  Human effort
•  Direct and indirect costs

•  Automatic bug finders
•  Help to find some bugs early
•  Still require triage and fixing

•  Goal: Cluster related defect reports to
reduce subsequent human effort

14

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

AUTOMATIC BUG
REPORTING IN PRACTICE

15

1

10

100

1000

10000

D
ef

ec
t R

ep
or

ts

Benchmark Programs

Number of Automatically
Reported Defects by Program

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY DUPLICATES IN GENERAL

Intuition: Duplicates are detrimental in
related areas.

16

Source
Code Code Clone

Detectors

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY DUPLICATES IN GENERAL

Source
Code

17

Code Clone
Detectors

Intuition: Duplicates are detrimental in
related areas.

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY DUPLICATES IN GENERAL

Defect
Reports

Source
Code

18

Code Clone
Detectors

Duplicate
Report

Detector

Intuition: Duplicates are detrimental in
related areas.

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY DUPLICATES IN GENERAL

Defect
Reports

Source
Code

19

Code Clone
Detectors

Duplicate
Report

Detector

Intuition: Duplicates are detrimental in
related areas.

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY CLUSTERING: OVERVIEW

Goal: Cluster to reduce effort
Approach: Accurately cluster defect
reports using structured comparison
to save effort by handling similar
defect reports in parallel.
 Success depends on:

•  Internal accuracy of the produced clusters
•  Amount of effort saved from clustering

defect reports
 20

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY ALGORITHM OVERVIEW

21

R1 R2 R3

✗ R1 x R2
✗ R1 x R3
✓ R2 x R3

Clustering

1

2

3
C1: {R1}

C2: {R2,R3}

Measure
Similarity

Defect Reports

Output Clusters

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY STRUCTURED COMPARISON

22

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY STRUCTURED COMPARISON

23

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY STRUCTURED COMPARISON

24

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SIMILARITY METRICS

25

p = lst.get(i); !

plot = lst.get(i); !

plot = lst.get(n); !

1
(1 + Levenshtein Edit Distance)

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SIMILARITY METRICS

26

p = lst.get(i); !

plot = lst.get(i); !

plot = lst.get(n); !

1
(1 + Levenshtein Edit Distance)

1
1+1

1
2 =

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SIMILARITY METRICS

27

p = lst.get(i); !

plot = lst.get(i); !

plot = lst.get(n); !

1
(1 + Levenshtein Edit Distance)

1
1+2

1
3 =

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY STRUCTURED COMPARISON

28

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY STRUCTURED COMPARISON

29

Defect Report 1

File:
NSReader.java

Suspected Line:
plot = lst.get(i); !

Defect Report 3

File:
NSReader.java

Suspected Line:
plot = lst.get(n); !

Defect Report 2

File:
NSReader.java

Suspected Line:
p = lst.get(i); !

Defect Report 4

File:
UI_Impl.java

Suspected Line:
plot = lst.get(i); !

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY CLUSTERING TECHNIQUE

R3

R5

R7

R4 R6

R9

R8
R10

R1 R11

R2

30

R12

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY CLUSTERING TECHNIQUE

R3

R5

R7

R4 R6

R9

R8
R10

R1 R11

R2

31

R12

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY RESULTS

32

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
cl

us
te

rin
g

Accuracy (fraction of correctly clustered reports)

Four Java Benchmark Programs - 5106 defect reports

Our Technique
ConQAT

PMD
Checkstyle

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY RESULTS

33

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
cl

us
te

rin
g

Accuracy (fraction of correctly clustered reports)

Four Java Benchmark Programs - 5106 defect reports

Our Technique
ConQAT

PMD
Checkstyle

Saving more
effort at all levels

of accuracy

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY RESULTS

34

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
cl

us
te

rin
g

Accuracy (fraction of correctly clustered reports)

Four Java Benchmark Programs - 5106 defect reports

Our Technique
ConQAT

PMD
CheckstyleCapable of

perfect accuracy

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY RESULTS

35

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
t o

f d
ef

ec
ts

 c
ol

la
ps

ed
 b

y
cl

us
te

rin
g

Accuracy (fraction of correctly clustered reports)

Four Java Benchmark Programs - 5106 defect reports

Our Technique
ConQAT

PMD
CheckstyleHumans agree with clusters at

10% FP 99% of the time

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

36

Efficient Automatic
Patch Generation

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY BUGS VS. FIXES

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
um

be
r o

f B
ug

s

Year

Confirmed New Bugs

Confirmed Resolved Bugs

2000 2012

OpenOffice bugs: 2000-2012

37

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY AUTOMATIC PROGRAM REPAIR

Current manual fix strategies fail to
keep up with bug reporting rates

38

Automatic program repair techniques
show promise
•  GenProg – genetic algorithm-based

patch generation

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY GENPROG ARCHITECTURE

Automatic program repair

GenProg

Bug

?

39

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY GENPROG ARCHITECTURE

Automatic program repair can
generate patches.

Bug

Patch

40

GenProg

However, sometimes long fixes and
high variance

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY PROGRAM REPAIR: OVERVIEW

41

•  Learning from past results
•  Syntactically different changes often yield

identical behavior
•  Certain tests fail more often when making

changes to specific parts of a program

•  Intuitions
•  Evaluating semantically identical changes

is redundant
•  Adaptive online learning can drive a “fail

early” test selection strategy

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY PROGRAM REPAIR: OVERVIEW

Approach: quotient the search space
semantically and use historical data to
efficiently test potential patches up to a
given size.
“AE” – Adaptive + Equivalence

Success depends on:
•  Concrete improvement of internal cost

metrics
•  Time spent testing
•  Number of patches considered

•  Dollar cost
42

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY APPROACH: OVERVIEW

Quotient the search space of program
changes based on semantic meaning
•  Identify classes of equivalent patches

and avoid checking them redundantly

Dual of mutation testing

43

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MUTATION TESTING

•  Goal: Measure test suite adequacy
•  Approach: Mutate a program to

simulate bugs, then measure how
many changes a test suite exposes

•  Problem: Equivalent mutants – false
adequacy penalty (correctness)

Using similar analyses, we find
equivalent patches as an optimization

44

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY APPROACH: EXAMPLE

Quotient the search space to avoid
repeating work

45

A=1;!
B=2;!
C=3;!
D=4;!
return A,B,C,D;!

C=100;!

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY APPROACH: EXAMPLE

Quotient the search space to avoid
repeating work

46

A=1;!
B=2;!
C=3;!
D=4;!
return A,B,C,D;!

C=100;!

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY APPROACH: EXAMPLE

Test Prioritization
•  Use historical feedback for testing

47

Test Failures
T1 0
T2 1
T3 15
T4 7
T5 0

Mutant X
Strategy

1. T3
2. T4
3. T2
4. T1
5. T5

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY ALGORITHM

My approach – exhaustively search all
potential single-edit patches

48

For every patch:
 if patch equivalent to previous:
 continue;
 For every test:
 Run patch on test
 if test fails
 break;
 Return if patch passes all tests

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY ALGORITHM: IMPROVEMENTS

My approach – Exhaustively search all
potential single-edit patches

49

For every patch:
 if patch equivalent to previous:
 continue;
 For every test:
 Run patch on test
 if test fails
 break;
 Return if patch passes all tests

Quotient Search
Space

Test Prioritization

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY ALGORITHM: IMPROVEMENTS

My approach – Exhaustively search all
potential single-edit patches

50

For every patch:
 if patch equivalent to previous:
 continue;
 For every test:
 Run patch on test
 if test fails
 break;
 Return if patch passes all tests

Quotient Search
Space

Test Prioritization

88.3%

94.3%

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY IMPROVEMENTS: COST

Monetary Cost
•  Tried to patch 105 bugs on

Amazon’s EC2
•  70.2% cost reduction compared

to previous GenProg results
•  Both techniques patched roughly

50% of the available bugs
•  Fixed costs (equivalence

analysis)
51

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE COSTS

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

52

A Human Study of
Patch Maintainability

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY BUG FIXING AND MAINTAINABILITY

•  AE and GenProg can fix about 50% of
bugs

•  Saves human effort for current bugs
•  We want to test the future

maintainability of patches to evaluate
various techniques’ efficacies over time
•  Can automatically-generated patches help

reduce the maintenance debt?

53

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY CODE QUALITY

Functional Quality
•  Does the implementation pass the

supplied test suite?
•  Does the code execute “correctly”?

Non-functional Quality
•  Is the code understandable to humans?
•  How difficult is it to alter the code in the

future?
 54

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY CODE QUALITY

Functional Quality
•  Does the implementation pass the

supplied test suite?
•  Does the code execute “correctly”?

Non-functional Quality
•  Is the code understandable to humans?
•  How difficult is it to alter the code in the

future?

✓

?

55

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY GOALS – QUESTIONS

1.  How can we concretely measure these
notions of human understandability
and future maintainability?

2.  In practice, are machine-generated
patches as maintainable as human-
generated patches?

3.  Can we automatically augment
machine-generated patches to
improve maintainability?

56

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SUCCESS CRITERIA

Approach:
•  Find a method for concretely measuring

human maintainability
•  Evaluate various types of patches
Success depends on:
•  Providing evidence that automatically-

generated patches can be as
maintainable as those created by humans

57

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MEASURING MAINTAINABILITY

Indirect software quality metrics:
•  Cyclomatic complexity
•  Coupling and cohesion
•  Software readability

58

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MEASURING MAINTAINABILITY

Indirect software quality metrics:
•  Cyclomatic complexity
•  Coupling and cohesion
•  Software readability

Direct measures of maintainability:
•  Rather than using an approximation, we

will directly measure humans’ abilities to
perform maintenance tasks

59

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MEASURING MAINTAINABILITY

•  Goal: directly simulate the
maintenance process

•  Solution: ask human participants
questions that require them to read
and understand a piece of code and
measure accuracy and effort
•  Sillito et al. – “Questions programmers ask

during software evolution tasks”

60

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SUBJECT TASKS

•  Sillito et al. – “Questions programmers
ask during software evolution tasks”
•  Recorded and categorized the questions

developers actually asked while performing real
maintenance tasks

•  Example: “What is the value of the
variable ‘y’ on line X?”
•  Narrowly focused on the sight of the patch itself
•  Not: “Does this type have any siblings in the

type hierarchy?”
 61

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY TYPES OF PATCHES

•  Original – the defective, un-patched
original code used as a baseline

•  Human-Accepted – human patches
that have not been reverted to date

•  Machine – automatically-generated
patches (by GenProg or AE-type tool)

•  Machine+Doc – the same machine-
generated patches as above, but
augmented with automatically
synthesized documentation

62

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY TYPES OF PATCHES

•  Original – the defective, un-patched
original code used as a baseline

•  Human-Accepted – human patches
that have not been reverted to date

•  Machine – automatically-generated
patches (by GenProg or AE-type tool)

•  Machine+Doc – the same machine-
generated patches as above, but
augmented with automatically
synthesized documentation

63

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY AUTOMATIC DOCUMENTATION

•  Human patches may contain comments
with hints about developer intention
•  Automatic approaches cannot easily reason

about why a change is made, but can describe
what was changed

64

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY AUTOMATIC DOCUMENTATION

•  Human patches may contain comments
with hints about developer intention
•  Automatic approaches cannot easily reason

about why a change is made, but can describe
what was changed

•  Automatically Synthesized
Documentation:
•  We adapt DeltaDoc (Buse et al. ASE 2010)
•  Measures semantic program changes
•  Outputs natural language descriptions of

changes
65

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN STUDY TASKS

…!
15 if (dc->prev) {!
16   if (con->conf.log_condition_handling) { !
17   log_error_write(srv, __FILE__, __LINE__, !
18 "sb", "go prev", dc->prev->key);!
19   }!
20 /* make sure prev is checked first */!
21 config_check_cond_cached(srv, con, dc->prev);!
22 /* one of prev set me to FALSE */!
23 if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24 return COND_RESULT_FALSE;!
25 }!
26 !
27 }!
28 !
29 if (!con->conditional_is_valid[dc->comp]) {!
30 if (con->conf.log_condition_handling) {!
31 TRACE("cond[%d] is valid: %d", dc->comp, !
32 con->conditional_is_valid[dc->comp]);!
33 }!
34 !
35 return COND_RESULT_UNSET;!
36 }!
…! 66

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN STUDY TASKS

…!
15 if (dc->prev) {!
16   if (con->conf.log_condition_handling) { !
17   log_error_write(srv, __FILE__, __LINE__, !
18 "sb", "go prev", dc->prev->key);!
19   }!
20 /* make sure prev is checked first */!
21 config_check_cond_cached(srv, con, dc->prev);!
22 /* one of prev set me to FALSE */!
23 if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24 return COND_RESULT_FALSE;!
25 }!
26 !
27 }!
28 !
29 if (!con->conditional_is_valid[dc->comp]) {!
30 if (con->conf.log_condition_handling) {!
31 TRACE("cond[%d] is valid: %d", dc->comp, !
32 con->conditional_is_valid[dc->comp]);!
33 }!
34 !
35 return COND_RESULT_UNSET;!
36 }!
…! 67

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN STUDY TASKS

Question presentation
Question: What is the value of the variable "con->conditional_is_valid[dc->comp]"
on line 35? (recall, you can use inequality symbols in your answer)

Answer to the Question Above:

68

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN STUDY TASKS

…!
15 if (dc->prev) {!
16   if (con->conf.log_condition_handling) { !
17   log_error_write(srv, __FILE__, __LINE__, !
18 "sb", "go prev", dc->prev->key);!
19   }!
20 /* make sure prev is checked first */!
21 config_check_cond_cached(srv, con, dc->prev);!
22 /* one of prev set me to FALSE */!
23 if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24 return COND_RESULT_FALSE;!
25 }!
26 !
27 }!
28 !
29 if (!con->conditional_is_valid[dc->comp]) {!
30 if (con->conf.log_condition_handling) {!
31 TRACE("cond[%d] is valid: %d", dc->comp, !
32 con->conditional_is_valid[dc->comp]);!
33 }!
34 !
35 return COND_RESULT_UNSET;!
36 }!
…! 69

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN STUDY TASKS

Question presentation
Question: What is the value of the variable "con->conditional_is_valid[dc->comp]"
on line 35? (recall, you can use inequality symbols in your answer)

Answer to the Question Above:

 False

70

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY EVALUATION METRICS

Correctness – is the right answer
reported?
Time – what is the “maintenance effort”
associated with understanding this code?

71

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY EVALUATION METRICS – RESULTS

Correctness – is the right answer
reported?
Time – what is the “maintenance effort”
associated with understanding this code?
•  Correctness was the same for all

patches (with statistical significance)
•  We then focus on time, as it represents

the software engineering effort
associated with program understanding

72

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

-25

-20

-15

-10

-5

0

5

10

15

Human Accepted Machine Machine+Doc Pe
rc

en
t T

im
e

Sa
ve

d
fo

r C
or

re
ct

 A
ns

w
er

s

W
he

n
C

om
pa

re
d

w
ith

 O
rig

in
al

 C
od

e

Patch Type

TYPE OF PATCH VS.
MAINTAINABILITY

Effort = average number of minutes it took participants to report a correct
answer for all patches of a given type relative to the original code

73

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

CHARACTERISTICS OF
MAINTAINABILITY

•  We measured various code features
for all patches
•  Using a logistic regression model, we can

predict human accuracy 73.16% of the time
•  A Principle Component Analysis

shows that 17 features are necessary
to account for 90% of the variance in
the data
•  Modeling maintainability is a complex

problem
 74

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

CHARACTERISTICS OF
MAINTAINABILITY

Code Feature Predictive
Power

Ratio of variable uses per assignment 0.178
Code readability 0.157
Ratio of variables declared out of scope vs. in scope 0.146
Number of total tokens 0.097
Number of non-whitespace characters 0.090
Number of macro uses 0.080
Average token length 0.078
Average line length 0.072
Number of conditionals 0.070
Number of variable declarations or assignments 0.056
Maximum conditional clauses on any path 0.055
Number of blank lines 0.054

75

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY HUMAN INTUITION VS. MEASUREMENT

After completing the study, participants were asked to
report which code features they thought increased
maintainability the most
 Human Reported Feature Votes Predictive

Power
Descriptive variable names 35 0.000
Clear whitespace and indentation 25 0.003
Presence of comments 25 0.022
Shorter function 8 0.000
Presence of nested conditionals 8 0.033
Presence of compiler directives / macros 7 0.080
Presence of global variables 5 0.146
Use of goto statements 5 0.000
Lack of conditional complexity 5 0.055
Uniform use and format of curly braces 5 0.014 76

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY MAINTENANCE OVERVIEW

77

File: …

Lines: …

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
 keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 map.remove(s);!
 keys.remove(s);!
}!

Recreate?
Verify?
Prioritize?

/*remove bad values*/!
Vector keys = !
 map.keySet());!
for(String s : keys){!
 if(isBad(s))!
 map.remove(s);!
}!

?

Report Bugs Triage Bugs

Locate Bugs Review and Deploy

Fix Bugs

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

� Westley Weimer, Zachary P. Fry, Stephanie Forrest, “Leveraging Program Equivalence
for Adaptive Program Repair: Models and First Results” Automated Software Engineering
(ASE), 2013. (Acceptance rate: 23%)
� Zachary P. Fry, Westley Weimer, “Clustering Static Analysis Defect Reports to Reduce
Maintenance Costs” Working Conference on Reverse Engineering (WCRE), 2013.
(Acceptance rate: 39%)
� Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, Stephanie Forrest, “Software
Mutational Robustness” Genetic Programming and Evolvable Machines, 2013.
� Zachary P. Fry, Bryan Landau, Westley Weimer, “A Human Study of Patch
Maintainability” International Symposium on Software Testing and Analysis (ISSTA), 2012.
(Acceptance rate: 29%)
� Zachary P. Fry, Westley Weimer, “Fault Localization Using Textual Similarities" Tech
Report, Computing Research Repository, 2012.
� Zachary P. Fry, Westley Weimer, “A Human Study of Fault Localization Accuracy"
International Conference of Software Maintenance (ICSM), 2010. (Acceptance rate: 26%)
� Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori L.
Pollock, K. Vijay-Shanker, "AMAP: automatically mining abbreviation expansions in
programs to enhance software maintenance tools," Working Conference on Mining
Software Repositories (MSR), 2008. Best Paper Award (Acceptance rate: 40%)
� David Shepherd, Zachary P. Fry, Emily Gibson, Kishen Maloor, Lori Pollock, and K.
Vijay- Shanker, "Introducing Natural Language Program Analysis (NLPA)", a research
group presentation at the Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2007.
� Zachary P. Fry, David Shepherd, Emily Hill, Lori Pollock, K. Vijay-Shanker, "Analyzing
Source Code: Looking for Useful Verb-Direct Object Pairs in All the Right Places," The
Institution of Engineering and Technology (IET) Software Special Issue on Natural
Language in Software Development – Volume 2, Issue 1, 2007. (Impact Factor: 0.542)
� David Shepherd, Zachary P. Fry, Emily Gibson, Lori Pollock, and K. Vijay-Shanker,
"Using Natural Language Program Analysis to Locate and Understand Action-Oriented
Concerns," International Conference on Aspect Oriented Software Development (AOSD),
2007. (Acceptance rate: 18%) 78

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY

COMPREHENSIVE GOALS -
REVISITED

•  Generality
•  Can cluster all attempted defect report types
•  AE can fix as many bug types as the state of the art

tools

•  Usability
•  Techniques work “off the shelf”
•  Ease incremental adoption

•  Comprehensive evaluation
•  Humans agree with our defect report clusters
•  We find our patches with automated documentation are

as maintainable as those created by humans

79

DEFECT CLUSTERING
PROGRAM REPAIR

PATCH MAINTAINABILITY SUMMARY

Add lightweight analyses to specific
tasks to reduce the overall cost of
software maintenance
1. Reducing triage/fix costs by

clustering defect reports
2. Speeding up an automatic patch

generation technique
3. Exploring the maintainability of

various types of patches
80

