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Software maintenance can account for up 
to 90% of the software lifecycle costs. 

Requirements 

Design 

Implementation 

Verification 

Maintenance 

R.C. Seacord, D. Plakosh, and G. A. Lewis.  Modernizing Legacy Systems: Software Technologies, Engineering 
Process and Business Practices.  Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 2003. 2 
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File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
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}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
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    map.remove(s);!
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Fix Bugs 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY MAINTENANCE COSTS 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 

4 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY MAINTENANCE COSTS 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 

5 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY MAINTENANCE COSTS 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 

6 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY MAINTENANCE COSTS 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 

7 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY MAINTENANCE COSTS 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 

8 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY SUMMARY 

Add lightweight analyses to specific 
tasks to reduce the overall cost of 
software maintenance 
1. Reducing triage/fix costs by 

clustering defect reports 
2. Speeding up automatic patch 

generation technique 
3. Showing that machine-generated 

patches are maintainable 
9 
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MAINTENANCE PROCESSES IN 
PRACTICE 

•  Automated techniques have helped. 
•  However, the process remains 

costly. 
 
Research question: Can we reduce the 
effort necessary for specific parts of 
the maintenance process, thereby 
reducing the overall cost? 

10 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY THESIS 

Thesis: it is possible to construct usable 
and general light-weight analyses using 
both latent and explicit information 
present in software artifacts to aid in the 
finding and fixing of bugs, thus reducing 
costs associated with software 
maintenance in concrete ways.  
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PATCH MAINTAINABILITY RESEARCH CONSIDERATIONS 

•  Generality 
•  Focus on a wide range of bugs to increase applicability 
•  Could increase aggregate cost savings 

•  Usability 
•  Minimize additional human effort 
•  Ease incremental adoption 

•  Comprehensive evaluation 
•  Traditional empirical success metrics 
•  Human-centric notions of usability and quality 

12 
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Cluster Duplicate 
Automatically-Generated  
Defect Reports 
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AUTOMATIC BUG  
REPORTING IN PRACTICE 

•  Manual bug reporting is costly  
•  Human effort 
•  Direct and indirect costs 

•  Automatic bug finders  
•  Help to find some bugs early 
•  Still require triage and fixing 

•  Goal: Cluster related defect reports to 
reduce subsequent human effort 

14 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY 

AUTOMATIC BUG  
REPORTING IN PRACTICE 

15 

1 

10 

100 

1000 

10000 

D
ef

ec
t R

ep
or

ts
 

Benchmark Programs 

Number of Automatically  
Reported Defects by Program 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY DUPLICATES IN GENERAL 

Intuition: Duplicates are detrimental in 
related areas.  
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Source 
Code 
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Code Clone  
Detectors 

 

Intuition: Duplicates are detrimental in 
related areas.  
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Code Clone  
Detectors 

 

Duplicate  
Report  

Detector 

Intuition: Duplicates are detrimental in 
related areas.  
 
 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY CLUSTERING: OVERVIEW 

Goal: Cluster to reduce effort 
Approach: Accurately cluster defect 
reports using structured comparison 
to save effort by handling similar 
defect reports in parallel. 
 Success depends on: 

•  Internal accuracy of the produced clusters 
•  Amount of effort saved from clustering  

defect reports 
 20 
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R1 R2 R3 

✗ R1 x R2 
✗ R1 x R3 
✓ R2 x R3 

Clustering 

1

2

3
C1: {R1} 

C2: {R2,R3} 

Measure 
Similarity 

Defect Reports 

Output Clusters 
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Defect Report 1 

File: 
NSReader.java 

Suspected Line: 
plot = lst.get(i); !

Defect Report 3 

File: 
NSReader.java 

Suspected Line: 
plot = lst.get(n); !

Defect Report 2 

File: 
NSReader.java 

Suspected Line: 
p = lst.get(i); !

Defect Report 4 

File: 
UI_Impl.java 

Suspected Line: 
plot = lst.get(i); !
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p = lst.get(i); !

plot = lst.get(i); !

plot = lst.get(n); !

1 
(1 + Levenshtein Edit Distance) 
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p = lst.get(i); !

plot = lst.get(i); !

plot = lst.get(n); !

1 
(1 + Levenshtein Edit Distance) 

1 
1+1 

1 
2 = 
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Efficient Automatic 
Patch Generation 
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Current manual fix strategies fail to 
keep up with bug reporting rates 
 
 

38 

Automatic program repair techniques 
show promise 
•  GenProg – genetic algorithm-based 

patch generation 
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Automatic program repair 

GenProg 

Bug 

? 
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Automatic program repair can 
generate patches. 

Bug 

Patch 

40 

GenProg 

However, sometimes long fixes and 
high variance  
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•  Learning from past results 
•  Syntactically different changes often yield 

identical behavior 
•  Certain tests fail more often when making 

changes to specific parts of a program 

•  Intuitions 
•  Evaluating semantically identical changes 

is redundant 
•  Adaptive online learning can drive a “fail 

early” test selection strategy 
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PATCH MAINTAINABILITY PROGRAM REPAIR: OVERVIEW 

Approach: quotient the search space 
semantically and use historical data to 
efficiently test potential patches up to a 
given size. 
“AE” – Adaptive + Equivalence 

Success depends on: 
•  Concrete improvement of internal cost 

metrics  
•  Time spent testing 
•  Number of patches considered 

•  Dollar cost 
42 
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PATCH MAINTAINABILITY APPROACH: OVERVIEW 

Quotient the search space of program 
changes based on semantic meaning 
•  Identify classes of equivalent patches 

and avoid checking them redundantly 
 
Dual of mutation testing 

43 
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•  Goal: Measure test suite adequacy 
•  Approach: Mutate a program to 

simulate bugs, then measure how 
many changes a test suite exposes 

•  Problem: Equivalent mutants – false 
adequacy penalty (correctness) 

Using similar analyses, we find 
equivalent patches as an optimization 

44 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY APPROACH: EXAMPLE 

Quotient the search space to avoid 
repeating work 

45 

A=1;!
B=2;!
C=3;!
D=4;!
return A,B,C,D;!

C=100;!
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Test Prioritization 
•  Use historical feedback for testing 

47 

Test Failures 
T1 0 
T2 1 
T3 15 
T4 7 
T5 0 

Mutant X 
Strategy 

1. T3 
2. T4 
3. T2 
4. T1 
5. T5 
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My approach – exhaustively search all 
potential single-edit patches 

48 

For every patch: 
     if patch equivalent to previous: 
          continue; 
     For every test: 
          Run patch on test 
          if test fails 
               break; 
     Return if patch passes all tests 
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My approach – Exhaustively search all 
potential single-edit patches 
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For every patch: 
     if patch equivalent to previous: 
          continue; 
     For every test: 
          Run patch on test 
          if test fails 
               break; 
     Return if patch passes all tests 

Quotient Search  
Space 

Test Prioritization 
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My approach – Exhaustively search all 
potential single-edit patches 
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For every patch: 
     if patch equivalent to previous: 
          continue; 
     For every test: 
          Run patch on test 
          if test fails 
               break; 
     Return if patch passes all tests 

Quotient Search  
Space 

Test Prioritization 
 

88.3% 

94.3% 
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PATCH MAINTAINABILITY IMPROVEMENTS: COST 

Monetary Cost 
•  Tried to patch 105 bugs on 

Amazon’s EC2  
•  70.2% cost reduction compared 

to previous GenProg results 
•  Both techniques patched roughly 

50% of the available bugs 
•  Fixed costs (equivalence 

analysis) 
51 
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A Human Study of  
Patch Maintainability 
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PATCH MAINTAINABILITY BUG FIXING AND MAINTAINABILITY 

•  AE and GenProg can fix about 50% of 
bugs 

•  Saves human effort for current bugs 
•  We want to test the future 

maintainability of patches to evaluate 
various techniques’ efficacies over time  
•  Can automatically-generated patches help 

reduce the maintenance debt? 

53 
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PATCH MAINTAINABILITY CODE QUALITY 

Functional Quality 
•  Does the implementation pass the 

supplied test suite? 
•  Does the code execute “correctly”? 

Non-functional Quality  
•  Is the code understandable to humans? 
•  How difficult is it to alter the code in the 

future? 
 54 
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Functional Quality 
•  Does the implementation pass the 

supplied test suite? 
•  Does the code execute “correctly”? 
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future? 
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PATCH MAINTAINABILITY GOALS – QUESTIONS 

1.  How can we concretely measure these 
notions of human understandability 
and future maintainability? 

2.  In practice, are machine-generated 
patches as maintainable as human-
generated patches? 

3.  Can we automatically augment 
machine-generated patches to 
improve maintainability? 

56 
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PATCH MAINTAINABILITY SUCCESS CRITERIA 

Approach: 
•  Find a method for concretely measuring 

human maintainability 
•  Evaluate various types of patches 
Success depends on: 
•  Providing evidence that automatically-

generated patches can be as 
maintainable as those created by humans 

57 
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PATCH MAINTAINABILITY MEASURING MAINTAINABILITY 

Indirect software quality metrics: 
•  Cyclomatic complexity  
•  Coupling and cohesion  
•  Software readability 
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PATCH MAINTAINABILITY MEASURING MAINTAINABILITY 

Indirect software quality metrics: 
•  Cyclomatic complexity  
•  Coupling and cohesion  
•  Software readability 

Direct measures of maintainability: 
•  Rather than using an approximation, we 

will directly measure humans’ abilities to 
perform maintenance tasks 
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PATCH MAINTAINABILITY MEASURING MAINTAINABILITY 

•  Goal: directly simulate the 
maintenance process  

•  Solution: ask human participants 
questions that require them to read 
and understand a piece of code and 
measure accuracy and effort 
•  Sillito et al. – “Questions programmers ask 

during software evolution tasks” 
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PATCH MAINTAINABILITY SUBJECT TASKS 

•  Sillito et al. – “Questions programmers 
ask during software evolution tasks” 
•  Recorded and categorized the questions 

developers actually asked while performing real 
maintenance tasks 

•  Example: “What is the value of the 
variable ‘y’ on line X?” 
•  Narrowly focused on the sight of the patch itself 
•  Not: “Does this type have any siblings in the 

type hierarchy?” 
 61 
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PATCH MAINTAINABILITY TYPES OF PATCHES 

•  Original – the defective, un-patched 
original code used as a baseline  

•  Human-Accepted – human patches 
that have not been reverted to date 

•  Machine – automatically-generated 
patches (by GenProg or AE-type tool) 

•  Machine+Doc – the same machine-
generated patches as above, but 
augmented with automatically 
synthesized documentation 
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PATCH MAINTAINABILITY TYPES OF PATCHES 

•  Original – the defective, un-patched 
original code used as a baseline  

•  Human-Accepted – human patches 
that have not been reverted to date 

•  Machine – automatically-generated 
patches (by GenProg or AE-type tool) 

•  Machine+Doc – the same machine-
generated patches as above, but 
augmented with automatically 
synthesized documentation 
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PATCH MAINTAINABILITY AUTOMATIC DOCUMENTATION 

•  Human patches may contain comments 
with hints about developer intention  
•  Automatic approaches cannot easily reason 

about why a change is made, but can describe 
what was changed 
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PATCH MAINTAINABILITY AUTOMATIC DOCUMENTATION 

•  Human patches may contain comments 
with hints about developer intention  
•  Automatic approaches cannot easily reason 

about why a change is made, but can describe 
what was changed 

•  Automatically Synthesized 
Documentation: 
•  We adapt DeltaDoc (Buse et al. ASE 2010) 
•  Measures semantic program changes 
•  Outputs natural language descriptions of 

changes 
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PATCH MAINTAINABILITY HUMAN STUDY TASKS 

…!
15  if (dc->prev) {!
16       if (con->conf.log_condition_handling) { !
17           log_error_write(srv, __FILE__, __LINE__,  !
18        "sb", "go prev", dc->prev->key);!
19        }!
20      /* make sure prev is checked first */!
21      config_check_cond_cached(srv, con, dc->prev);!
22      /* one of prev set me to FALSE */!
23      if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24          return COND_RESULT_FALSE;!
25      }!
26 !
27  }!
28 !
29  if (!con->conditional_is_valid[dc->comp]) {!
30      if (con->conf.log_condition_handling) {!
31        TRACE("cond[%d] is valid: %d", dc->comp, !
32              con->conditional_is_valid[dc->comp]);!
33      }!
34 !
35      return COND_RESULT_UNSET;!
36  }!
…! 66 
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…!
15  if (dc->prev) {!
16       if (con->conf.log_condition_handling) { !
17           log_error_write(srv, __FILE__, __LINE__,  !
18        "sb", "go prev", dc->prev->key);!
19        }!
20      /* make sure prev is checked first */!
21      config_check_cond_cached(srv, con, dc->prev);!
22      /* one of prev set me to FALSE */!
23      if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24          return COND_RESULT_FALSE;!
25      }!
26 !
27  }!
28 !
29  if (!con->conditional_is_valid[dc->comp]) {!
30      if (con->conf.log_condition_handling) {!
31        TRACE("cond[%d] is valid: %d", dc->comp, !
32              con->conditional_is_valid[dc->comp]);!
33      }!
34 !
35      return COND_RESULT_UNSET;!
36  }!
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PATCH MAINTAINABILITY HUMAN STUDY TASKS 

Question presentation 
Question: What is the value of the variable "con->conditional_is_valid[dc->comp]" 
on line 35? (recall, you can use inequality symbols in your answer) 
 
Answer to the Question Above: 
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…!
15  if (dc->prev) {!
16       if (con->conf.log_condition_handling) { !
17           log_error_write(srv, __FILE__, __LINE__,  !
18        "sb", "go prev", dc->prev->key);!
19        }!
20      /* make sure prev is checked first */!
21      config_check_cond_cached(srv, con, dc->prev);!
22      /* one of prev set me to FALSE */!
23      if (COND_RESULT_FALSE == con->cond_cache[dc->context_ndx].result) {!
24          return COND_RESULT_FALSE;!
25      }!
26 !
27  }!
28 !
29  if (!con->conditional_is_valid[dc->comp]) {!
30      if (con->conf.log_condition_handling) {!
31        TRACE("cond[%d] is valid: %d", dc->comp, !
32              con->conditional_is_valid[dc->comp]);!
33      }!
34 !
35      return COND_RESULT_UNSET;!
36  }!
…! 69 



DEFECT CLUSTERING 
PROGRAM REPAIR 

PATCH MAINTAINABILITY HUMAN STUDY TASKS 

Question presentation 
Question: What is the value of the variable "con->conditional_is_valid[dc->comp]" 
on line 35? (recall, you can use inequality symbols in your answer) 
 
Answer to the Question Above: 
 
 
 
 False 
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PATCH MAINTAINABILITY EVALUATION METRICS 

Correctness – is the right answer 
reported? 
Time – what is the “maintenance effort” 
associated with understanding this code? 
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PATCH MAINTAINABILITY EVALUATION METRICS – RESULTS 

Correctness – is the right answer 
reported? 
Time – what is the “maintenance effort” 
associated with understanding this code? 
•  Correctness was the same for all 

patches (with statistical significance) 
•  We then focus on time, as it represents 

the software engineering effort 
associated with program understanding 
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TYPE OF PATCH VS. 
MAINTAINABILITY 

Effort = average number of minutes it took participants to report a correct 
answer for all patches of a given type relative to the original code 
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CHARACTERISTICS OF 
MAINTAINABILITY 

•  We measured various code features 
for all patches  
•  Using a logistic regression model, we can 

predict human accuracy 73.16% of the time 
•  A Principle Component Analysis 

shows that 17 features are necessary 
to account for 90% of the variance in 
the data 
•  Modeling maintainability is a complex 

problem 
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PATCH MAINTAINABILITY 

CHARACTERISTICS OF 
MAINTAINABILITY 

Code Feature Predictive 
Power 

Ratio of variable uses per assignment 0.178 
Code readability 0.157 
Ratio of variables declared out of scope vs. in scope 0.146 
Number of total tokens 0.097 
Number of non-whitespace characters 0.090 
Number of macro uses 0.080 
Average token length 0.078 
Average line length 0.072 
Number of conditionals 0.070 
Number of variable declarations or assignments 0.056 
Maximum conditional clauses on any path 0.055 
Number of blank lines 0.054 
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PATCH MAINTAINABILITY HUMAN INTUITION VS. MEASUREMENT  

After completing the study, participants were asked to 
report which code features they thought increased 
maintainability the most 
 Human Reported Feature Votes Predictive 

Power 
Descriptive variable names 35 0.000 
Clear whitespace and indentation 25 0.003 
Presence of comments 25 0.022 
Shorter function  8 0.000 
Presence of nested conditionals 8 0.033 
Presence of compiler directives / macros 7 0.080 
Presence of global variables 5 0.146 
Use of goto statements 5 0.000 
Lack of conditional complexity 5 0.055 
Uniform use and format of curly braces 5 0.014 76 
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PATCH MAINTAINABILITY MAINTENANCE OVERVIEW 

77 

File: … 

Lines: … 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
    keys.remove(s);!
}!

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  map.remove(s);!
  keys.remove(s);!
}!
 

Recreate? 
Verify? 
Prioritize? 

/*remove bad values*/!
Vector keys = !
    map.keySet());!
for(String s : keys){!
  if(isBad(s))!
    map.remove(s);!
}!
 

? 

Report Bugs Triage Bugs 

Locate Bugs Review and Deploy 

Fix Bugs 
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COMPREHENSIVE GOALS - 
REVISITED 

•  Generality 
•  Can cluster all attempted defect report types 
•  AE can fix as many bug types as the state of the art 

tools 

•  Usability 
•  Techniques work “off the shelf” 
•  Ease incremental adoption 

•  Comprehensive evaluation 
•  Humans agree with our defect report clusters 
•  We find our patches with automated documentation are 

as maintainable as those created by humans 
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PATCH MAINTAINABILITY SUMMARY 

Add lightweight analyses to specific 
tasks to reduce the overall cost of 
software maintenance 
1. Reducing triage/fix costs by 

clustering defect reports 
2. Speeding up an automatic patch 

generation technique 
3. Exploring the maintainability of 

various types of patches 
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