
A Human-Centric Approach to Program Understanding

Ray Buse - PhD Proposal
University of Virginia, Department of Computer Science

DocumentationRuntime BehaviorReadability

1.20.2010

“The real question is not whether machines think,
but whether men do.“ -- B. F. Skinner

2

Requirements

Design

Implementation

Verification

Maintenance

3

Requirements

Design

Implementation

Verification

Maintenance

Maintenance accounts for about

70-90%
of the total lifecycle budget of a

software project.1,2

1. T. M. Pigoski. Practical Software Maintenance:
Best Practices for Managing Your Software
Investment. John Wiley & Sons, Inc., 1996.

2. R. C. Seacord, D. Plakosh, and G. A. Lewis.
Modernizing Legacy Systems: Software
Technologies, Engineering Process and Business
Practices. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

4

Requirements

Design

Implementation

Verification

Maintenance

Reading Code is the most
time consuming part of all
maintenance activities.3,4,5

3. L. E. Deimel Jr. The uses of program reading.
SIGCSE Bull., 17(2):5-14, 1985.

4. R. Glass. Facts and Fallacies of Software
Engineering. Addison-Wesley, 2003.

5. S. Rugaber. The use of domain knowledge in
program understanding. Ann. Softw. Eng.,(1-
4):143-192, 2000.

Reading Code

5

“Understanding code is by far the
activity at which professional

developers spend most of their time.” 6
Writing New

Code

Modifying
Existing Code

Understanding
Code

6. Peter Hallam. What Do Programmers
Really Do Anyway? Microsoft Developer
Network (MSDN) – C# Compiler. Jan 2006.

6

Reading Code is the most

Poorly Understood
Software Engineering activity.7,8

7. D. Parnas. Software aging. In Software Fundamentals. Addison-
Wesley, 2001.

8. D. Zokaities. Writing understandable code. In Software
Development, pages 48-49, jan 2002.

7

Reading Code is the most

Poorly Understood
Software Engineering activity.

4,387

780

16 1

ICSE PLDI

all program understanding

8

Understanding is difficult to…

Model

• Based on a complex combination of factors

Evaluate

• Lack of established metrics/baselines

• User studies are unattractive

9

Two Key Insights

• Machine Learning allows us to combine
many semantically shallow features of code
to gain new deep insights.

• PL Techniques can be adapted to generate
documentation artifacts that are directly
comparable to human created ones.

10

Thesis

We can combine insights from Machine
Learning and Programming Languages to

• Model aspects of code understanding
accurately and

• Generate output that compares favorably
with human documentation.

11

Proposal: Three Dimensions of Understanding

DocumentationRuntime BehaviorReadability

12

Proposal: Three Dimensions of Understanding

DocumentationRuntime BehaviorReadability

Textual characteristics
that make code
understandable.

Structural characteristics
that help developers
understand what a
program is expected to do.

Non-code text that
helps developers
understand a program.

13

Metrics for:

• Code Readability

• Path Execution Frequency

Algorithms for Documentation of:

• Exceptions

• Code Changes

• APIs

Research Projects

14

Broader Impact

New algorithms and metrics to support:

• Software Development and Composition

– Metrics for Software Quality Assurance

– Automatic Documentation

• Software Analysis

– Runtime Behavior model for optimizing
compilers

– Metrics for targeting analyses, prioritizing
output, and evaluating research

15

The rest of this proposal

• A review of each proposed contribution

– Technical Merit

– Evaluation Strategy

– Related Work

• Research timeline and other bookkeeping

• Concluding Remarks

16

Metrics for:

• Code Readability

• Path Execution Frequency

Algorithms for Documentation of:

• Exceptions

• Code Changes

• APIs Published

In Progress

ISSTA ‘08

ICSE ‘09

ISSTA ‘08 TSE ‘10

17

Metrics for:

• Code Readability

• Path Execution Frequency

Algorithms for Documentation of:

• Exceptions

• Code Changes

• APIs Published

In Progress

ISSTA ‘08

ICSE ‘09

ISSTA ‘08 TSE ‘10

18

/**

* Extend this Execution path by one level.

*

* @throws IllegalStateException If the move path invalid..

*/

private List<ExecutionPath> extend (ExecutionPath ep)

{

paths = new LinkedList<ExecutionPath>();

Unit last = ep.getLast();

List<Unit> succs = graph.getSuccsOf(last);

//this is the end of the path

if (succs.isEmpty())

{

ep.setComplete(true);

paths.add(ep);

return paths;

}

if (succs.size() == 1)

{

Unit s = succs.get(0);

if (ep.contains(s))

{

//do nothing

}

else

{

ep.addLast(s);

if (graph.getTails().contains(s))

{

ep.setComplete(true);

}

Readability

Model human judgments
about code readability

Create a readability
metric

Key: Use textual
features to approximate
human judgments

19

Hypothesis

With a simple set of textual features, we can derive
from a set of human judgments an accurate model of
readability for code.

Success depends on

• Gathering human judgments

• Choosing predictive textual features

20

Data Gathering

• We asked 120 students at UVa to rate the
readability of a set of snippets…

21

Data Set Vertical bands indicate
snippets were

agreement was high

22

Choosing predictive textual features

We choose local code features

• Line length

• Length of identifier names

• Comment density

• Blank lines

• Presence of numbers

• [and 20 others]

Modeled with a Bayesian Classifier

23

Model
Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120

Sp
e

ar
m

an
 c

o
rr

e
la

ti
o

n
 b

et
w

e
e

n

an
n

o
ta

to
r

sc
o

re
s

an
d

 a
ve

ra
ge

 s
co

re
s

Human Annotators (sorted)

average human

our metric

Model agrees with humans
as much as they agree with

each other on average

24

Related Work

• Readability metrics for natural languages

– Very popular, DOD standards etc

• In the software domain

– Complexity metrics (often used, but utility is
questionable)

25

Conclusions

• We can automatically judge readability
about as well as the average human can

• This notion of readability shows significant
correlation with:

• Code churn

• A bug finder

• Program maturity

26

Metrics for:

• Code Readability

• Path Execution Frequency

Algorithms for Documentation of:

• Exceptions

• Code Changes

• APIs Published

In Progress

ISSTA ‘08

ICSE ‘09

ISSTA ‘08 TSE ‘10

27

/**

* Extend this Execution path by one level.

*

* @throws IllegalStateException If the move path invalid..

*/

private List<ExecutionPath> extend (ExecutionPath ep)

{

paths = new LinkedList<ExecutionPath>();

Unit last = ep.getLast();

List<Unit> succs = graph.getSuccsOf(last);

//this is the end of the path

if (succs.isEmpty())

{

ep.setComplete(true);

paths.add(ep);

return paths;

}

if (succs.size() == 1)

{

Unit s = succs.get(0);

if (ep.contains(s))

{

//do nothing

}

else

{

ep.addLast(s);

if (graph.getTails().contains(s))

{

ep.setComplete(true);

}

Runtime Behavior

Model path execution
frequency statically

Key: Use path surface
features to uncover
developer expectations

28

Key Idea

• Developers often have expectations about
common and uncommon cases in programs

• The structure of code they write can
sometimes reveal these expectations

29

Intuition

public V put(K key , V value)

{

if (value == null)

throw new Exception();

if (count >= threshold)

rehash();

index = key.hashCode() % length;

table[index] = new Entry(key, value);

count++;

return value;

}

*simplified from java.util.HashTable jdk6.0

Exception

Invocation that changes
a lot of the object state

Some
computation

30

Hypothesis

We can accurately predict the runtime
frequency of program paths by analyzing
their static surface features

Goal:

• Know what programs are likely to do without
having to run them (produce a static profile)

31

Applications for Static Profiles

Indicative (dynamic) profiles are often unavailable

Profile information can improve many analyses

• Profile guided optimization

• Complexity/Runtime estimation

• Anomaly detection

• Significance of difference between program
versions

• Prioritizing output from other static analyses

32

Approach

• Model path with a set of features that may
correlate with runtime path frequency

• Learn from programs for which we have
indicative workloads, we used a Logistic
Regression

• Predict which paths are most or

least likely in other programs

33

Evaluation

Choose 5% of all paths
and get 50% of

runtime behavior
Ranking by our
metric

Baseline: random
ranking

34

Evaluation

Baseline: random
ranking

Choose 1 path per
method and get 94%
of runtime behavior

Ranking by our
metric

35

Related Work

• Static Branch Prediction [Ball & Larus ’92]

– For each branch, which direction is most likely

– In a direct comparison, our tool is better

36

Conclusion

• A formal model that statically predicts
relative dynamic path execution frequencies

• The promise of helping other program
analyses and transformations

37

Metrics for:

• Code Readability

• Path Execution Frequency

Algorithms for Documentation of:

• Exceptions

• Code Changes

• APIs Published

In Progress

ISSTA ‘08

ICSE ‘09

ISSTA ‘08 TSE ‘10

38

/**

* Extend this Execution path by one level.

*

* @throws IllegalStateException If the move path invalid..

*/

private List<ExecutionPath> extend (ExecutionPath ep)

{

paths = new LinkedList<ExecutionPath>();

Unit last = ep.getLast();

List<Unit> succs = graph.getSuccsOf(last);

//this is the end of the path

if (succs.isEmpty())

{

ep.setComplete(true);

paths.add(ep);

return paths;

}

if (succs.size() == 1)

{

Unit s = succs.get(0);

if (ep.contains(s))

{

//do nothing

}

else

{

ep.addLast(s);

if (graph.getTails().contains(s))

{

ep.setComplete(true);

}

Documentation

Exceptions
APIs

Generate for:

/**

* Extend this Execution path by one level.

*

* @throws IllegalStateException If the move path invalid..

*/

private List<ExecutionPath> extend (ExecutionPath ep)

{

paths = new LinkedList<ExecutionPath>();

Unit last = ep.getLast();

List<Unit> succs = graph.getSuccsOf(last);

//this is the end of the path

if (succs.isEmpty())

{

ep.setComplete(true);

paths.add(ep);

return paths;

}

if (succs.size() == 1)

{

Unit s = succs.get(0);

if (ep.contains(s))

{

//do nothing

}

else

{

ep.addLast(s);

if (graph.getTails().contains(s))

{

ep.setComplete(true);

}

Version Changes

Key: Use symbolic
execution and
summarization
heuristics to generate
human-readable
results.

/**

* Extend this Execution path by one level.

*

* @throws IllegalStateException If the move path invalid..

*/

private List<ExecutionPath> extend (ExecutionPath ep)

{

paths = new LinkedList<ExecutionPath>();

Unit last = ep.getLast();

List<Unit> succs = graph.getSuccsOf(last);

//this is the end of the path

if (succs.isEmpty())

{

ep.setComplete(true);

paths.add(ep);

return paths;

}

if (succs.size() == 1)

{

Unit s = succs.get(0);

if (ep.contains(s))

{

//do nothing

}

else

{

ep.addLast(s);

if (graph.getTails().contains(s))

{

ep.setComplete(true);

}

39

Use

• For Internal Developers

– Easier to keep track of what’s going on

• For Maintenance and Testing

– Easier to read old code.

• For External Developers

– Easier to integrate off-the-shelf software libraries

40

Three Types of Documentation

• Exceptions

• Code Changes

• APIs

41

Documenting Exceptions

/**

* @throws Exception If the value is null

*/

public V put(K key , V value)

{

if (value == null)

throw new Exception();

if (count >= threshold)

rehash();

index = key.hashCode() % length;

...

*simplified from java.util.HashTable jdk6.0

Best practice dictates
that exceptions should
be documented

42

Documenting Exceptions

/**

* @throws Exception If the value is null

*/

public V put(K key , V value)

{

if (value == null)

throw new Exception();

if (count >= threshold)

rehash();

index = key.hashCode() % length;

...

*simplified from java.util.HashTable jdk6.0

Best practice dictates
that exceptions should
be documented

Does this method
throw an exception?

43

Importance

Mishandling or Not handling can lead to:

• Security vulnerabilities

• May disclose sensitive implementation
details

• Breaches of API encapsulation

• Any number of minor to serious system
failures

44

Hypothesis

Mechanical documentation of exceptions can
be at least as good as human on average.

• More complete

• More accurate

We extract paths to throw statements and
use symbolic execution to generate path
predicates

45

Examples

• Sometimes we do better:

• Sometimes we do about the same:

• Sometimes we do worse:

46

Key Results
Our documentation is

as good as human over
80% of the time

47

Code Change Examples

jfreechart rev 3405

(start): Changed from Date to long,
(end): Likewise,
(getStartMillis): New method,
(getEndMillis): Likewise,
(getStart): Returns new date instance,
(getEnd): Likewise.

Jabref rev 2917

Fixed NullPointerException when
downloading external file and file directory
is undefined.

Phex 3542

Minor change

48

Subject: An appeal for more
descriptive commit messages
I know there is a lot going on but
please can we be a bit more
descriptive when commiting
changes. Recent log messages
have included:
"some cleanup"
"more external service work"
"Fixed a bug in wiring"
which are a lot less informative
than others...

http://osdir.com/ml/apache.webservices
.tuscany.devel/2006-02/msg00227.html

Toby,
Going forward, could you I ask you to be more
descriptive in your commit messages? Ideally you
should state what you've changed and also why
(unless it's obvious)... I know you're busy and this
takes more time, but it will help anyone who looks
through the log ...

http://lists.macosforge.org/pipermail/macports-dev/2009-
June/008881.html

Sorry to be a pain in the neck about this, but could
we please use more descriptive commit
messages? I do try to read the commit emails, but
since the vast majority of comments are "CAY-
XYZ", I can't really tell what's going on unless I
then look it up.

http://osdir.com/ml/java.cayenne.devel/2006-
10/msg00044.html

49

Key Idea

• Generate Documentation that describes the
effect of a change on the runtime behavior
of a program

– What conditions are necessary to activate the
change

– What the new behavior is

50

Algorithm

• Generate predicates for each statement

• Compare predicates across versions

• Summarize change and distill structured
output

When X,

Do Y

Instead of Z

51

Evaluation
Our documentation is

as good as human over
80% of the time

52

API Usage Documentation

“The greatest obstacle to learning
an API … is insufficient or
inadequate examples” 9

9. M. P. Robillard. What Makes APIs Hard to Learn? Answers
from Developers. IEEE Softw., 26(6):27-34, 2009.

53

API Usage Documentation

java.util.ObjectOutputStream

FileOutputStream fos = new
FileOutputStream("t.tmp");

ObjectOutputStream oos = new
ObjectOutputStream(fos);

oos.writeInt(12345);
oos.writeObject("Today");
oos.writeObject(new Date());
oos.close();

weka.core.Instance

// Create the instance
Instance iExample = new Instance(4);
iExample.setValue((Attribute)fvWekaAttributes.elementAt(0), 1.0);
iExample.setValue((Attribute)fvWekaAttributes.elementAt(1), 0.5);
iExample.setValue((Attribute)fvWekaAttributes.elementAt(2), "gray");
iExample.setValue((Attribute)fvWekaAttributes.elementAt(3), "positive");

isTrainingSet.add(iExample);

java.util.BufferedReader

BufferedReader in = new
BufferedReader(new FileReader("foo.in"));

54

Key Idea

• Combine insights from specification mining,
automatic documentation, and code
summarization

• Specification mining false positives – usage
patterns that are common but aren't
required – are exactly what we want to find.

55

Algorithm

Given a target class to document, and a set of
code files that use the class (e.g., mined from
the web).

– Model usages of the classes as a finite state
machine or regular expression

– Combine machines that are similar

– Output most common machines as usage
examples

56

Evaluation

Manual comparison to JavaDoc examples

• Are we able to come up with the same
examples?

– Precision / Recall / F-measure

• User Study

57

Conclusion

To create algorithms for three types of
documentation:

– Exceptions

– Code Changes

– API Usage

Evaluate by comparing to human generated
documentation and/or with a user study

58

Research Timeline

59

A 2005 NASA survey found that the most
significant barrier to code reuse is that
software is “too difficult to understand” or is
“poorly documented.” 10

10. Nasa Software Reuse Working Group. Software reuse survey.
http://www.esdswg.com/softwarereuse/Resources/library/worki
ng_ group_ documents/survey2005, 2005.

60

Conclusion: Understanding programs at many levels

• How easy is it to understand and
maintain this software? Readability

• Where are the corner cases, and where
are the common paths? Runtime Behavior

• How can this code go wrong?
Documenting Exceptions

• How do I use this code? Documenting APIs

• What does proposed fix really do?
Documenting Changes

All Questions Encouraged

A Human-Centric Approach to Program Understanding

DocumentationRuntime BehaviorReadability

These slides, the proposal document, and much
more information is available at:

http://arrestedcomputing.com/proposal

Thanks for Coming!

