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1 Introduction

Software development is a large global industry, but software products continue to ship with known and
unknown defects [60]. In the US, such defects cost firms many billions of dollars annually by compromising
security, privacy, and functionality [73]. To mitigate this expense, recent research has focused on finding
specific errors in code (e.g., [13, 25, 29, 34, 35, 47, 48, 61, 66, 86]). These important analyses hold out the
possibility of identifying many types of implementation issues, but they fail to address a problem underlying
all of them: software is difficult to understand.

Professional software developers spend over 75% of their time trying to understand code [45, 76]. Reading
code is the most time consuming part [31, 39, 78, 85] of the most expensive activity [77, 87] in the software
development process. Yet, software comprehension as an activity is poorly understood by both researchers
and practitioners [74, 106].

Our research seeks to develop a general and practical approach for analyzing program understandability
from the perspective of real humans. In addition, we propose to develop tools for mechanically generating
documentation in order to make programs easier to understand. We will focus on three key dimensions of
program understandability: readability, a local judgment of how easy code is to understand; runtime
behavior, a characterization of what a program was designed to do; and documentation, non-code text
that aids in program understanding.

Our key technical insight lies in combining multiple surface features (e.g., identifier length or number
of assignment statements) to characterize aspects of programs that lack precise semantics. The use of
lightweight features permits our techniques to scale to large programs and generalize across multiple applica-
tion domains. Additionally, we will continue to pioneer techniques [19] for generating output that is directly
comparable to real-world human-created documentation. This is useful for evaluation, but also suggests that
our proposed tools could be readily integrated into current software engineering practice.

Software understandability becomes increasingly important as the number and size of software projects
grow: as complexity increases, it becomes paramount to comprehend software and use it correctly. Fred
Brooks once noted that “the most radical possible solution for constructing software is not to construct it
at all” [16], and instead assemble already-constructed pieces. Code reuse and composition are becoming
increasingly important: a recent study found that a set of programs was comprised of 32% re-used code (not
including libraries) [88], whereas a similar 1987 study estimated the figure at only 5% [38]. In 2005, a NASA
survey found that the most significant barrier to reuse is that software is too difficult to understand or is
poorly documented [42] — above even requirements or compatibility. In a future where software engineering
focus shifts from implementation to design and composition concerns, program understandability will become
even more important.
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2 Research Overview and Challenges

We propose to model aspects of program understandability and to generate documentation artifacts for
the purposes of measuring and improving the quality of software. We couple programming language anal-
ysis techniques, such as dataflow analyses and symbolic execution, with statistical and machine learning
techniques, such as regression and Bayesian inference, to form rich descriptive models of programs.

We believe that in addition to providing practical support for software development, descriptive models of
program understandability may offer new and significant insight into the current state of large-scale software
design and composition. We will create algorithms and models to analyze how code is written, how it is
structured, and how it is documented. We will evaluate our models empirically, by measuring their accuracy
the quality or behavior of software.

2.1 Measuring Code Readability

We define readability as a human judgment of how easy a text is to understand. In the software domain, this
is a critical determining factor of quality [1]. The proposed research challenge is (1) to develop a software
readability metric that agrees with human annotators as well as they agree with each other and scales to
large programs. This analysis is based on textual code features that influence readability (e.g., indentation).
Such a metric could help developers to write more readable software by quickly identifying code that scores
poorly. It can assist in ensuring maintainability, portability, and reusability of the code. It can even assist
code inspections by helping to focus effort on parts of a program that are mostly likely to need improvement.
Finally, it can be used by other static analyses to rank warnings or otherwise focus developer attention on
sections of the code that are less readable and, as we show empirically, more likely to contain bugs.

2.2 Predicting Runtime Behavior

/**

* Maps the specified key to the specified

* value in this hashtable

*/

public void put(K key , V value)

{

if ( value == null )

throw new Exception ();

if ( count >= threshold )

rehash ();

index = key.hashCode () % length;

table[index] = new Entry(key , value);

count ++;

}

Figure 1: The put method from the Java SDK version
1.6’s java.util.Hashtable class. Some code has been
modified for illustrative simplicity.

Runtime Behavior refers to what a program is most
likely to do — information that is typically unavail-
able for a static analysis. We claim that understand-
ing runtime behavior is critical to understanding
code. This conjecture is supported by the obser-
vation that runtime behavior information is a key
aspect of documentation. First, consider that docu-
mentation is based on code summarization: if sum-
marization were not important, then documentation
would be unneeded as code would document itself.
Second, summarization implicitly requires a prior-
itization of information based on factors including
runtime behavior. For example, the function in Fig-
ure 1 from the Java standard library implementa-
tion of Hashtable, is documented by describing its ex-
pected most common behavior, “Maps the specified
key to the specified value. . . ” rather than describ-
ing what happens if count >= threshold or value
== null. Our proposed technique identifies path
features, such as “throws an exception” or “writes
many class fields”, that we find are indicative of run-
time path frequency.

The research challenge in this area is (2) to statically predict the relative execution frequency of
paths through source code. This analysis is rooted in the way developers understand and write programs. If
successful, we will be able to improve the utility of many profile-based hybrid analyses including optimizing
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compilers by reducing the need for profiling data, as well as to focus developer attention on corner cases
while new program functionality is being created or existing programs are composed.

2.3 Generating Documentation

Our third area of investigation is program documentation, which David Parnas claims is “the aspect of
software engineering most neglected by both academic researchers and practitioners” [74]. We propose to
develop tools and techniques to automatically generate human-readable documentation, thereby helping
developers understand software. The remaining research challenges are (3) to automatically generate
documentation for exceptional situations (4) to automatically generate example documentation
for APIs and (5) to automatically generate documentation for program changes, patches and
repairs. Challenges (3) and (4) would benefit software composition and integration. Challenge (5) would
supplement or replace log messages in change management systems, complement self-certifying alerts [27],
improve the usability of analyses that generate patches [100, 104], and aid defect triage [46, 51].

/**

* Moves this unit to america.

*

* @exception IllegalStateException

* If the move is illegal.

*/

public void moveToAmerica () {

if (!( getLocation () instanceof Europe ))

{

throw new IllegalStateException

("A unit can only be moved to" +

" america from europe.");

}

setState(TO_AMERICA );

}

Figure 2: The function Unit.moveToAmerica() from
FreeCol, an open-source game. Some code has been
omitted for illustrative simplicity.

Exceptions: Modern exception handling allows
an error detected in one part of a program to be
handled elsewhere depending on the context [40].
This construct produces a non-sequential control
flow that is simultaneously convenient and problem-
atic [67, 82]. Uncaught exceptions and poor sup-
port for exception handling are reported as major
obstacles for large-scale and mission-critical systems
(e.g., [3, 17, 23, 89]). Some have argued that the best
defense against this class of problem is the complete
and correct documentation of exceptions [62].

Unfortunately, the difficulty of documenting ex-
ceptions leads to many examples like the one shown
in Figure 2. Notice that the human provided
Javadoc documentation for the exception in this
method is “If the move is illegal”. This hides
what constitutes an illegal move, which might be
desirable if we expect that the implementation
might change later. However, an automated tool
could provide specific and useful documentation
that would be easy to keep synchronized with an
evolving code base. The algorithm we propose generates the additional Javadoc “IllegalStateException
thrown when getLocation() is not a Europe.”

FileOutputStream fos =

new FileOutputStream("t.tmp");

ObjectOutputStream oos =

new ObjectOutputStream(fos);

oos.writeInt (12345);

oos.writeObject("Today");

oos.writeObject(new Date ());

oos.close ();

fos.close ();

Figure 3: Excerpt from documentation of
java.util.ObjectOutputStream.

API Usage: In studies of developers, API usage examples
have been found to be a key learning resource [50, 64, 72, 92,
96]. Conceptually, documenting how to use an API is often
preferable to simply documenting the function of each of its
components.

Consider an example from Sun Microsystem’s published
documentation in Figure 3. This documentation demon-
strates a common use case for ObjectOutputStream: supply a
FileOutputStream to the constructor, write objects, and then
call close().

One study found that the greatest obstacle to learning an
API in practice is “insufficient or inadequate examples” [81].
We propose to design an algorithm that automatically gen-
erates documentation of this type. Given a corpus of usage
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examples (e.g., indicative uses mined from other programs), we propose to distill the most common use case
and render it in a form suitable for use as documentation.

Changes: Much of software engineering can be viewed as the application of a sequence of modifications
to a code base. Version control systems allow developers to associate a free-form textual log message (or
“commit message”) with each change they introduce [8]. The use of such commit messages is pervasive
among development efforts that include version control systems [68]. Version control log messages can help
developers validate changes, locate and triage defects, and generally understand modifications [7].

A typical log message describes either or both what was changed and why it was changed. For example,
revision 2565 of Jabref, a popular bibliography system, is documented with “Added Polish as language
option.” Revision 3504 of Phex, a file sharing program, is documented with “providing a disallow all
robots.txt on request.” However, log messages are often less useful than this; they do not describe changes
in sufficient detail for other developers to fully understand them. Consider Revision 3909 of iText, a PDF
library: “Changing the producer info.” Since there are many possible producers in iText, the comment fails
to explain what is being changed, under what conditions, or for what purpose.

The lack of high-quality documentation in practice is illustrated by the following indicative appeal from
the MacPorts development mailing list: “Going forward, could I ask you to be more descriptive in your
commit messages? Ideally you should state what you’ve changed and also why (unless it’s obvious) . . . I
know you’re busy and this takes more time, but it will help anyone who looks through the log . . . ”1 Our
proposed technique is designed to replace or supplement human documentation of changes by describing
the effect of a change on the runtime behavior of a program, including the conditions under which program
behavior changes and what the new behavior is.

3 Proposed Research

We propose several research thrusts for predicting and improving the quality of software as it is composed,
evolved and maintained:

1. To develop a software readability metric that agrees with human judgments.

2. To statically predict relative runtime execution frequencies.

3. To generate documentation for exceptional situations automatically.

4. To document APIs with usage examples automatically.

5. To document program changes automatically.

In the rest of this section we describe the proposed research in detail: Section 3.1 describes our modeling
approach and Section 3.2 describes output generation. In Section 4 we lay out our experimental design and
evaluation for each research thrust.

3.1 Analysis and Characterization

The factors which contribute to program understanding are not well-known. We propose to use supervised
learning to develop models of readability and runtime behavior based on a combination of easily-measured
syntactic or semantic qualities of code.

We find machine learning to be particularly well-suited to exploring program understanding. First,
because we have observed that many human opinions can be efficiently and accurately modeled based on
simple “surface” qualities. These surface features are easy to extract, allowing our analyses to scale to
large programs. Second, the models we propose are domain agnostic, making them robust in comparison
to traditional approaches that rely on precisely defined specifications. For example, while work used to

1http://lists.macosforge.org/pipermail/macports-dev/2009-June/008881.html
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software model check one device driver may be difficult to re-use when model checking a separate driver
with a different correctness argument, a model of software readability or frequency generated from data on
one project can generalize to other unrelated projects [20]. Our process also has the advantage that it can
be applied incrementally, producing results immediately for local program modifications

We characterize software using a set of features. With respect to this feature set, each code artifact can
be viewed as a vector of numeric entries: the feature values for that artifact. Additionally, for each learning
task, we define a class feature (or dependent feature) that represents our learning goal (e.g., readability).
Each model is trained on a set of example artifacts for which the class feature value is known. In the case
of readability, human annotators provide the training data; to predict runtime behavior we can employ
benchmark programs with indicative workloads. The model resulting from this training can be used on
off-the-shelf software that lacks such labeled training data.

3.1.1 Research: Measuring Software Readability

Perhaps everyone who has written code has an intuitive notion of the concept of software readability, and that
program features such as indentation (e.g., as in Python [99]), choice of identifier names [79], and comments
play a significant part. Dijkstra, for example, claimed that the readability of a program depends largely upon
the simplicity of its sequencing control, and employed that notion to help motivate his top-down approach
to system design [32]. We propose to create descriptive and normative models of software readability based
on these features, which can be extracted automatically from programs.

Human notions of code readability arise from a complex interaction of textual features (e.g., line length,
whitespace, choice of identifier names, etc.). We propose to use a feature set based on this conjecture to model
readability. We will employ human annotators to provide training input to the model. Such a model will
allow us to characterize the extent to which humans agree on what makes code readable. It will also permit
us to construct a metric for software readability suitable for use in software quality analysis and evaluation
tasks. Our preliminary results, with data from computer science students, suggest that readability correlates
with project stability and defect density [20].

3.1.2 Research: Predicting Runtime Behavior

We hypothesize that information about the expected runtime behavior of imperative programs, including
their relative path execution frequency, is often embedded into source code by developers in an implicit but
predictable way. We hypothesize that paths that change a large amount of program state (e.g., update many
variables, throw an exception thus lose stack frames, etc.) are expected by programmers to be executed more
rarely than paths that make small, incremental updates to program state (e.g., changes to a few fields).

We propose to construct a model of static program paths suitable for estimating runtime frequency.
We consider method invocations between methods of the same class to be part of one uninterrupted path;
this choice allows us to be very precise in common object-oriented code. Conversely, we split paths when
control flow crosses a class boundary; this choice allows us to scale to large programs which we foresee as
the principal challenge of our approach.

Central to our technique is static path enumeration, whereby we enumerate all acyclic intra-class paths in
a target program. To train our model and experimentally validate our technique, we also require a process
for dynamic path enumeration that counts the number of times each path in a program is executed during
an actual program run. The goal of this work is to produce a static model of dynamic execution frequency
that agrees with the actual execution frequency observed on held-out indicative workloads.

3.2 Documentation and Summarization

In addition to measuring code understandability, we propose to improve it by creating tools capable of
automatically generating documentation. Our general strategy is to mimic human documentation by sum-
marizing the effect of a statement on the functional behavior and state of a program, rather than simply
printing the statement in question. Automatic documentation of this type holds out the promise of replacing
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much of human documentation effort with documentation artifacts that are more consistent, more accurate,
and easier to maintain than traditional documentation.

Our technique is based on a combination of program analyses that can be used to summarize and sim-
plify code. Symbolic execution [70] and dataflow analysis [80] allows us to condense sequences of instructions
into single ones by evaluating and combining terms. We couple this with alias analysis (e.g., [28]) to re-
solve invocation targets. Additionally, we propose to develop new dynamic summarization heuristics to
condense the representation of the documentation as needed. For path predicates, we can re-arrange terms
to condense their textual representation. For statements, we can select for relevancy and importance espe-
cially in consideration of runtime behavior metrics (e.g., prefer to document a method call to an assignment
statement).

We now describe three research thrusts based on the generation of documentation.

3.2.1 Research: Documentation of Exceptional Situations

We propose to construct an algorithm that statically infers and characterizes exception-causing conditions
in programs. The output of the algorithm must be usable as human-readable documentation of exceptional
conditions.

First, we locate exception-throwing instructions and track the flow of exceptions through the program.
We propose two improvements over previous work [83]: an initial analysis and processing of the call graph
for increased speed, and a more precise treatment of exception raising statements to ensure soundness.

Second, we symbolically execute control flow paths that lead to these exceptions. This symbolic execution
generates boolean formulae over program variables that describe feasible paths. If the formula is satisfied at
the time the method is invoked, then the exception can be raised. We then output a string representation
of the logical disjunction of these formula for each method/exception pair. This step includes a set of
transformations to increase readability and brevity of the final documentation.

A key challenge is ensuring scalability in a fully inter-procedural analysis. In addition to call-graph
preprocessing and infeasible path elimination, we propose to enumerate paths “backward” from exception
throwing statements. Because these statements are relatively rare (as compared to method call sites) this
allows us to significantly reduce time needed for path enumeration.

3.2.2 Research: Documenting APIs with Usage Examples

We propose to use techniques from specification [59, 101, 103] and frequent itemset [2] mining to model API
usage as sequences of method calls and construct documentation based on that model.

Given a target class or set of related methods to document, and a corpus of code that uses the methods,
we construct a usage model: a set of finite state machines abstracting actual usage (as in [105]) along with
a count of the number of occurrences conforming to each. To construct the usage model, we first statically
enumerate intra-procedural static traces through the corpus. These traces are then sliced [52] to represent
only uses of the class to be documented. That is, while many programs may use sockets, we wish to
abstract away program-specific details (e.g., the data sent over the socket) while retaining API-relevant
details (e.g., open before read or write before close). We then derive state machine models by traversing
and symbolically executing the traces. Next, we merge the machines to minimize the set of patterns. Finally,
the machines can be sorted by commonality and the model can be distilled as documentation.

3.2.3 Research: Documenting Program Changes

We propose to investigate how code changes are documented and seek to automate the process. Our goal is
a precise characterization of the effect of a source code change on a program’s execution.

In practice, the goal of a log message may be to (A) summarize what happened in the change itself (e.g.,
“Replaced a warning in Europe.add with an IllegalArgumentException”) and/or (B) place the change in
context to explain why it was made (e.g., “Fixed Bug #14235”). We refer to these as What and Why
information, respectively. While most Why context information may be difficult to generate automatically,
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Figure 4: High-level view of the architecture of our algorithm for generating change documentation. Path
predicates are generated for each statement. Inserted statements, deleted statements, and statements with
changed predicates are documented. The resulting documentation is subjected to a series of lossy summa-
rization transformations, as needed, until it is deemed acceptable (i.e., sufficiently concise).

we hypothesize that it is possible to mechanically generate What documentation suitable for replacing most
human-written summarizations of code change effects.

Our proposed algorithm summarizes the runtime conditions necessary to cause control flow to reach the
changed statements, the effect of the changed statements on functional behavior and program state, as well
as what the program used to do under those conditions. At a high level, our approach generates structured,
hierarchical documentation of the form:

When calling A(), if X, do Y instead of Z.

Our proposed algorithm follows a pipeline architecture, as shown in Figure 4. In the first phase, we use
symbolic execution to obtain path predicates, formulae that describe conditions under which a path can be
taken or a statement executed [11, 24, 53, 84], for each statement in both versions of the code. In phase two,
we identify statements which have been added, removed, or changed. Statements are grouped by predicate
and documentation is generated in a hierarchical manner. All of the statements guarded by a given predicate
are sorted by line number.

Summarization is a key component of our algorithm. Without explicit steps to reduce the size of the
raw documentation we generate, the output is likely too long and too confusing to be useful. We base this
judgment on the observation that human-written log messages are generally less than 10 lines long. To
mitigate the danger of producing unreadable documentation, we introduce a set of transformations that can
be sequentially applied.

Our summarization transformations are synergistic and can be iteratively applied, much like standard
dataflow optimizations in a compiler. Just as copy propagation creates opportunities for dead code elimi-
nation when optimizing basic blocks, removing extraneous statements creates opportunities for combining
predicates when optimizing structured documentation. Unlike standard compiler optimizations, however,
not all of our transformations are semantics-preserving. Instead, many are lossy, sacrificing information
content to save space. The goal of each transformation is to reduce the total amount of text in the final
output while maintaining information value.

4 Proposed Experiments

In this section, we outline our proposed experimental methodology for each research thrust. We propose to
gather data from and test on large, popular, open source programs. Accuracy and scalability are overarching
concerns.

Each major thrust of our proposal can be investigated independently. However, we anticipate that success
in one area can be extended to improve other analyses. For example, an accurate execution frequency
metric can help us better characterize the impact of a program change and thus lead to more successful
documentation generation.
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Figure 5: Inter-annotator agreement. For each annotator (in sorted order), the value of Spearman’s ρ between
the annotator’s judgments and the average judgments of all the annotators (the model that we attempt to
predict). Also plotted is Spearman’s ρ for our metric as compared to the average of the annotators.

4.1 Experiments: Measuring Software Readability

Our metric for software readability is a mapping from an arbitrary source code snippet to a finite score
domain (i.e., the closed interval [0,1]) indicating how easy the code is for a human reader to understand.

Our readability model can be evaluated directly, as a predictive model for human readability annotations,
and indirectly by exploring correlations with traditional metrics for software quality. In our preliminary
work [20] (Distinguished Paper Award, ISSTA 2008), we showed how a model derived from the judgments of
120 students, and based on a simple set of local code features, can be 80% accurate, and better than a human
on average, at predicting readability judgments, as shown in Figure 5. Furthermore, we have demonstrated
that this metric correlates strongly with two traditional measures of software quality, code changes and
defect reports. For example, we have shown how our metric for readability correlates with the self-reported
maturity of several large projects from Sourceforge, a repository for open-source software.

Our success in developing a normative model hinges on our human-based study of the readability of
program changes. Our goal is to construct a model that agrees with human-judgments at the level at which
study participants agree with each other. We use Spearman’s ρ to measure correlation between judgements.

4.2 Experiments: Predicting Execution Behavior

Our model for execution frequency is a mapping from static, acyclic, intra-class program paths to a frequency
estimate on the closed interval [0,1]. We propose to evaluate our model of execution frequency as a “temporal
coverage metric” (analogous to a code coverage metric evaluation for test-cases) and as a static branch
predictor.

For temporal coverage, we use our algorithm to enumerate and rank all static paths in the program.
We then take the top k paths and run an instrumented version of the program on its indicative workloads,
measuring how much time it spends on those k paths and how much time it does not. We deem our model
successful if a small number of paths (i.e., small values of k) can explain more than half of run-time behavior.
In preliminary work [18], we show that the predicted top 5% of program paths represent over 50% of the
total runtime on the SPECjvm98 benchmarks. In addition, we can select one hot path per method and
account for over 90% of the total runtime, even though the average number of paths per method is over 12
(see Figure 6).

We also propose to evaluate our model as a static branch predictor, thus admitting comparison with
previous work in static characterization of runtime behavior. In such an experiment, the program is run
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Figure 6: Percentage of the total run time covered by examining the top paths of the entire program and by
examining the top paths in each method.

on an indicative workload and, at each branch, the static branch predictor is queried for a prediction. The
fraction of successful predictions is the hit rate. A preliminary static branch predictor based on our technique
has a 69% hit rate [18] compared to the 65% of previous work [10]. We consider our model successful if it
can be used to predict branching behavior more accurately, on average, than the best approach currently
known.

4.3 Evaluating Documentation

Each type of documentation artifact we propose to generate is designed to mimic a human-created docu-
mentation type found commonly in open source software. This property allows us to evaluate our generated
documentation by direct comparison to human documentation — either manually or via a human study.

To evaluate each proposed tool, we will run it on a set of benchmark programs that contain the type of
documentation in question. We will then pair each existing piece of documentation with the documentation
suggested by our algorithm and manually review each pair. We propose to categorize each according whether
the tool-generated documentation was better, worse, or about the same as the human-created version present
in the code. In general, to be the same the generated documentation must contain all of the information
in the matching human documentation. We consider it better only if the human documentation is clearly
inaccurate, and worse in all other cases. To mitigate bias, the annotation will be precisely defined and carried
out by multiple annotators. We can then utilize correlation statistics including Kohen’s κ and Spearman’s
ρ to judge the degree of inter-annotator agreement. Documentation size will be considered separately from
precision.

Additionally, we propose several user studies measuring the impact of our tools on human judgments
and in simulated software engineering tasks. We have previous success with similar experiments involving
human subjects [20].

We now briefly describe the experiment details for each documentation type and present examples.
Additionally, we describe secondary experiments designed to measure, for example, how often the tools can
be applied in real world software.

4.4 Experiments: Documentation of Exceptional Situations

For exception documentation, we plan to compare directly with embedded Javadoc comments. Our pre-
liminary work [19] involved almost two million lines of code and a direct comparison with 951 pieces of
human-written documentation. Documentation generated by our prototype tool was at least as good or
better 88% of the time and strictly better about 25% of the time.

Machine-generated documentation can be more accurate and much more complete than human documen-
tation. For example, consider the following documentations proposed for a certain exception instance; first
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is the existing human-written documentation and second is a documentation generated by our algorithm:

Existing: id == null

Generated: id is null or id.equals("")

We have also found that human-written prose is typically not necessary to succinctly convey information
about program concepts such as exceptional behavior. In the following example, we observe that with
properly named identifiers, documentation can be expressed clearly in programmatic terms.

Existing: has an insufficient amount of gold.

Generated: getPriceForBuilding() > getOwner().getGold()

Perhaps most importantly, we found that humans only bothered to document legitimate exceptional
situations 40% of the time. An automatic tool that generates candidate documentation would thus be of
great help to ensure completeness of documentation for exceptions.

We will be successful if our machine-generated documentation is judged the same or better than human
documentation at least 80% of the time in a wide range of open source programs. Our preliminary studies
show this is both achievable and likely sufficient to promote adoption of the tool [19].

4.5 Experiments: Documentation of API Usage

For API usage documentation, we propose to compare the output of our algorithm to usage examples
embedded in Javadoc and mined from the publicly-available sources, such as popular programs or ref-
erence manuals. To be successful, our generated examples must contain precisely the same information
as in human written examples. For example, this machine-generated example describes a common use of
ObjectOutputStream similarly to Figure 3 presented earlier.

FileOutputStream x = new FileOutputStream(string );

ObjectOutputStream y = new ObjectOutputStream(x);

y.write *(); // any number of times

y.close ();

x.close ();

Additionally, we propose a human study to directly evaluate the utility of the proposed tool. We will
charge a group of upper-level computer science students with a few small software engineering tasks. Each
task will require the use of an API that the students are not previously familiar with. Half of the students, the
treatment group, will be allowed to view documentation generated by our tool. The other half, the control
group, will only be presented with the existing documentation, which will not include any usage examples.
We will then measure the time to competition and correctness of the student solutions. We hypothesize that
the treatment group will complete the task more quickly and with fewer errors than the control group.

To evaluate the potential impact of our tool, we will also investigate how often classes contain methods
that are good candidates for this type of documentation (i.e., methods that display a common use pattern).

We will be successful if (A) our machine-generated documentation is judged the same or better than
human documentation at least 80% of the time, and (B) our human study shows a significant correlation
between the speed and accuracy of participants and the presence of our tool-generated documentation.

4.6 Experiments: Documenting Program Changes

Our primary evaluation for program change documentation will be a manual comparison to version control
log messages. For example, consider revision 3837 from iText, a PDF library. Aside from its length, we
judge the generate output to be on par with the existing human output in this case, because both contain
the same information, that clear() is no longer called.
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Figure 7: The relative quality of the at-most-10-line documentation produced by our prototype tool for 250
changes (50 per program) in 880kLOC that were already human-documented with What information.

Existing:

"no need to call clear ()"

Generated:

When calling PdfContentByte.reset ()

No longer if stateList.isEmpty(),

call stateList.clear()

We have conducted an empirical study of 1000 commit messages. Based on its results, we have chosen
“10 lines” as a maximal size cutoff: beyond that point, generated documentation is deemed insufficiently
concise (by contrast, the average diff is typically over 35 lines long). Given a size cutoff, we will take code
changes for which human-written log messages are available, generate documentation for them, and compare
the What information content of our generated messages to the human ones.

Figure 7 shows the example of such a comparison on 250 pieces of documentation generated by our
prototype tool. To perform the evaluation, we first extracted all What information from the human-written
documentation: the generated documentation must include all true facts mentioned by the humans to be
judged “same”. If the generated documentation is more accurate or more precise, it is judged “better”. All
other cases are judged “worse”.

In addition to a manual assessment, we propose a study involving human subjects, who, unfamiliar
with the program at hand are shown the patch (and the before and after code, if they desire) as well as
the two documentations and asked to make a judgment. We will consider our algorithm successful if tool-
generated patch documentation is judged by humans to be at least as accurate and useful as human-provided
documentation in 80% of cases.

Finally, we will evaluate the size of our generated documentation, in lines and number of characters.
This must be similar to the size of comparable human-created documentation to validate our summarization
techniques.

5 Background

Readability. To further understand why an empirical and objective model of software readability is useful,
consider the use of readability metrics in natural languages. The Flesch-Kincaid Grade Level [36], the
Gunning-Fog Index [43], the SMOG Index [63], and the Automated Readability Index [55] are just a few
examples of readability metrics that were developed for ordinary text. Despite their relative simplicity, they
have each been shown to be quite useful in practice. Flesch-Kincaid, which has been in use for over 50 years,
has not only been integrated into such popular text editors as Microsoft Word, but has also become a United
States governmental standard. Agencies, including the Department of Defense, require many documents and
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forms, internal and external, to meet have a Flesch readability grade of 10 or below (DOD MIL-M-38784B).
Defense contractors also are often required to use it when they write technical manuals.

Much of the work in the area of source code readability today is based on coding standards (e.g., [5, 22,
97]). Style checkers such as pmd [26] and The Java Coding Standard Checker are employed to automatically
enforce these standards. We propose to address two primary problems with these standards. First, they are
designed largely arbitrarily; it is not known whether the practice they advocate is best (i.e., correlates with
human judgments of readability). Second, their correlation with defect density and stable software evolution
is unknown. We will develop a model of readability that correlates with human judgments as well as with
conventional software quality metrics.

Current strategies for improving the readability and consistency of software and documentation include
naming standards [94], software inspections [56], and analysis tools [6]. We find naming standards to be also
largely arbitrary and not strongly correlated with code quality [20], while software inspections represent a
large burden that may provide inconsistent results.

Runtime Behavior. The work most similar to our proposed approach is static branch prediction, first
explored by Ball and Larus [10]. They showed that simple heuristics are useful for predicting the frequency
at which branches are taken. Extensions to their work have achieved modest performance improvements by
employing a larger feature set and neural network learning [21].

We have chosen to focus on predicting paths instead of predicting branches for two reasons. First, we
claim that path-based frequency can be more useful in certain static analysis tasks, including our proposed
work in machine generated documentation; see Ball et al. [12] for an in-depth discussion. Second, paths
contain much more information than do individual branches, and thus are much more amenable to the
process of formal modeling and prediction.

Automatic workload generation deals with constructing reasonable program inputs. This general tech-
nique has been adapted to many domains [58, 65, 69]. While workload generation is useful for stress testing
software and for achieving high path coverage, it has not been shown suitable for the creation of indicative
workloads that correlate strongly with standard test suites. In contrast, we attempt to model indicative
execution frequencies.

More recent work in concolic testing [90, 91] explores all execution paths of a program with systematically
selected inputs to find subtle bugs. It interleaves static symbolic execution to generate test inputs and
concrete execution on those inputs. Symbolic values that are too complex for the static analysis to handle
are replaced by concrete values from the execution. We propose to make static predictions about dynamic
path execution frequency; we do not focus on or propose direct bug-finding.

Documentation. We propose to automatically generate human-readable descriptive documentation
from unannotated source code. Many tools such as Doxygen, NDoc, Javadoc, Sandcastle, ROBODoc,
POD, or Universal Report can be used to extract certain comments and software contracts from source
code and create reference documents in such forms as text or HTML. While such tools can be useful by
allowing for quick reference to developer-written comments, that utility is necessarily dependent on the
conscientiousness of developers in providing comments that are accurate, complete, and up-to-date [71].

In practice, documentation and similar artifacts exhibit inconsistent quality, are frequently incomplete or
unavailable, and can be difficult to measure in a meaningful way [19, 37, 49, 98]. One of the main difficulties
in software maintenance is a lack of up-to-date documentation [30]. We are unaware of any previous effort
to create machine-generated documentation suitable for supplementing or replacing these comments. We
propose to reduce the documentation burden on developers by creating tools that produce three types of
documentation automatically: for exceptions, for API usage, and for program changes.

API usage documentation is related to the well-researched topic of specification mining. A specification
miner attempts to derive machine-checkable specifications by examining program source, traces, etc. Here,
specification is loosely defined as “some formal description of correct program behavior” and is typically
taken to mean “partial-correctness temporal safety property”. Many miners encode legal program behav-
ior specifications as finite state machines capturing such temporal safety properties [4, 59, 103, 105]. For
example, a specification miner might identify that usages of Stream.open() must always be followed by
Stream.close(). An important problem in specification mining is a high rate of false positives, defined as
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a candidate specification emitted by a miner that does not encode required behavior [34]. An example false
positive is that Iterator.hasNext() must be followed by Iterator.next(): this behavior is common, but
not required. Our proposed research avoids this pitfall and in fact takes advantage of it by mining common
behavior. This observation allows us to leverage much previous work in modeling temporal properties of
programs toward a new target: documentation.

Textual differencing utilities such as diff, represents the state-of-the-art in automatic change documen-
tation. However, diff cannot replace human documentation effort. We conjecture that there are two reasons
raw diffs are inadequate: they are too long and too confusing. We propose to overcome these issues by
producing structured documentation describing the affect of a program change and by applying unique and
empirically-validated summarization transformations.

6 Research Impact

A principal strength of our proposed research is generality. The work we propose can be easily adapted
across languages, domains, and applications. We envision a series of models and tools that can be used to
address many challenges associated with program understanding.

Improving Existing Analyses. Recent work has demonstrated that our preliminary execution path
metric is useful for reducing false positives in the domain of specification mining [59], where it was three
times as significant as weighting by code churn, path density or the presence of duplicate code and helped
to reduce false positives by an order of magnitude.

Profile-guided optimization refers to the practice of optimizing a compiled binary subsequent to observing
its runtime behavior on some workload (e.g., [9, 15, 44]). Our technique for runtime behavior prediction
has the potential to make such classes of optimization more accessible; first, by eliminating the need for
workloads, and second by removing the time required to run them and record profile information. A static
model of relative path frequency could help make profile-guided compiler optimizations more mainstream.

Finite maintenance resources inhibit developers from inspecting and potentially addressing every warning
issued by existing software analyses [57] or flagged in bug tracking systems [46, 51]. An analysis that produces
a bug report that is never fixed is not as useful as it could be. Existing analysis reports, such as backtraces,
are not a panacea: “there is significant room for improving users’ experiences . . . an error trace can be
very lengthy and only indicates the symptom . . . users may have to spend considerable time inspecting an
error trace to understand the cause.” [41] Our proposed metrics will help developers prioritize effort to bugs
that are most likely to be encountered in practice. Furthermore, there has been a recent effort to create
self-certifying alerts [27] and automatic patches [100, 104, 75, 93] to fix the flaws detected by static analyses.
In mission-critical settings, such patches must still be manually inspected. Our proposed documentation
tools will make it easier to read and understand machine-generated patches, increasing the trust in them
and reducing the time and effort required to verify and apply them.

Evolution and Composition. Many problems arise from misunderstandings rather than classic coding
errors [33]. Vulnerabilities may be introduced when code is integrated with third-party libraries or “injected”
as a program is changed or maintained. The Spring Framework, a popular j2ee web application framework
with over five million downloads [95], was discovered in September 2008 to have two such security vulnerabili-
ties allowing attackers to access arbitrary files on the affected webserver [14]. Dinis Cruz, who helped identify
the vulnerabilities, notes that they are “not security flaws within the Framework, but are design issues that
if not implemented properly expose business critical applications to malicious attacks” [14]. Specifically, the
vulnerability occurs when developers mistakenly assume that certain types of input fields are properly vali-
dated within the framework when they are not. Cruz notes that “developers don’t fully understand what’s
happening. They don’t see the side effects of what they’re doing. In a way the framework almost pushes
you to implement it in an insecure way” [14]. Malicious adversaries might also insert trojans or backdoors
into open-source software, and outsourced or offshored components may not meet local standards. Auto-
matically generated, up-to-date documentation would make it easier for integrators to avoid such problems
by understanding the code [54]. Formal readability models and static path frequency predictions could focus
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Figure 8: Proposed publication schedule.

attention on harder-to-understand code and corner cases — areas more likely to contain defects [20, 102].
Metrics. There are several popular readability metrics targeted at natural language [36, 43, 55, 63].

These metrics, while far from perfect, have become ubiquitous because they can very cheaply help organi-
zations gain confidence that their documents meet goals for readability. We propose to formulate software
readability metrics, backed with empirical evidence for effectiveness, to serve an analogous purpose in the
software domain. For example, when constructing software from off-the-shelf components or subcontractors,
the subcomponents might be required to meet a overall code readability standards to help ensure proper
integration and safe modification and evolution in the future, just as they are required to meet English
readability standards for documentation.

Identifying Expectation Mismatch. While our proposed metrics are designed to predict human
judgments, in practice they will not always match expectations. Cases where the mismatch is the greatest
may reveal code that should be scrutinized. A mismatch occurs when, for example, dynamic profiling reveals
a path that was labeled uncommon by our metric but proves to be very common in practice. Such a situation
may indicate a performance bug, where usage deviates from developer expectations. Similarly, our readability
metric can help developers identify code that may not be as readable to others as they thought.

7 Research Plan

The proposed dissertation is comprised of three high-level research thrusts: readability, runtime behavior,
and documentation. Furthermore, under that umbrella, we have detailed five specific projects which we
propose to publish in six papers, three of which are now published (A Metric for Software Readability [20],
The road not taken: Estimating path execution frequency statically [18], and Automatic documentation infer-
ence for exceptions [19]) and three of which are ongoing (Learning a Metric for Code Readability, Automatic
Documentation of Program Changes, and Automatic Documentation of APIs with Examples). In the past
we have targeted The International Symposium on Software Testing and Analysis (ISSTA) and The Interna-
tional Conference on Software Engineering (ICSE). In the future we intend to target these as well as ACM
Conference on Programming Language Design and Implementation (PLDI), The International Conference
on Automated Software Engineering (ASE), and the journal IEEE Transactions on Software Engineering
(TSE).

Uncertainty in the schedule includes a possible industry internship during the summer of 2010 for the
investigator which would likely lead to an additional project to be included in this dissertation.
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8 Summary and Long-Term Vision

The long-term goal of our work is to produce tools, models and algorithms to enhance code understanding.
In general, evaluation takes three forms: directly, by analyzing the model’s accuracy with respect to training
data; indirectly, by examining correspondence between the model’s output and traditional quality metrics;
and against humans, by comparing produced documentation to human-written documentation.

Correctly composing and maintaining trustworthy software involves understanding it at many levels and
reliably answering a number of questions, including:

• How easy is it to understand and maintain this software? (code readability, Section 3.1.1)

• Where are the corner cases, and where are the common paths? (runtime behavior, Section 3.1.2)

• How can this code go wrong? (documenting exceptional situations, Section 3.2.1)

• How can I best use an off-the-shelf library? (documenting APIs, Section 3.2.2)

• What does a proposed fix really do? (documenting code changes, Section 3.2.3)

We claim that program understandability is a critical to successful software engineering. We propose to
provide developers with a better understanding of programs.
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1 Introduction

We thank the committee for their thoughtful insights regarding this proposal. This addendum describes
additional content to be included in the proposed dissertation as recommended by the committee. We address
three areas: positioning, techniques, and evaluation. Positioning (Section 2) will address the committee’s
concerns with the motivation of the work and its relation to the proposed projects including the title of the
work and the statement of thesis. In Section 3 we will discuss concerns related to proposed techniques; why
they were chosen, the guarantees they can provide and how associated risks can be addressed. Finally, in
Section 4 we elaborate on our proposed evaluation strategy; we address concerns of repeatability, comparison,
and metrics.

2 Positioning

We propose to somewhat alter the positioning of the work, representing it as Automatically Describing
Program Structure and Behavior. This title emphasizes the distinguishing characteristics of the work; the
proposed techniques are fully automatic and can be readily employed to measure and characterize the way
programs are written and how they behave. This leads us to a revised thesis statement:

Thesis: Program structure and behavior can be accurately modeled with semantically
shallow features and human descriptions of these qualities can often be supplemented or
replaced automatically.

Our evaluation strategy includes testing two types of hypothesis: (1) if the models we propose accurately
reflect program characteristics, and (2) if the output we generate typically contains the same information
as corresponding human-written descriptions. For example, in Readability we test the hypothesis that a
model of local code textual surface features correlates significantly (i.e., Spearman’s ρ, p − value < 0.05)
with human judgments of readability. In Documentation for APIs we test the hypothesis that machine gen-
erated exception documentation contains at least as much information (see Section 4.1) as existing JavaDoc
documentation on average. We will include a secondary series of experiments to test for external validity:
whether the features we model and output we generate correlates well with other notions of software quality.

Additionally, we will expand our current motivation concerning the importance of code reading and
documentation to understanding programs and software engineering in general. We will discuss and cite
experts like Knuth [8] and others [3, 13, 15]. who claim that reading code, in and of itself, is critically
important and represents a large part of developer time and effort. We will expand references to experts
like DeMarco [4] and studies like [5] which assert that documentation is a critical aspect of software quality.
We will also add a number of citations to previous work in program understanding noted by the committee
including work by Rossen [14] and Basili [16] as well as work on estimating program behavior for reasons
including compiler optimization (eg., [1, 12, 20]).
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3 Techniques

The proposed dissertation will elaborate on our choice of techniques as detailed in the associated publications
but elided from the original proposal because of space limitations. Furthermore, we will include a cost/benefit
analysis of each of our documentation algorithms, in particular as it relates to the presence and impact of
false positives and false negatives. We discuss, for example, how each of our techniques can be adapted to
ensure soundness (see Section 3.2).

3.1 Algorithm Selection

The proposed dissertation will elaborate on choice of technique in several dimensions. Here, we discuss our
choice of modeling programs using semantically shallow features as opposed to heavyweight analyses. We
also discuss our selection process for machine learning algorithms.

Our choice of semantically shallow features to model program understandability is a key insight of our
work. This technique affords us multiple advantages over conventional heavyweight analyses. First, it allows
us to simultaneously consider many disparate aspects of code, each of which contribute to judgments of
behavior; conventional techniques depend on their ability to precisely characterize only a single program
feature at a time. This idea is essential to the accuracy of our approach. Second, our lightweight analysis
scales easily to even the largest software systems and can readily be adapted to many different languages;
two features that prior approaches can rarely claim.

Our choice of classifiers to model our feature set is less critical. The proposed dissertation will describe
the process by which we considered a large number of classifiers including neural networks, decision trees, and
statistical techniques. We often found that many such classifiers were about equal in accuracy, compelling
us to simply select the most efficient one.

3.2 Algorithm Soundness

The committee notes that our documentation tools have a potential to be misleading. The proposed disser-
tation will include discussions of how each tool can be tuned to produce output that guarantees soundness.
Below we give examples of how we propose to deal with major sources of unsoundness in each documentation
type. Other sources of error can be identified and addressed in a similar way.

Documentation for Exceptions relies on an underlying alias analysis to infer the precise set of
Exceptions each method in a program can throw. Due to theoretical limitations, even the most precise
alias analysis may lead our algorithm to output false positives (e.g., foo() throws Exception e, when
in reality it cannot) and/or false negatives (e.g., bar() throws nothing, when in reality it may throw
an exception). We propose to mitigate the danger of misleading developers by choosing a conservative
(i.e., sound) alias analysis which will not produce any false negatives, but may produce false positives.
Thus by using our tool, a developer can at worst be lead to introduce ”dead code” in an attempt
to handle an exception that will never happen. This strategy is similar to the practice of defensive
programming.

Documentation for Program Changes includes a code summary component which can explicitly
be lossy. This choice was made to mimic human documentation where not all code is considered
equally important to document. Nevertheless, there are cases where developers may prefer a reliably
sound output. We propose to provide this with a tool that allows users to either disable all lossy
transformations and/or allow the algorithm to fall back on generic but sound output (e.g., method

foo() has changed) when necessary.

Documentation for APIs can also be slightly modified to provide certain quantifiable guarantees.
Our proposed algorithm infers a ranked list of possible usage documentations for a given class where each
usage is presented with a confidence value derived from the frequency at which that pattern has been
observed in the training corpus. While the proposed algorithm generally outputs the highest ranked
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example, we propose to provide a “mode” whereby the user can view the complete list of examples
along with confidence values for each. Such a confidence value c guarantees that for all usages of the
class in the training corpus, at least c of them match the usage described.

4 Evaluation

Figure 1: if X>Y then Z

comprises a greater-than

relation nested in an implies

relation.

Finally, we address concerns voiced by the committee relating to the proposed
evaluation. We discuss ensuring that our evaluation is repeatable and properly
measured. First, we address our experiments involving comparison of machine
generated documentation to human documentation. We propose two techniques
to address threats to validity from bias and non-repeatability; an objective and
repeatable comparison rubric, and the use of multiple annotators (Section 4.1).
Second, we discuss metrics for inter-annotator agreement (Section 4.2).

4.1 Documentation Comparison Rubric

Figure 2: In documentation comparison, ob-
jects and relations are identified and mapped.
A “?” indicates that the relation involves an
unnamed object.

We propose a three-step rubric for documentation comparison
designed to be objective, repeatable, fine grained, and con-
sistent with the goal of precisely capturing program behavior
and structure. The artifacts to be compared are first cast into
a formal language which expresses only specific information
concerning program behavior and structure (steps 1 and 2).
This transformation admits direct comparison of the informa-
tion content of the artifacts (step 3).

Step 1: Each program object mentioned in each documen-
tation instance is identified. For machine-generated documen-
tation, this step is automatic; the proposed algorithm outputs a
list of objects. The human-written documentation is inspected
by a human and each noun that refers to a specific program
variable, method, or class is recorded. This criterion admits
only implementation details, following the taxonomy of Som-
merville [17], but not specification, requirement, or other de-
tails. The associated source code is used to verify the presence
of each object. Objects not named in the source code are not
considered program objects, and are not enumerated.

Step 2: A set of true relations among the objects identified
in step 1 are extracted; this serves to encode each documen-
tation into a formal language. Again, this process automatic
for machine generated documentation. A human inspects the
human-written documentation to identify relations between the
objects enumerated in step 1. Relations where one or both
operands are implicit and unnamed are included. The full set
of relations we consider are enumerated in Table A.1 (see appendix), making this process essentially lock-step.
Relations may be composed of constant expressions (e.g., 2), objects (e.g., X), mathematical expressions
(e.g., X + 2), or sub-relations (e.g., Figure 1). The associated source is used to check the validity of each
encoded relation. If a relation is discovered to be inconsistent with the artifact described, then the relation
is removed from consideration. If the annotator cannot tell if the relation is consistent or not, then it is
conservatively assumed to be consistent.

Step 3: For each relation in either the human- or algorithm-generated documentation, a human checks to
see if the relationship is also fully or partially present in the other documentation. For each pair of relations

3



Figure 3: Example Algorithm (A) to Human (H) relation mappings.

H and A, the annotator determines if H implies A written H ⇒ A, or if A ⇒ H. As shown as a set of
rule templates in Figure 2, a relation implies another relation if the relation operator is the same and each
operand corresponds to either the same object or an object that is implicit and unnamed (see below for an
example of an unnamed object). If the relations are identical, then H ⇔ A. Again, the annotator is given
access to the associated source code to check the validity of each relation. As with step 2, if the relation is
found to be inconsistent with the program source, then it is removed from further consideration.

While steps 1 and 2 are lockstep, step 3 is not because it contains an instance of the Noun phrase
conference resolution problem; it requires the annotator judge if two non-identical names refer to the same
object (e.g., getGold() and gold both refer to the same program object – see below). Automated approaches
to this problem have been proposed (e.g., [11, 18]), however we use human annotators who have been shown
to be accurate at this task [2].

After annotation is complete, we can quantify the information relationship between two documentations
as in Figure 3. If the mapping is a bijection, then documentations are considered to contain equal information
(0.5). If the mapping is found to be a surjection from A to H, (i.e., all single headed arrows are right arrows,
and all human relations are mapped) then the algorithm documentation is considered to contain strictly more
information (1.0). If the mapping is surjective from H to A (i.e., all single headed arrows are left arrows, and
all algorithm relations are mapped) then the algorithm documentation is considered to contain strictly less
information (0.0). In other cases, we throw out all relations that are directly subsumed by another relation.
We then divide the number of relations in the algorithm documentation by the total number of relations in
both. Conceptually, this expresses the fraction of all the information documented that was documented by
the algorithm.

This process is designed to distill from the message precisely the information we wish to model: the impact
of the change on program behavior. Notably, we leave behind other (potentially valuable) information that
is beyond the scope of our work. Furthermore, this process allows us to precisely quantify the difference
in information content. This technique is similar to the NIST ROUGE metric [10] for evaluating machine-
generated document summaries against human-written ones. In addition to the direct results, we will quantify
how often a group of independent annotators agreed on the assessment presented.

For example:

Human: has an insufficient amount of gold

Algorithm: getPriceForBuilding() > getOwner().getGold()

To compare these documentations, we first enumerate object sets. For the human documentation this consists
of {gold}, and for the algorithm {building price, gold}. The relationships consist of: for the human
documentation {gold < ?} because “insufficient” implicitly defines a less-than relation, and for the algorithm
documentation {gold < building price}. Finally, we find that the algorithm documentation implies the
human documentation because if gold < building price then it follows that gold < something.
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4.2 Inter-annotator agreement

We also address the evaluation metric for inter-annotator reliability, particularly on a 5-point “Likert” scale
[9]. Previously, we have used Pearson’s r, Spearman’s ρ, and Cohen’s κ (and associated significance tests)
to measure the agreement between two annotators. To measure agreement between a group of annotators
we compute all pair-wise agreements and average them [7, 19]. This technique is similar to other previous
work (e.g., [6, 21]). The proposed dissertation will include a discussion of other possible metrics as well as
statistical techniques involving repeated measures with likert style scales.

5 Conclusion

The proposed work will include in-depth discussions of other threats to validity not addressed in the original
proposal for space reasons. While we have endeavored to narrow or otherwise codify a number of claims from
the original proposal, we will continue to revise and expand on the connection between the proposed work
and software engineering tasks both by citing experts in the field and by conducting our own investigations.
We again thank the committee for their suggestions for improving the proposed work and its presentation.

5



A Table of Relational Operators

Type Arity Symbol Name

logical

unary
T is true / always
F is false / never

binary

∨ or
∧ and
= equal to
6= not equal to
< less-than
> greater-than
≤ less-than or equal to
≥ greater-than or equal to

programmatic

unary

∅ is empty
() call / invoke
! return

↑ throw

binary

← assign to
∈ element of
⇒ implies
: instance of

edit unary
+ added
∆ changed
− removed

Table A.1: Table of relational operators used for documentation comparison. Together these form the basis
of our documentation description language. Logical operators are used to describe runtime conditions, pro-
grammatic operators express language concepts, and edit operators describe changes to high-level structure
(classes, fields, and methods).
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