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1 Introduction

Reasoning about string variables is a key aspect in many areas of program analysis [9, 29, 37, 41, 45]
and automated testing [16, 17, 18, 27]. Program analyses and transformations that deal with string-
manipulating programs, such as test input generation for legacy systems [25, 26], web application
bug finding [41], and program repair [42], invariably require a model of string manipulating func-
tions.

Traditionally, both static and dynamic analyses have relied on their own built-in models to
reason about constraints on string variables, just as early analyses relied on built-in conserva-
tive reasoning about aliasing. The current situation is suboptimal for two reasons: first, it forces
researchers to re-invent the wheel for each new tool; and secondly, it inhibits the independent
improvement of algorithms for reasoning about strings.

External constraint solving tools have long been available for other domains, such as satisfia-
bility modulo theories (SMT) [11, 12, 32] and boolean satisfiability (SAT) [13, 31, 44]. These tools
are used, for example, to rule out infeasible program paths or, given a program path, to generate
testcases that exercise that path. Recent work in string analysis has focused on providing similar
external decision procedures for string constraints [2, 21, 24, 39, 40, 46]. Thus far, this work has
focused on individual features, such as support for symbolic integer constraints [46], support for
bounded context-free grammars [2, 24], and embedding into an existing SMT solver [11, 39].

These recent approaches are motivated by the fact that an important subclass of software de-
fects is caused by the improper handling of structured text such as HTML, XML, and SQL [37, 38].
Two compelling examples of this type of defect are SQL injection and cross-site scripting vulnera-
bilities. These vulnerabilities are common; together they accounted for 35.5% of reported security
vulnerabilities in 2006 [20]. A November 2009 study found that 64% of the 1,364 surveyed web-
sites had at least one serious vulnerability [36], where serious means “Exploitation could lead to
serious and direct business impact.” Security vulnerabilities are also costly; in a 2008 FBI survey
of over 500 large firms, the average reported annual cost of computer security defects alone was
$289,000 [34, p.16].

For this dissertation, we propose work on decision procedures for string constraints. Ulti-
mately, our goal is to develop a decision procedure that simultaneously satisfies these criteria:

• Scalability. Good performance is crucial if string decision procedures are to see significant
use. We base this observation on the fact that, in a similar way, boolean SAT solvers (e.g., [31,
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13]) did not find widespread use until significant engineering effort was put into making
them perform well. In Section 4.1, we demonstrate that existing string decision procedures
leave room for improvement when it comes to scalability.

• Expressive Utility. String decision procedures cannot efficiently support all common string
operations. In Section 4.2, we demonstrate that existing approaches do not cover a large
class of string operations that use integers to represent positions in strings. How to include
these operations in an efficient constraint solver is an open problem.

• Correctness. Decision procedures are particularly well-suited for formal correctness argu-
ments because their correctness conditions (soundness and completeness) are often easy to
describe formally in a succinct way. In addition, if decision procedures are to be used for
conservative program analyses, then it is crucial that they be certifiably correct.

Existing work in this area generally trades off performance for expressive utility. For example,
Rex [40] is built on top of Z3, a general purpose SMT solver, and consequently gets support for
integer arithmetic queries “for free.” This functionality carries a massive cost, however; Rex is
several orders of magnitude slower than the Hampi tool [24], which is more performance-oriented
but less featureful. Both Rex and Hampi rely on relatively complex underlying constraint solvers
(Z3 [11] and STP [15], respectively), and their correctness relies crucially on the underlying code
base and the correct use of its interface.

Our approach is based on two insights: (1) string constraint solving can be cast as an explicit
search problem, and (2) we can instantiate the search space lazily through incremental refinement.
These insights lead to substantial performance gains relative to eager approaches; our preliminary
results show our prototype to be 100× faster on average over a previously published benchmark.
We hypothesize that this algorithm can be extended to efficiently support a large subset of com-
monly used string functions, including those that use integers to represent string positions and
lengths. Finally, we believe that such an algorithm can be constructed based on a relatively small
trusted code base relative to to existing approaches, leading to the following thesis statement:

It is possible to construct a practical algorithm that decides the satisfiability of con-
straints that cover both string and integer index operations, scales up to real-world
program analysis problems, and admits a machine-checkable proof of correctness.

The expected main contributions of the proposed dissertation are as follows:

1. A certified automaton-based algorithm, concat intersect, and associated tool (Decision Proce-
dure for Regular Language Equations (DPRLE) [21]) for solving string constraints (Section 5.1).

2. A lazy search-based algorithm for solving constraints and the evaluation of its performance
characteristics relative to DPRLE and Hampi (Section 5.2).

3. The extension of the feature set of (2) to support common string operations, guided by a
study of string function usage in real-world code, and its evaluation relative to existing tools
for both string constraints and integer arithmetic (Section 5.3)

4. Time permitting, an investigation of proof strategies for the full correctness of an algorithm
similar to (3) (Section 5.4).
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This proposal is structured at follows. In Section 2 we provide an indicative real-world piece
of code that makes use of low-level string functions. Section 3 presents a basic constraint language
that captures the functionality offered by existing tools. Section 4 presents preliminary results that
motivate our use of a lazy search strategy (scalability; Section 4.1), and our choice of features (ex-
pressive utility; Section 4.2). Section 5 provides a high-level overview of the proposed dissertation,
and Section 6 discusses the benchmarks we will use to evaluate our approach. Section 7 provides
a concrete time line for this dissertation. We conclude in Section 8.

2 Motivating Example

In this section we present a code fragment taken from version 2.6.0 of wu-ftpd, an file transfer
server with a known format string vulnerability. This code demonstrates the need for analyses
that are able to reason about the run-time values of string variables. More concretely, it demon-
strates an example where both test input creation and program repair require efficient and correct
reasoning about both strings and integers.

Figure 1 shows a fragment of code for handling SITE EXEC commands from wu-ftpd. The
SITE EXEC portion of the file transfer protocol allows remote users to execute certain commands
on the local server. The cmd string holds untrusted data provided by such a remote user; an exam-
ple benign value is "/usr/bin/ls -l *.c".

The variable _PATH_EXECPATH points to a directory containing executable files that remote users
are allowed to invoke (e.g., "/home/ftp/bin"). To prevent the remote user from invoking other ex-
ecutables via pathname trickery (e.g., cmd == "../../../bin/dangerous"), lines 5–12 sanitize the
command string by skipping past all slash-delimited path elements. However, skipping past all
slashes does not have the desired effect: "/bin/echo ’10/5=2’" should become "/echo ’10/5=2’"

and not "5=2’"; slashes should only be removed from the command, not from the arguments. The
strchr invocation on line 4 is used to check if any spaces are present (line 6). If so, a more compli-
cated version of the slash-skipping logic is used (lines 10–11) that only advances cmd past slashes
before the first space. Lines 15–18 build the command that will be executed (e.g., completing the
transformation from "/usr/bin/ls -l *.c" to "/home/ftp/bin/ls -l *.c") by using sprintf to
concatenate the trusted directory, a slash, and the suffix of the user command. The check on line
16 prevents a buffer overrun on the local stack-allocated variable buf by explicitly adding together
the two string lengths, one byte for the slash, and one byte for C’s null termination, and comparing
the result against the size of buf.

This code is indicative of real-world string processing: it is complicated, it accomplishes many
goals simultaneously, and it involves control flow and imperative updates based on the interac-
tions between strings and integers. Consider the buffer overrun check on line 16: it is much harder
to verify than a snprintf(buf,sizeof(buf),...) invocation, but both are correct. In addition, note
that the bounds checking is done after cmd has been advanced past any slashes. Thus it is possible
for the user to provide input that is initially too long for buf but that fits safely after the sanitiza-
tion. The vast majority of static buffer overrun analyses would produce a false positive on this
code.

More tellingly, while the code correctly avoids buffers overruns and implements its path-based
security policy, it is vulnerable to a format string attack [6]. Since the user’s command is passed
as the format string to fprintf (line 20), if it contains sequences such as %d or %s they will be
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1 void site_exec(char *cmd)
2 {
3 char buf[MAXPATHLEN], *slash, *t;
4 char *sp = (char *) strchr(cmd, ’ ’);
5 /* sanitize the command-string */
6 if (sp == 0) {
7 while ((slash = strchr(cmd, ’/’)) != 0)
8 cmd = slash + 1;
9 } else {

10 while (sp && (slash = (char *) strchr(cmd, ’/’)) && (slash < sp))
11 cmd = slash + 1;
12 }
13 for (t = cmd; *t && !isspace(*t); t++)
14 if (isupper(*t)) *t = tolower(*t);
15 /* build the command */
16 if (strlen(_PATH_EXECPATH) + strlen(cmd) + 2 > sizeof(buf))
17 return;
18 sprintf(buf, "%s/%s", _PATH_EXECPATH, cmd);
19 /* ... execute buf, store results ... */
20 fprintf(remote_socket, cmd); /* tell user final command */
21 /* ... copy results back to user via remote_socket ... */
22 }

Figure 1: Source code using hand-written sanitization and checks to avoid a buffer overrun (suc-
cessfully, line 18) and a format string vulnerability (unsuccessfully, line 20), and enforce path-
related policies (successfully). The string cmd contains untrusted data provided by a remote user.
Functions that require explicit reasoning about both integers and strings are highlighted (e.g.,
strchr).

interpreted by printf’s formatting logic. This typically results in random output, but careful use
of the uncommon %n directive, which instructs printf to store the number of characters written so
far through an integer pointer on the stack, can allow an adversary to take control of the system.
An exploit for just such an attack against exactly this code was made publicly available [43].

Locating this defect and constructing a testcase can both be viewed as solving a system of
constraints induced by the program. For example, locating the attack is equivalent to asking: “is
it possible for cmd to have the properties of a format string attack (e.g., be a string of a certain
minimal length, containing both shell code payload and the ’%n’ character) at the end of any path
that reaches line 20?” At a very high level, this becomes a question of language emptiness after
intersection: “is the result of intersecting the set of format string attacks with the set of strings that
contain no slashes before the first space empty?” The testcase generation problem uses the same
set of constraints, but asks for members of the set, rather than a boolean indication of the set’s
emptiness.

While there are a number of string analyses that can handle constraints over systems of string
variables, there are no scalable analyses that can handle mixed integer and string constraints.
Solving constraints about the program in Figure 1 requires not just knowing that strchr returns
an integer indicating the presence or absence of a special substring, but requires understanding
that the integer is an index into to the location of that substring, and thus that the subsequent
pointer arithmetic is advancing past it. We propose to create and evaluate such an analysis.
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Constraint ::= StringExpr ∈ RegExpr inclusion
| StringExpr /∈ RegExpr non-inclusion

StringExpr ::= V ar string variable
| StringExpr ◦ V ar concat

RegExpr ::= ConstV al string literal
| RegExpr + RegExpr language union
| RegExpr RegExpr language concat
| RegExpr? Kleene star

Figure 2: String inclusion constraints for regular sets. A constraint system is a set of constraints
over a shared set of string variables; a satisfying assignment maps each string variable to a value
so that all constraints are simultaneously satisfied. ConstV al represents a string literal; V ar rep-
resents an element in a finite set of shared string variables.

3 Definitions

In this section, we define a set of string constraints similar to those presented by Kiezun et al. [24].
This definition is representative of the current state of the art for string decision procedures. In
this work, we propose decision procedures for extensions to this basic set of constraints.

The set of well-formed string constraints is defined by the grammar in Figure 2. A constraint
system S is a set of constraints of the form S = {C1, . . . , Cn}, where each Ci ∈ S is derivable from
Constraint in Figure 2. V ar denotes a finite set of string variables {v1, . . . , vm}. ConstV al denotes
the set of string literals. We describe inclusion and non-inclusion constraints symmetrically when
possible, using � to represent either relation (i.e., � ∈ {∈, /∈}).

For a given constraint system S over variables {v1, . . . , vm}, we write A = [v1 ← x1, . . . , vm ←
xm] for the assignment that maps values x1, . . . , xm to variables v1, . . . , vm, respectively. We define
[[ vi ]]A to be the value of vi under assignment A; for a StringExpr E, [[ E ◦ vi ]]A = [[ E ]]A ◦ [[ vi ]]A.
For a RegExpr R, [[ R ]] denotes the set of strings in the language L(R), following the usual inter-
pretation of regular expressions. When convenient, we equate a regular expression literal like ab?

with its language. We refer to the negation of a language using a bar (e.g., ab? = {w | w /∈ ab?}).
An assignment A for a system S over variables {v1, . . . , vm} is satisfying iff for each constraint

Ci = E � R in the system S, it holds that [[ E ]]A � [[ R ]]. We call constraint system S satisfiable if
there exists at least one satisfying assignment; alternatively we will refer to such a system as a
yes–instance. A system for which no satisfying assignment exists is unsatisfiable and a no–instance.

A decision procedure D for string constraints is an algorithm that, given a constraint system S,
returns either D(S) = Sat(A) iff a satisfying assignment exists (where A is such an assignment), or
D(S) = Unsat iff no satisfying assignment exists. More explicitly, such a decision procedure must
be sound:

∀S, D(S) = Sat(A)⇒ ∀(E �R) ∈ S, [[ E ]]A � [[ R ]]

and complete:
∀S, satisfiable(S)⇒ D(S) 6= Unsat.

In addition, D must terminate on all well-formed inputs.
We discuss several decision procedures that require a length bound for the strings they output.

In this case the soundness argument remains the same, but instead of completeness we prove
bounded completeness:

∀S,∀k ≥ 0, satisfiable(S, k)⇒ D(S) 6= Unsat
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Figure 3: String generation times (log scale) for the intersection of the regular languages
[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n}, for n between 1 and 1000 inclusive.

where k is an integer length bound, and satisfiable(S, k) denotes that there exists at least one sat-
isfying assignment for S such that each assigned string value has length less than or equal to
k.

4 Preliminary Results

This section describes preliminary results that underscore the need for string decision procedures
that can efficiently model a variety of programming idioms related to strings. Section 4.1 demon-
strates that a lazy search strategy may yield significantly better performance than existing eager
approaches. Section 4.2 presents a study of a large body of PHP code; it suggests that an important
class of commonly used string functions are not modeled by existing string decision procedures

4.1 On the Scalability of Existing Approaches

We hypothesize that existing solvers are substantially less scalable than they could be. To test this,
we developed a prototype based on our existing DPRLE tool [21]; we will refer to this algorithm
and its implementation as our prototype. Given two regular expressions, the tool constructs two
finite state automata. The conversion algorithm, due to Ilie and Yu [22], provably generates small
automata with few redundant states and transitions. We then generate strings from these two au-
tomata. We optimized the algorithm for yes-instances — rather than constructing the intersection
first and then searching it for strings, the new algorithm interleaves the intersection and string
finding steps. The full search space is only constructed for certain no-instances; for yes-instances,
the search terminates as soon as a string is found.

To test this hypothesis, we reproduce and extend an experiment used to evaluate the scaling
behavior of Rex [40]. We compare the performance of DPRLE, Hampi, and our prototype. The
task is as follows. For some length n, given the regular expressions

[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n}

find a string that is in both sets. For example, for n = 2, we need a string that matches both
[a-c]*a[a-c][a-c][a-c] and [a-c]*b[a-c][a-c]; one correct answer string is abcc. Note
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that, for any n, the result string must have length n + 2. For Hampi, we specify this length bound
explicitly; DPRLE and our prototype do not require a length bound.

For each n, we run the three tools, measuring the time it takes each tool to generate a single
string that matches both regular expressions. Figure 3 shows our results. Our prototype is, on
average, 118× faster than Hampi; the speedup ranges from 4.4× to 239×. DPRLE outperforms
Hampi up to n = 55, but exhibits considerably poorer scaling behavior than both other tools. By
comparison, the published Rex results [40] for n = 1000 show that tool taking approximately 140
seconds, or approximately 100× longer than Hampi, and 20, 000× longer than our prototype on
similar hardware. An informal review of the results shows that our prototype generates only a
fraction of the NFA states; for n = 1000, DPRLE generates 1, 004, 011 states, while our prototype
generates just 1, 010 (or just 7 more than the length of the discovered path). These results suggest
that lazy constraint solving can save large amounts of work relative to eager approaches.

4.2 A Survey of String Operation Usage

Decision procedures are only useful if their input formulas can encode interesting problems. For
example, decision procedures for bit vectors typically include support for bitwise operations and
circular shifts [15] on fixed-length arrays of bits. For strings, there is little consensus on which
operations to support. Not all operations can be readily implemented in decision procedures;
informally, the operation must be reversible in an efficient way. String operations are, in general,
both difficult and computationally expensive to reverse. Because of this, we wish to narrow down
our effort to a subset of functions that would allow us to reason about a large class of programs.

We consider the top 100 PHP projects listed on the SourceForge source code repository as of 12
December 2009. SourceForge project rankings are based on several statistics, including the number
of times the project was downloaded over a period of time. Of these 100 projects, 88 provided
readily-accessible source code in the repository at the time of download; the 12 remaining projects
were removed from consideration. The final set includes popular projects like phpMyAdmin, a
database administration application, and phpBB, a forum application.

The PHP manual lists 113 distinct string functions [28]. We categorized these into five classes:

• Index. These operations return an integer or take at least one integer parameter that repre-
sents a position in or length of a string. For example, the function substr(w,s,l) returns
the substring of string w that starts at integer position s and has length l. This category
contains 18 distinct functions.

• Regular Expression. These functions have at least one string parameter that denotes a reg-
ular expression. PHP broadly supports two classes of regular expressions: a set of POSIX
standard functions and a separate Perl Compatible (PCRE) set of functions. This category
contains 16 distinct functions.

• Character. This category consists of chr, which returns the single character associated with
an integer, and its inverse, ord.

• Formatting. These functions, like printf, take at least one parameter that represents a
format string. This category contains 7 distinct functions.

• Other. The majority of the remaining functions are basic re-encoding functions like trim,
which removes whitespace from its parameter. This category contains 68 distinct functions.
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Figure 4: Survey of string function usage (by static count) in the top 88 open source PHP projects,
covering 9.6 million lines of code. Index functions are used more than twice as frequently as Regular
Expr functions. Current string decision procedures support the Regular Expr category but not the
Index category; this proposal covers both.

Finally, we disregard the two functions print and echo, both of which simply output their pa-
rameter to the screen and are thus not interesting for our purposes.

We conducted the survey by searching all files with the file extension .php in every project.
The data set consisted of 40, 802 files containing 9, 640, 851 nonempty, non-comment lines of code.
We searched each source file for instances of the 111 string manipulating functions of interest. We
found 251, 317 such instances. Figure 4 breaks down the results by category; data points with
more than 5, 000 occurrences are labeled with the corresponding string function. Each horizontal
bar is labeled on the right with the number of total occurrences.

The results show that Index functions are used more than twice as frequently as Regular Ex-
pression functions. To the best of our knowledge, no existing string decision procedure currently
supports the functions in Index natively. This experiment suggests that, without support for this
category of functions, string decision procedures cannot directly model a significant body of exist-
ing code. Finally, we observe that Format functions are relatively common as well. These functions
are of interest because they are susceptible to attacks such as format string vulnerabilities. Although
this type of vulnerability is typically associated with lower-level languages like C, scripting lan-
guages like PHP, Perl, Python, and Ruby can each exhibit similar security flaws [4].

In a smaller study of real-world JavaScript code, Saxena et al. find that 83% of string func-
tion usage involved an Index operation, while regular expression operations were relatively infre-
quent [35]. Taken together, the results reported here and those reported by Saxena et al. motivate
our decision to investigate a decision procedure that handles both Index and Regular Expr opera-
tions.

5 Proposed Research

Our goal is to develop scalable, correct and expressive string decision procedures that are suitable
for use in program analysis. The motivating example of Section 2 illustrates the need for automatic
reasoning about string operations. In Section 4.2, we showed that existing string decision proce-
dures do not support a large class of commonly-used string operations; our motivating example
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includes a subset of these operations.
We now outline our research plan for several novel decision procedures. This plan is informed

by our previous work on string decision procedures [21, 24], as well as the preliminary results
presented in Section 4. Our ultimate goal is to develop a freely available string decision procedure
that simultaneously satisfies the following high-level requirements:

• Scalability. The decision procedure must scale along two dimensions. The first is the size of
the input equations; this is typically measured by the number of variables in the equation,
and the size of the regular expressions and/or context-free grammars. The second dimen-
sion is the size of the requested output string.

• Expressive Utility. The decision procedure must be able to solve equations that map to real
and interesting program analysis problems. The tool should be able to solve equations over
multiple variables, and the equations should be able to capture common program operations
such as string concatenation, equality checks, regular expression checks, substring indexing
and substring search.

• Correctness. The output of a decision procedure must be trusted since it will be used as a
black box by other analyses and transformations. For example, if a decision procedure for
strings is used to guide the automated program repair of a security error, developers must
have guarantees that the string reasoning is correct. Consequently, we believe it is crucial
that the tool be provably correct.

We provide our strategy for attaining these goals in the following subsections.

5.1 A Decision Procedure for Subset Constraints over Regular Languages

The DPRLE tool represents an initial approach that makes heavy use of automata operations. This
choice has two important consequences: (1) the core algorithm (concat intersect) is relatively easy
to verify, and (2) the implementation is relatively inefficient in practice. DPRLE is designed for
use by traditional string analyses (e.g., [9]) that use automata internally, so the implementation
interface is based around automata descriptions rather than regular expressions.

Our presentation of DPRLE includes a correctness proof for the core algorithm that underlies
the DPRLE implementation. For this proof, we formalize the correctness conditions of the core
algorithm in the calculus of inductive constructions [10]. The proof is from first principles and
includes a fully functional re-implementation of the core constraint solving algorithm1. This im-
plementation is machine-verifiable—any prospective user can run a proof verifier like Coq [10],
and the verifier will automatically establish that the implementation has the advertised formal
correctness properties.

A major drawback of this certification approach is that it requires significant implementation
effort; for other domains (such as compilers) there is orthogonal work on proof engineering that
attempts to address these issues [7, 8]. In particular, any changes to the core algorithm would re-
quire corresponding changes to the proof structure. To the best of our knowledge, Minamide’s [30]
is the only other work to provide a machine-verifiable correctness proof for a string decision pro-
cedure. Our experience certifying concat intersect informs another proposed research thrust on
proof engineering strategies for a string decision procedure (Section 5.4).

1The proof is available along with the tool at http://www.cs.virginia.edu/˜ph4u/dprle/index.php
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5.2 Solving String Constraints Lazily

Existing string analysis tools tend to rely on solvers for bitvectors [24], boolean SAT [2], or combi-
nations of theories [40]. For these tools, solving a constraint is a three-stage process: (1) the input
string constraint is converted to an input for the underlying solver; (2) the underlying solver is
called on the converted input; and (3) the results are converted back to a solution for the string
constraint system. In an informal study of the Wassermann and Su dataset [24, 41], we found that
the main scalability bottleneck of the Hampi tool is, in fact, the first encoding step (and notably
not the subsequent search).

Approach Our insight is that we can avoid an eager encoding of the string constraints by in-
stantiating the search space lazily. In Section 4.1, we presented promising initial results showing
that a lazy search approach can significantly out-perform existing string decision procedures. We
propose research on a lazy automaton-based search algorithm that can solve general string con-
straints systems of the form presented in Section 3. The key challenge for this approach is finding
an appropriate separation of the search space description and its instantiation.

The goal for this approach is not to rely on underlying decision procedures like SAT. At a high
level, we propose two orthogonal approaches to making the tool scale:

• Search space reduction explicitly attempts to shrink the total search space that must be
traversed in the worst case (e.g., some no-instances). The “follow automata” construction
by Ilie and Yu [22], which we use to convert regular expressions to automata, is one such
technique.

• Search heuristics change the order in which the search space is traversed. The goal is to
reduce the average-case search time.

In these approaches we will draw on previous work on dataflow analysis and model checking [1,
19], which face similar state space traversal problems, for inspiration.

At a high level, our algorithm proceeds by iteratively restricting occurrences of variables in the
constraint system, using a backtracking search. For clarity, we will distinguish between restrictions
on variables imposed by the algorithm and constraints in the input constraint system. Our search
starts by considering all variables to be unrestricted. We then iteratively pick one of the variables
to restrict; doing this typically imposes further restrictions on other variables as well.

The order in which we apply restrictions to variables does not affect the eventual outcome
of the algorithm (i.e., “Satisfiable” or “Unsatisfiable”), but it may affect how quickly we find the
answer. Restrictions are expressed in terms of finite state automata (NFAs); for example, for a
constraint v1 ◦ v2 ∈ R1, we apply a restriction: “the v1 occurrence must begin with the start state
of the NFA for R1.” Adding restrictions typically involves performing one or more partial NFA
intersections.

During the search, if we find that we have over-restricted one of the variables, then we back-
track and attempt a different way to satisfy the same restrictions. At the end of the search, there
are two possible scenarios:

• At the end of a successful search, each occurrence of a variable in the original constraint
system will be mapped to an NFA path; all paths for a distinct variable will have at least one
string in common. We return “Satisfiable” and provide one string for each variable.

10



• At the end of an unsuccessful search, we have searched all possible NFA path assignments
for at least one variable, finding no internally consistent mapping for at least one of those
variables. There is no need to explore the rest of the state space, since adding constraints
cannot create new solutions. We return “Unsatisfiable.”

The algorithm is best described by the inductive invariants that hold for the (implicitly con-
structed) search tree. Intuitively, each step away from the root must add additional restrictions
to variable occurrences. This process is monotonic; once added, a restriction remains in effect for
all the vertex’ children in the search tree. We backtrack if we find that a variable is over-restricted
(i.e., there is no string assignment that could simultaneously satisfy all restrictions imposed by the
ancestors in the tree). Repeated backtracking visits to the same vertex will result in a systematic
search for ways to apply further restrictions to that vertex’ variable-to-work-on. If we are forced
to backtrack while considering the root node, then there does not exist a valid string variable
assignment, and we report “Unsatisfiable.”

Compared to both Hampi and DPRLE, the main benefit of this approach is that, in the optimal
case, if we assume a linear-time NFA construction method, then search performance is linear in
the length of the output (Θ(n · d), where d is the average NFA degree and n is the length). Hampi
eagerly encodes all regular expressions, which is at best linear, but only for regular expressions
that do not contain any positional shifts. DPRLE, finally, would eagerly compute the intersection
automaton of the input regular expressions, which is at best linear in the size of the input automata
(but only if the automata are identical). While these informal lower bounds are not directly com-
parable, in practice our prototype implementation is two orders of magnitude faster than Hampi,
which in turn, is several orders of magnitude faster than DPRLE.

5.3 Combining String Constraints and Integer Index Operations

We define an integer index operation to be a string function that returns an integer or uses at least
one integer parameter that represents a position in or the length of a string. For example, the func-
tion substr(w,s,l) returns the substring of string w that starts at integer position s and has
length l. In Section 4.2, we presented a survey of 9.6 million lines of open source PHP code. The
results show that integer index operations occur twice as frequently as the built-in regular expres-
sion functions. In Section 2, we show a common programmer idiom for manipulating strings: a
loop construction that performs complex path-dependent checks as it traverses the characters of a
string.

Our goal is to support regular expression operations (as in previous work [21, 24, 40]), but also
to include efficient symbolic constraint solving for integer index functions (Section 4.2). There has
been limited work investigating the inclusion of index constraints as part of string decision pro-
cedures [3, 23]. This work has focused on the computational complexity and decidability of these
operations, but has not lead to a practical algorithm. We believe these operations can be handled
integrally, without resorting to an external solver for integer constraints. We will investigate the
use of automata-based methods for solving Presburger arithmetic (e.g. [14]).

Approach We hypothesize that a lazy automaton-based search algorithm for string constraints
can be efficiently extended to support common indexing operations. We will draw on existing
work on Presburger arithmetic using automata [14] and on binary length automata [46]. The
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primary challenge is that the existing work does not immediately enable solving over integer
index operations.

Our approach will build on the search-based algorithm developed in the previous section.
We propose a tightly-integrated incremental algorithm that solves constraints containing both in-
tegers and strings. By contrast, a naı̈ve approach might simply alternate between two dedicated
algorithms (one for string constraints and one for integer constraints). While conceptually simpler
than a tightly-coupled approach, we anticipate (and will evaluate empirically) that the integrated
approach will yield better performance.

5.4 Optional: Proof Strategies for String Constraint Solving Tools

Approach Time permitting, we propose two methods for certifying our proposed tools and al-
gorithms. Firstly, we intend to provide a core correctness proof similar in spirit to the DPRLE
proof [21]. The proof will cover all of the core steps of the solving algorithm by providing a sim-
plified re-implementation from first principles. The proof will be machine-verifiable. Providing
such a proof is a nontrivial task, and we believe building on our previous work will yield a signif-
icant direct benefit, as well as a number of indirect ones. It has been our experience that formally
proving an algorithm correct in such a system forces the designers to think carefully about, and
document, any and all assumptions involved—information that is of paramount importance to
later users.

Secondly, we plan a separate effort to make our decision procedure self-certifying. This idea is
of theoretical interest, and builds on translation validation [33]. The key idea is that, in addition
to certifying our algorithm by providing the correctness proof, we also wish to certify our full
implementation. Providing a full correctness proof for any nontrivial amount of code is not feasible
using today’s tools. Instead, we certify individual executions of the decision procedure, by having
it optionally emit a full transcript for each execution. The transcript will allow a separate verifier
tool to assert that the decision procedure operated correctly during that particular execution. The
verifier, in turn, is simple enough be furnished with a full correctness proof [5, 32]. Thus every
particular run and output of the implementation can be verified before use. We note that, for
yes-instances, the satisfying assignment is generally sufficient for validation of the output. For
no-instances, however, it is not immediately clear what information is sufficient to validate the
answer.

6 Proposed Experiments and Evaluation

In this section, we outline our proposed experimental methodology for each research thrust. Indi-
vidual parts of the evaluation plan may apply to more than one research thrust. We will evaluate
the proposed string decision procedures with respect to our stated goals of scalability, expressive
utility, and correctness. The ultimate goal is for our tools to be useful within a wide variety of
program analyses.

6.1 A Decision Procedure for Subset Constraints over Regular Languages

This exploratory project emphasizes expressive utility and correctness. We will evaluate whether
the DPRLE algorithm is practical for solving a real-world program analysis problem, namely, the
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generation of SQL injection attacks based on the output of a static bug finder by Wassermann and
Su [41]. We will measure the size of the generated constraint systems for this problem, the time
our implementation takes to generate inputs, and we will conduct informal checks to see if the
generated attack vectors are accurate. We will consider this approach successful if the total run-
ning time does not exceed 10 minutes per generated input. We will provide a machine-checkable
proof and include a description of the proof obligations as part of the exposition.

6.2 Solving String Constraints Lazily

This research thrust emphasizes scalability, and its evaluation will rely largely on a within-domain
performance comparison with existing tools. We will do a direct comparison between Hampi [24],
DPRLE [21], and our new decision procedure. We do not anticipate a comparison with Rex be-
cause that tool is not publicly available. It should be noted that the features between these three
tools may not overlap perfectly; if so we will choose reasonable common feature subsets and do
pairwise comparisons. We will perform separate measurements for yes-instances, for which we
will measure the time it takes each tool to generate the first satisfying string for all variables in the
constraint system. For no-instances, we will measure the time it takes to report the “Unsatisfiable”
answer.

We will run this experiment on several datasets: the Rex dataset [40], a set difference task
that consists of 100 regular expression pairs (90 yes-instances, 10 no-instances); the CFG Analyzer
dataset, which consists of a large number of variously sized context-free grammars; and the “long
strings” benchmark shown in Section 4.1. We hypothesize that our tool will outperform the others
by several orders of magnitude, as suggested by the results shown in Figure 3. In the presentation
of our data, we will consider two separate dimensions of scalability: input constraint system size
and requested output string length. We will consider our tool successful if it is at least one order
of magnitude faster than the existing tools on the majority of the testcases.

6.3 Combining String Constraints and Integer Index Operations

We wish to establish that, where features overlap, the performance of this approach is competitive
relative to that of existing approaches. We will conduct a within-domain comparison similar to
the one proposed in the previous subsection.

The evaluation for this project will emphasize the expressive utility argument. More con-
cretely, we wish to verify that our decision procedure can solve an interesting set of problems.
In this case, comparison with previous tools is inadequate, since existing tools do not support
both string operations and integer index operations. For this experiment, we will construct a new
dataset based on the survey presented in Section 4.2. This dataset will consist of fragments of
PHP code that contain at least two data-dependent index functions (for example, code that uses
strchr to find an index followed by substr to extract a substring at that index). We will then
execute this code (in context) to generate specific string and integer values and pick random vari-
ables to solve for.

We will evaluate our tool on this dataset by measuring how many of these constraint systems
our tool is able to solve without modification. We will consider our approach successful if the
tool handles more than 80% of the constraints drawn randomly from this new dataset within a
10-second timeout per testcase for reasonably-sized strings. Finally, time permitting, we will seek
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Figure 5: Proposed work schedule. The Lazy Search Algorithm paper is currently under submission.

out collaboration in a client application domain such as security or testcase generation.

6.4 Optional: Proof Strategies for String Constraint Solving Tools

Our correctness criterion does not warrant empirical evaluation directly. We will make the cor-
rectness argument an integral part of the presentation of our decision procedures. If we choose to
pursue the Proof Strategies thrust, we will render a machine-checkable proof for at least one of the
decision procedures. Our goal is to provide a detailed, from-first-principles correctness proof; a
similar proof in our previous work was well-received [21]. If we choose to pursue the Proof Strate-
gies thrust on self-certification, we will measure the runtime overhead associated with generating
and validating transcripts.

7 Schedule

Figure 5 describes the proposed schedule for this dissertation and related projects. It consists of
five related projects:

1. An automaton-based approach, referred to as DPRLE in this proposal. This work is de-
scribed briefly in Section 5.1 and appears in PLDI‘09 [21].

2. A collaborative project, Hampi, that uses existing decision procedures to solve string con-
straints. This work appears in ISSTA‘09 [24]. Our analysis of Hampi’s scaling behavior
inspired the decision to use a lazy search strategy. The Hampi encoding algorithm is not
claimed in the proposed dissertation; we list it here for completeness.

3. An approach titled Solving String Constraints Lazily which is currently under submission.
The approach is outlined in Section 5.2. We believe this work, in combination with (1), is
suitable for a journal submission by early 2011.

4. A decision procedure for a mixed theory of string constraints and index operations. This
work is scheduled for completion by the end of 2010. The approach is outlined in Section 5.3.

Time permitting, we may attempt one additional research thrust:

5. An investigation of proof engineering strategies for a certified string decision procedure.
This project is described in Section 5.4, and tentatively scheduled for early 2011.
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In the past, we have targeted venues like Automated Software Engineering (ASE), Computer Aided
Verification (CAV), International Symposium on Software Testing and Analysis (ISSTA), Programming
Language Design and Implementation (PLDI), and Principles of Programming Languages (POPL). We
propose targeting similar venues for the remaining work, together with a journal like Transactions
on Programming Languages and Systems (TOPLAS). The schedule includes limited slack for further
collaborative projects not included in this proposal, including an industry internship scheduled
for the summer of 2010. Finally, we will pro-actively seek out further collaborative efforts in target
application areas, such as security and automated testing.

8 Conclusion

In this document, we made the case that program analyses could benefit from efficient general-
purpose decision procedures that model common string library operations. We showed that ex-
isting approaches fall short when it comes to scalability, expressive utility, and correctness. We
proposed the following research to address these issues:

1. We proposed a certified automaton-based algorithm, concat intersect, and associated tool
(Decision Procedure for Regular Language Equations (DPRLE)) for solving string constraints.
This exploratory project demonstrates that string decision procedures can be used to gen-
erate attack inputs based on the output of a static bug finder [21]. This project also demon-
strates that it is feasible to build constructive proofs of correctness for this class of algorithms.

2. Next, we turned our attention to scalability. We observed that existing algorithms often per-
form more work than is necessary to find a satisfying assignment. Based on this insight,
we proposed a lazy search-based algorithm for solving constraints. Our preliminary results
show this approach to be several orders of magnitude faster than the fastest existing imple-
mentation.

3. We proposed extending the feature set of (2), guided by a preliminary study of string func-
tion usage in real-world code. Our study showed that existing approaches do not directly
support string indexing operations like strstr; these are commonly used in the PHP dataset
that we examined. We hypothesized that it is feasible to solve string constraints and integer
constraints integrally, without, for example, alternating between searching for a full set of
integer solutions and searching for a satisfying assignment over strings.

4. Finally, we proposed an optional project on proving the total correctness of a string decision
procedure, or, alternatively, to make an existing implementation self-certifying.

We will consider this work successful if each of the listed projects meets or exceeds the stated
expectations. In the long term, we aim to create and maintain at least one general-purpose imple-
mentation of the proposed research to encourage adoption (and extension) by other researchers.
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[16] P. Godefroid, A. Kieżun, and M. Y. Levin. Grammar-based whitebox fuzzing. In PLDI ’08:
Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and imple-
mentation, Tucson, AZ, USA, June 9–11, 2008.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 213–223, 2005.

[18] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz testing. In NDSS ’08:
Proceedings of the 15th Annual Symposium on Network Distributed Security Security, 2008.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer. Temporal-
safety proofs for systems code. In CAV ’02: Proceedings of the 14th International Conference on
Computer Aided Verification, pages 526–538, 2002.

[20] K. J. Higgins. Cross-site scripting: attackers’ new favorite flaw. Technical report, http:
//www.darkreading.com/document.asp?doc_id=103774&WT.svl=news1_1, Sept.
2006.

[21] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints over regular lan-
guages. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, pages 188–198, 2009.

[22] L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):140–162, 2003.

[23] S. Jha, S. A. Seshia, and R. Limaye. On the computational complexity of satisfiability solving
for string theories. CoRR, abs/0903.2825, 2009.

[24] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: a solver for string
constraints. In ISSTA ’09: Proceedings of the eighteenth international symposium on software testing
and analysis, pages 105–116, New York, NY, USA, 2009. ACM.

[25] K. Lakhotia, P. McMinn, and M. Harman. Handling dynamic data structures in search based
testing. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1759–1766,
July 2008.

[26] K. Lakhotia, P. McMinn, and M. Harman. Automated test data generation for coverage:
Haven’t we solved this problem yet? In 4th Testing Academia and Industry Conference - Practice
and Research Techniques, pages 95–104, Sept. 2009.

[27] R. Majumdar and R.-G. Xu. Directed test generation using symbolic grammars. In ASE ’07:
Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering,
pages 134–143, 2007.

2



[28] P. Manual. Pcre; posix regex; strings. In http://php.net/manual/en/book.strings.php, December
2009.

[29] Y. Minamide. Static approximation of dynamically generated web pages. In WWW ’05: Pro-
ceedings of the 14th International Conference on the World Wide Web, pages 432–441, 2005.

[30] Y. Minamide. Verified decision procedures on context-free grammars. In TPHOLs ’07: Pro-
ceedings of the 20th International Conference on Theorem Proving in Higher Order Logics, pages
173–188, 2007.

[31] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient sat solver. In DAC ’01: Proceedings of the 38th Conference on Design Automation, pages
530–535, 2001.

[32] G. C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 106–119, New York, NY,
USA, 1997. ACM.

[33] G. C. Necula. Translation validation for an optimizing compiler. In PLDI ’00: Proceedings of
the 2000 ACM SIGPLAN conference on Programming language design and implementation, pages
83–94, 2000.

[34] R. Richardson. FBI/CSI computer crime and security survey. Technical report, http://
www.gocsi.com/forms/csi_survey.jhtml, 2008.

[35] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic execution
framework for javascript. Technical Report UCB/EECS-2010-26, EECS Department, Univer-
sity of California, Berkeley, Mar 2010.

[36] W. Security. Whitehat website security statistic report, 8th edition. http://www.
whitehatsec.com, November 2009.

[37] Z. Su and G. Wassermann. The essence of command injection attacks in web applications. In
POPL ’06: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 372–382, 2006.

[38] P. Thiemann. Grammar-based analysis of string expressions. In Workshop on Types in Lan-
guages Design and Implementation, pages 59–70, New York, NY, USA, 2005. ACM.

[39] M. Veanes, N. Bjørner, and L. de Moura. Solving extended regular constraints symbolically.
Technical report, Microsoft Research, Dec. 2009.

[40] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic regular expression explorer. Tech-
nical report, Microsoft Research, Oct. 2009.

[41] G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection
vulnerabilities. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 32–41, 2007.

[42] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using
genetic programming. In International Conference on Software Engineering, pages 364–374, 2009.

3



[43] Wu-ftpd. Bug: http://www.cert.org/advisories/CA-2000-13.html. Exploit:
http://www.securityfocus.com/bid/1387/exploit, 2007.

[44] Y. Xie and A. Aiken. Saturn: A sat-based tool for bug detection. In K. Etessami and S. K.
Rajamani, editors, CAV ’05: Proceedings of the 17th International Conference on Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 139–143. Springer, 2005.

[45] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In
USENIX-SS’06: Proceedings of the 15th conference on USENIX Security Symposium, pages 179–
192, July 2006.

[46] F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string verification: Combining string analysis
and size analysis. In TACAS ’09: Proceedings of the 15th Inernational Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2009.

4



Addendum

Ph.D. Dissertation Proposal
Pieter Hooimeijer

pieter@cs.virginia.edu

April 22, 2010

9 Related Work

We now briefly discuss work that is closely related to the proposed dissertation. Section 9.1 dis-
cusses a subset of the original work on string analyses (i.e., analyses that model string values)
that include built-in models. Section 9.2 provides salient examples of the use of explicitly-external
decision procedures by program analysis work. Finally, Section 9.3 gives an overview of decision
procedures for strings, including more theoretically-oriented work on word equations.

9.1 Client Analyses

Christensen et al. first proposed a string analysis that soundly overapproximates string variables
using regular languages [9]. This analysis uses a built-in model of strings using finite automata; a
subset of that library is available separately from the analysis tool. Wassermann and Su [34] per-
form a similar static analysis to detect SQL injections. Their implementation extends Minamide’s
grammar-based analysis [24]. It statically models string values using context-free grammars, and
detects potential database queries for which user input may change the intended syntactic struc-
ture of the query. In its original form, neither Wassermann and Su nor Minamide’s analysis can
generate example inputs.

In more recent work, Wassermann et al. show that many common string operations can be
reversed using finite state transducers (FSTs) [35]. They use this method to generate inputs for
SQL injection vulnerabilities in a concolic testing setup. Their algorithm is incomplete, however,
and cannot be used to soundly rule out infeasible program paths. Yu et al. solve string con-
straints [37] for forward symbolic execution, using approximations (“widening automata”) for
non-monotonic operations, such as string replacement, to guarantee termination. Their approach
has recently been extended to handle symbolic length constraints through the construction of
length automata [38]. We note that these tools are for forward abstract interpretation; this task
poses different challenges relative to constraint solving.

Godefroid et al. [13] use the SAGE architecture to perform guided random input generation
(similar to previous work on random testcase generation by the same authors [14, 15]). It uses
a grammar specification for valid program inputs rather than generating arbitrary input strings.
This allows the analysis to reach beyond the program’s input validation stages. Independent work
by Majumdar and Xu [23] is similar to that of Godefroid et al.; CESE also uses symbolic execution
to find inputs that are in the language of a grammar specification. All of these projects could
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benefit from decision procedures for strings and regular expressions when performing symbolic
execution, which requires decision procedures for strongest-postcondition calculations as well as
ruling out infeasible paths.

9.2 The Use of Decision Procedures

Decision procedures have long been a fixture of program analyses. Typically a decision procedure
handles queries over a certain theory, such as linear arithmetic, uninterpreted functions, boolean
satisfiability [25, 36], pointer equality [26, 30], or bitwise operations and vectors [7, 12]. Nelson
and Oppen presented a framework for allowing decision procedures to cooperate, forming an
automated theorem prover to handle queries that span multiple theories and include first-order logic
connectives [28]. In general, the satisfiability modulo theories problem is a decision problem for
logical formulas with respect to combinations of background theories expressed in classical first-
order logic with equality. A number of SMT solvers, such as CVC [31] and Z3 [10], are available.

SLAM [4] and BLAST [17] are well-known examples of program analyses that make heavy use
of external decision procedures: both are software model checkers that were originally written to
call upon the Simplify theorem prover [11] to compute the effects of a concrete statement on an
abstract model. This process, called predicate abstraction, is typically performed using decision
procedures [22] and has led to new work in automated theorem proving [5]. SLAM has also made
use of an explicit alias analysis decision procedure to improve performance [1]. BLAST uses proof-
generating decision procedures to certify the results of model checking [16], just as they are used
by proof-carrying code to certify code safety [27].

Another recent example is the EXE project [8], which combines symbolic execution and con-
straint solving [20] to generate user inputs that lead to defects. EXE has special handling for
bit arrays and scalar values, and our work addresses an orthogonal problem. While a decision
procedure for vectors might be used to model strings, merely reasoning about indexed accesses
to strings of characters would not allow a program analysis to handle the high-level regular-
expression checks present in many string-using programs. Note that the Hampi project [19] (a
string constraint solver, listed below) and EXE share the same underlying decision procedure
(STP [12]).

9.3 Theory and String Decision Procedures

There has been extensive theoretical work on language equations; Kunc provides an overview [21].
Work in this area has typically focused on complexity bounds and decidability results. Bala [3]
defines the Regular Language Matching (RLM) problem, a generalization of the Regular Matching
Assignments (RMA) problem [18] that allows both subset and superset constraints. Bala uses a
construct called the R-profile automaton to show that solving RLM requires exponential space. Our
proposed decision procedures supports a different set of operations (e.g., we do not allow Kleene
? on variables).

Bjørner et al. present a decision procedure for several common string operations by reduc-
tion to existing SMT theories [6], fixing the string lengths in a separate step. They show that the
addition of a replace function makes the theory undecidable. In concurrent work, we show that
bounded context-free language constraints can be solved efficiently by direct conversion to SAT.
The Hampi tool [19] is a solver for string constraints over fixed-size string variables. It supports
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regular languages, fixed-size context-free languages, and a inclusion constraints. Hampi has been
extensively evaluated in static and dynamic analysis tools and for automatic test generation.

In recent work, Saxena et al. provide an extension to Hampi that supports multiple variables
and length constraints [29]; this is a subset of the integer index operations defined in this proposal.
The associated tool, Kaluza, builds on Hampi’s underlying solver (STP [12]) to iteratively solve
integer constraints (by calling STP directly) and string constraints (using Hampi). We hypothesize
that a more specialized approach (as proposed for this dissertation) would yield better scalabililty.

The CFG Analyzer tool [2] is a solver for bounded versions of otherwise-undecidable context-
free language problems. Problems such as inclusion, intersection, universality, equivalence and
ambiguity are handled via a reduction to satisfiability for propositional logic in the bounded case.
The Rex tool [32, 33] solves string constraints through a symbolic encoding of finite state automata
into Z3 SMT solver [10]. An important benefit of this strategy is that string constraints can be
readily integrated with other theories (e.g., linear arithmetic) handled by Z3. A disadvantage is
that the encoding is relatively inefficient; in our preliminary results we showed that Hampi and
our prototype consistently out-performed Rex by up to four orders of magnitude.

The DPRLE tool [18] is a decision procedure for regular language constraints, such as those
involving concatenation and intersection operators between multiple variables. The tool focuses
on generating entire sets of satisfying assignments rather than single strings: often constraints
over multiple variables can yield multiple disjoint solution sets. The core algorithm of DPRLE
has been formally proved correct in a constructive logic framework. More recent approaches have
focused on producing string assignments (treating the variables as strings rather than sets), since
the ultimate goal of many client analyses is to produce single string witnesses.
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