
1

Decision Procedures for
String Constraints

Ph.D. Proposal
Pieter Hooimeijer

University of Virginia

2

Motivation

Mitre Corp. data reported on http://www.attrition.org/

3

Motivation

Mitre Corp. data reported on http://www.attrition.org/

#1

#2

4

Motivation

“String values have lost
 their innocence and
 are being used in many
 unforeseen contexts.”

[Thiemann05]

5

Motivation

#1

#2

“String values have lost
 their innocence and
 are being used in many
 unforeseen contexts.”

[Thiemann05]

6

Motivation

#1

#2

“String values have lost
 their innocence and
 are being used in many
 unforeseen contexts.”

[Thiemann05]

7

Motivation

“String values have lost
 their innocence and
 are being used in many
 unforeseen contexts.”

[Thiemann05]

Now
what?

8

Goal

Make string analysis available
to a wider class of program
analysis tools.

9

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

10

Outline

• String Constraint Solving

– example code

– definitions
• Preliminary Results
• Proposed Research

11

Outline

• String Constraint Solving

– example code

– definitions
• Preliminary Results
• Proposed Research

12

Example
 // v1 and v2 are user inputs

 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();

13

Query:
 Will this code ever
 execute magic?

14

Example
 // v1 and v2 are user inputs

 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();

1

3

2

15

Outline

• String Constraint Solving

– example code

– definitions
• Preliminary Results
• Proposed Research

16

Outline

• String Constraint Solving

– example code

– definitions
• Preliminary Results
• Proposed Research

17

Definitions

String Constraint

C ::= E ∈ R E ::= V
| E ∉ R | E ◦ V

R : regex V : variable

18

DefinitionsDefinitions

Constraint System

S = { C1,..., Cn }
where each Ci ∈ S is a well-formed
string constraint.

19

DefinitionsDefinitions

Decision Procedure

D : constraint system →
{ Satisfiable,

 Unsatisfiable }

20

DefinitionsDefinitions

Soundness

[D(S) = Sat.] →
S is sat. Completeness

S is sat. →
[D(S) = Sat.]

21

DefinitionsDefinitions

Soundness

[D(S) = Sat.] →
S is sat. Completeness

S is sat. →
[D(S) = Sat.]

22

DefinitionsDefinitions

Soundness

[D(S) = Sat.] →
S is sat.

Completeness

S is sat. →
[D(S) = Sat.]

String Constraint

C ::= E ∈ R E ::= V
| E ∉ R | E ◦ V

R : regex V : variable

Constraint System

S = { C1,..., Cn }
where each Ci ∈ S is a well-
formed string constraint.

Decision Procedure

D : constraint system →
{ Satisfiable,

 Unsatisfiable }

23

DefinitionsDefinitions

Soundness

[D(S) = Sat.] →
S is sat.

Completeness

S is sat. →
[D(S) = Sat.]

String Constraint

C ::= E ∈ R E ::= V
| E ∉ R | E ◦ V

R : regex V : variable

Constraint System

S = { C1,..., Cn }
where each Ci ∈ S is a well-
formed string constraint.

Decision Procedure

D : constraint system →
{ Satisfiable,

 Unsatisfiable }

24

DefinitionsDefinitions

Soundness

[D(S) = Sat.] →
S is sat.

Completeness

S is sat. →
[D(S) = Sat.]

String Constraint

C ::= E ∈ R E ::= V
| E ∉ R | E ◦ V

R : regex V : variable

Constraint System

S = { C1,..., Cn }
where each Ci ∈ S is a well-
formed string constraint.

Decision Procedure

D : constraint system →
{ Satisfiable,

 Unsatisfiable }

25

Outline

• String Constraint Solving

– example code

– definitions
• Preliminary Results
• Proposed Research

26

Existing Tools
DPRLE [PLDI09] Automata

Hampi [ISSTA09] Encode to STP

Rex [ICST10] Encode to Z3

Kaluza [Oakland10] Encode to
Hampi & STP

Our Prototype Lazy Automata

27

Questions

Make string analysis available
to a wider class of program
analysis tools.

28

Questions

• What is acceptable
 performance?

• What type of constraints
should we allow?

29

Outline

• String Constraint Solving

• Preliminary Results

– scalability

– expressive utility
• Proposed Research

30

Subjects:

- Decision Procedure for Regular

 Language Equations [PLDI09]

- Hampi [ISSTA09]

- Lazy Prototype

Scalability

31

Task: find a string that is in both

[a-c]*a[a-c]{n+1}

and

[a-c]*b[a-c]{n}

Scalability

32

Scalability
Time to Generate First String

33

Scalability
Time to Generate First String

34

Scalability

• Existing approaches are less
 scalable than they could be on
 the tested benchmarks

• Interaction with an underlying
 solver introduces performance
 artifacts

35

Outline

• String Constraint Solving

• Preliminary Results

– scalability

– expressive utility
• Proposed Research

36

Expressive Utility

• Picked 88 PHP projects on
 SourceForge = 9.6 million LOC

• Tally:111 distinct string functions

37

Expressive Utility

38

Expressive Utility

Index: 63,003
(substr, strlen, strpos, ...)

Regex: 29,141
(preg_match, preg_replace, ...)

39

Expressive Utility

• Existing approaches typically
 support 'Regex,' but not 'Index'
 operations

• 'Index' operations were 2x as
 common in the sample under
 study

40

Outline

• String Constraint Solving

• Preliminary Results

– scalability

– expressive utility
• Proposed Research

41

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies

42

Thesis Statement

Index: 63,003
(substr, strlen, strpos, ...)

Regex: 29,141
(preg_match, preg_replace, ...)

Time to Generate First String It is possible to construct a
practical algorithm that decides
the satisfiability of constraints that
cover both string and integer index
operations, scales up to real-world
program analysis problems, and
admits a machine-checkable proof
of correctness.

43

Thesis Statement

It is possible to construct a
practical algorithm that decides
the satisfiability of constraints that
cover both string and integer index
operations, scales up to real-world
program analysis problems, and
admits a machine-checkable proof
of correctness.

44

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies

45

Subset Constraints [PLDI'09]

constants

variables

concatenation

46

Approach

1

2

3

Input

47

Approach

Input Cross Product

✔Sat.

✘(c1 ◦ c2) c∩ 3
Unsat.

48

Example
 // v1 and v2 are user inputs

 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();

49

d1

d2

d3

d4

d5

d6

d7

a1 a2
o

a3
p

a4
p

ε

b1

p

b2
qε

a1d1

a2d2

o

p

p

p

p

q

o

a3d3

a4d4

p

p

a2d4 b1d4
ε ε

a3d5

a4d6

p

p b1d6
ε

b1d5

p

p

b2d7q

50

a1 a2
o

a3
p

a4
p

ε

b1

p

b2
qε

a1d1

a2d2

o

a3d3

a4d4

p

p

a2d4 b1d4
ε ε

a3d5

a4d6

p

p b1d6
ε

b1d5

p

p

q b2d7

Solution I: v1 = { opp }
v2 = { ppq }

51

a1 a2
o

a3
p

a4
p

ε

b1

p

b2
qε

a1d1

a2d2

o

a3d3

a4d4

p

p

a2d4 b1d4
ε ε

a3d5

a4d6

p

p b1d6
ε

b1d5

p

p

b2d7q

Solution II: v1 = { opppp }

Solution I: v1 = { opp }
v2 = { ppq }

v2 = { q }

52

Algorithms and a Proof

• Concat-Intersect (CI) algorithm:
– two variables, three constants; fixed form
– mechanically verified proof in Coq 8.1pl3
– proof size is ~1300 lines

• Regular Matching Assignments (RMA):
– implemented in a tool, DPRPLE
– applies CI procedure inductively

53

Evaluation

• Find SQL injection vulnerabilities
 [Wassermann and Su; PLDI07]

• For each vulnerability:
– generate SQL + program path
– check path consistency (Simplify)
– solve string constraints (DPRLE)

54

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies

55

Scalability through Laziness

Idea:
 Cast constraint solving
 as a search problem.
 Traverse as little of the
 search space as possible.

56

Proposed Approach
datatype searchstate =
 { next : variable;
 states : variable→pos→status}
datatype status =
 | Unknown of status
 | StartsAt of nfastate→status
 | Path of nfapath→status

57

Proposed Evaluation

• Within-domain performance comparison:
– DPRLE
– Hampi

• Use previously-published benchmarks:
– long strings task [Veanes et al.]
– set difference task [Veanes et al.]
– grammar intersection task [Kiezun et al.]

– CFG Analyzer
– Rex

58

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies

59

Integer Index Operations
Idea:
 Extend the lazy search-
 based approach to support
 integer index operations.
 Make use (if possible) of
 existing integer arithmetic
 models that support
 incremental solving.

Idea:
 Extend the lazy search-
 based approach to support
 integer index operations.
 Make use (if possible) of
 existing integer arithmetic
 models that support
 incremental solving.

Idea:
 Extend the lazy search-
 based approach to support
 integer index operations.
 Make use (if possible) of
 existing integer arithmetic
 models that support
 incremental solving.

60

Proposed Approach

• Explicitly-typed constraint language for
strings and integer indices

• Support integer arithmetic on indices
using an existing approach

61

Proposed Evaluation

• Compare to existing approach
[Saxena et al.] where features overlap

• Develop PHP benchmark based on
preliminary results

• Metrics: running time, proportion of
testcases fully expressible

62

Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies

63

Proof Strategies
Idea:
 Extend the lazy search-
 based approach to support
 integer index operations.
 Make use (if possible) of
 existing integer arithmetic
 models that support
 incremental solving.

Idea:
 Extend the lazy search-
 based approach to support
 integer index operations.
 Make use (if possible) of
 existing integer arithmetic
 models that support
 incremental solving.

Idea:
 Develop a more general
 approach for formally
 verifying string decision
 procedures so that proof
 and algorithm can co-
 evolve.

64

Schedule

65

Conclusion

• Presented proposed research on decision
procedures, focusing on:
– expressive utility
– scalability
– correctness

• Research thrusts:
– subset constraints
– lazy search
– integer index operations
– proof strategies

We encourage difficult questions.

67

An Example

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))
 cmd = slash + 1;

68

Example

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))
 cmd = slash + 1;

\0

spcmd

/ b i n / l s - l s

69

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 &&
 (slash < sp))
 cmd = slash + 1;

/ b i n / l s - l s \0

spcmd
slash

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

 (slash=strchr(cmd,'/'))

\0/ b i n / l s - l s

70

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))

/ b i n / l s - l s \0

spcmd
slash

/ b i n / l s - l s \0

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

 cmd = slash + 1;

71

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 &&
 (slash < sp))
 cmd = slash + 1;

/ b i n / l s - l s \0

sp

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

 (slash=strchr(cmd,'/'))

/ b i n / l s - l s \0

cmd
slash

72

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))

/ b i n / l s - l s \0

sp
cmd

slash

/ b i n / l s - l s \0

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

 cmd = slash + 1;

73

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))

/ b i n / l s - l s \0

sp
cmd

slash=0

/ b i n / l s - l s \0

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

 cmd = slash + 1;

74

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp &&
 (slash=strchr(cmd,'/')) &&
 (slash < sp))
 cmd = slash + 1;

string c ∈ Σ*
index sp := findfirst(cmd, ' ');
string c2 := cmd[:sp]
index slsh := findlast(cmd2, '/')
string c3 := cmd[slash + 1:]

75

Can cmd contain '/' ?

Can the substring between
cmd and sp contain
'/bin/rm' ?

Example: Some Queries

✔
✘

	
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

