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Now
what?
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Goal

Make string analysis available 
to a wider class of program 
analysis tools.
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Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research
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Example
 // v1 and v2 are user inputs
 
 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();



13

Query:
    Will this code ever
    execute magic?
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Example
 // v1 and v2 are user inputs
 
 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();
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Definitions

String Constraint

C ::= E  ∈ R E ::= V
| E  ∉ R        | E ◦ V

R : regex V : variable
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DefinitionsDefinitions

Constraint System

S = { C1,..., Cn }
where each Ci  ∈ S is a well-formed 
string constraint.
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DefinitionsDefinitions

Decision Procedure

D : constraint system →
{ Satisfiable,

                          Unsatisfiable }
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Existing Tools
DPRLE [PLDI09] Automata

Hampi [ISSTA09] Encode to STP

Rex [ICST10]  Encode to Z3

Kaluza [Oakland10] Encode to
Hampi & STP

Our Prototype Lazy Automata
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Questions

Make string analysis available 
to a wider class of program 
analysis tools.



28

Questions

• What is acceptable
   performance?

• What type of constraints 
should we allow?
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Outline

• String Constraint Solving

• Preliminary Results

– scalability

– expressive utility
• Proposed Research



30

Subjects: 

- Decision Procedure for Regular

   Language Equations [PLDI09]

- Hampi [ISSTA09]

- Lazy Prototype

Scalability
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Task: find a string that is in both

[a-c]*a[a-c]{n+1} 

and

[a-c]*b[a-c]{n}

Scalability
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Scalability
Time to Generate First String 
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Scalability
Time to Generate First String 
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Scalability

• Existing approaches are less
   scalable than they could be on
   the tested benchmarks

• Interaction with an underlying
   solver introduces performance
   artifacts
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Outline
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Expressive Utility

• Picked 88 PHP projects on  
 SourceForge = 9.6 million LOC

• Tally:111 distinct string functions
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Expressive Utility
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Expressive Utility

Index: 63,003
(substr, strlen, strpos, ...)

Regex: 29,141
(preg_match, preg_replace, ...)
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Expressive Utility

• Existing approaches typically
   support 'Regex,' but not 'Index'
   operations

• 'Index' operations were 2x as
   common in the sample under
   study
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Outline

• String Constraint Solving
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– scalability

– expressive utility
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Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies
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Thesis Statement

Index: 63,003
(substr, strlen, strpos, ...)

Regex: 29,141
(preg_match, preg_replace, ...)

Time to Generate First String It is possible to construct a 
practical algorithm that decides 
the satisfiability of constraints that 
cover both string and integer index 
operations, scales up to real-world 
program analysis problems, and 
admits a machine-checkable proof 
of correctness.
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Outline
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Subset Constraints [PLDI'09]

constants

variables

concatenation
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Approach

1

2

3

Input
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Approach

Input Cross  Product

✔Sat.

✘(c1 ◦ c2) c∩ 3
Unsat.
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Example
 // v1 and v2 are user inputs
 
 if (!ereg('o(pp)+', v1)){exit;}
 if (!ereg('p*q', v2)){exit;}

 v3 = v1 . v2; // concat
 if (v3 != 'oppppq'){exit;}
 magic();
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Solution I: v1 = { opp }
v2 = { ppq }
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Algorithms and a Proof

• Concat-Intersect (CI) algorithm:
– two variables, three constants; fixed form
– mechanically verified proof in Coq 8.1pl3
– proof size is ~1300 lines

• Regular Matching Assignments (RMA):
– implemented in a tool, DPRPLE
– applies CI procedure inductively
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Evaluation

• Find SQL injection vulnerabilities
 [Wassermann and Su; PLDI07]

• For each vulnerability:
– generate SQL + program path
–  check path consistency (Simplify)
–  solve string constraints (DPRLE)
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Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies
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Scalability through Laziness

Idea:
  Cast constraint solving
  as a search problem.
  Traverse as little of the
  search space as possible.
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Proposed Approach
datatype searchstate =
 { next   : variable;
   states : variable→pos→status}
datatype status =
 | Unknown  of status
 | StartsAt of nfastate→status
 | Path     of nfapath→status
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Proposed Evaluation

• Within-domain performance comparison:
– DPRLE
– Hampi

• Use previously-published benchmarks:
– long strings task [Veanes et al.]
– set difference task [Veanes et al.]
– grammar intersection task [Kiezun et al.]

– CFG Analyzer
– Rex
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Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations
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Integer Index Operations
Idea:
  Extend the lazy search-
  based approach to support
  integer index operations. 
  Make use (if possible) of
  existing integer arithmetic
  models that support
  incremental solving.
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Proposed Approach

• Explicitly-typed constraint language for 
strings and integer indices

• Support integer arithmetic on indices 
using an existing approach
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Proposed Evaluation

• Compare to existing approach 
[Saxena et al.] where features overlap

• Develop PHP benchmark based on 
preliminary results

• Metrics: running time, proportion of 
testcases fully expressible 
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Outline

• String Constraint Solving
• Preliminary Results
• Proposed Research

– subset constraints

– scalability through laziness

– integer index operations

– proof strategies
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Proof Strategies
Idea:
  Extend the lazy search-
  based approach to support
  integer index operations. 
  Make use (if possible) of
  existing integer arithmetic
  models that support
  incremental solving.

Idea:
  Extend the lazy search-
  based approach to support
  integer index operations. 
  Make use (if possible) of
  existing integer arithmetic
  models that support
  incremental solving.

Idea:
  Develop a more general 
  approach for formally
  verifying string decision
  procedures so that proof
  and algorithm can co-
  evolve.



64

Schedule
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Conclusion

• Presented proposed research on decision 
procedures, focusing on:
– expressive utility
– scalability
– correctness

• Research thrusts:
– subset constraints
– lazy search
– integer index operations
– proof strategies



We encourage difficult questions.
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An Example

void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp && 
        (slash=strchr(cmd,'/')) &&
         (slash < sp))
    cmd = slash + 1;
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void site_exec(char *cmd){
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/* sanitize the command-string */
 while (sp && 
        (slash=strchr(cmd,'/')) &&
         (slash < sp))
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void site_exec(char *cmd){
char *slash;
char *sp = (char*)strchr(cmd,' ');

/* sanitize the command-string */
 while (sp && 
        (slash=strchr(cmd,'/')) &&
         (slash < sp))
    cmd = slash + 1;

string c ∈ Σ*
index sp := findfirst(cmd, '  ');
string c2 := cmd[:sp]
index slsh := findlast(cmd2, '/')
string c3 := cmd[slash + 1:]
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Can cmd contain '/' ?

Can the substring between 
cmd and sp contain 
'/bin/rm' ?

Example: Some Queries

✔
✘
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