
Transparent System Introspection
in Support of Analyzing Stealthy Malware

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment

of the requirements for the degree

Doctor of Philosophy Computer Engineering

by

Kevin Joseph Leach

December 2016

APPROVAL SHEET

The dissertation

is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Kevin Joseph Leach, author

The dissertation has been read and approved by the examining committee:

Dr. Westley Weimer, Advisor

Dr. Joanne Dugan, Committee Chair

Dr. Marty Humphrey

Dr. Ronald D. Williams

Dr. Laura E. Barnes

Dr. Angelos Stavrou

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

December 2016

Abstract

The proliferation of malware has increased dramatically and seriously degraded the privacy

of users and the integrity of hosts. Millions of unique malware samples appear every year,

which has driven the development of a vast array of analysis tools. Malware analysis is

often performed with the assistance of virtualization or emulation for rapid deployment.

Malware samples are run in an instrumented virtual machine or analysis tool, and existing

introspection techniques help an analyst determine its behavior. Unfortunately, a growing

body of malware samples has begun employing anti-debugging, anti-virtualization, and anti-

emulation techniques to escape or otherwise subvert these analysis mechanisms.

These anti-analysis techniques often require measuring differences between the analysis en-

vironment and the native environment (e.g., executing more slowly in a debugger). We call

these measurable differences artifacts. Malware samples that use artifacts to exhibit stealthy

behavior have increased the effort required to analyze and understand each stealthy sam-

ple. Additionally, traditional automated techniques fail against such samples because they

produce measurable artifacts. We desire a transparent approach that produces no artifacts,

thereby admitting the analysis of stealthy malware. We refer to this challenge as the debug-

ging transparency problem. Solving this problem is thus concerned with reducing artifacts

or permitting reliable analysis in the presence of artifacts.

We present a system consisting of two approaches to address the debugging transparency

problem and then demonstrate how these components can apply to currently available com-

puter systems. We present two techniques capable of transparently acquiring snapshots of

memory and disk activity that can be used to analyze stealthy malware. First, we dis-

cuss a novel use of a custom Field-Programmable Gate Array that provides snapshots of

memory and disk activity with no measurable timing artifacts. Second, we present a novel

use of System Management Mode on x86 platforms that produces no functional artifacts at

the expense of producing timing artifacts. Finally, we present an approach to evaluating the

i

tradeoff space that exists between analysis transparency and the fidelity of introspection data

provided by such an analysis system. Together, these approaches form a cohesive solution

to the debugging transparency problem that admits analyzing stealthy malware.

ii

Dedication

The graduate school experience has been a long endurance test. There are several people to

whom I owe a tremendous amount of gratitude.

First, to Wes Weimer, thank you for serving as my doctoral advisor. Thank you for taking

me as a student in spite of my coming from an entirely different field of research. Thank you

for your tireless support throughout the doctoral program, and thank you for your eternal

patience with me as a time-consuming student. Thank you for advising me even though so

many of my publications did not include you as a co-author. Thank you for your professional

and life advice, and thank you for improving my research acumen and writing skills. Most

of all, thank you for helping me figure out what I want to do with my life. Without your

help, I would not have been able to complete my doctoral degree.

To Angelos Stavrou, thank you for being my advisor while I completed my master’s degree.

Attending GMU was the best professional decision of my life, and you have been like a

coach for becoming a better security researcher and professional. Thank you so much for the

opportunities you have provided to me, and thank you for your timeless advice. I wish you

the best of success in your career, your company, and your family.

To Fengwei Zhang, thank you for the years of productive collaboration. We certainly seem

to be able to come up with research-worthy ideas. I am fortunate to be able to call you a

colleague and friend. I hope there will be years of collaboration to come, and I hope you

find all the success you deserve.

To Chad Spensky, thank you for setting me up with the internship at Lincoln Laboratory.

Thank you for securing two years of funding for my doctoral studies—you helped me gain a lot

of research freedom during my time at UVa. Thank you for being a friend and collaborator,

and thank you for cooking such good barbecue. I hope we can continue to collaborate in the

future.

iii

To Marty Humphrey, thank you for enduring my sardonic comments in your operating

systems class and in your office. I appreciate all of the general advice you have given me and

the conversations we have had during my time at UVa.

To Joanne Dugan, thank you for your unwavering determination in seeing that the computer

engineering program succeeds and that the computer engineering students are represented.

The computer engineering program has been great to me, both as an undergrad and a

doctoral student.

To Laura Barnes, thank you for tolerating me as a student when I first came to UVa as a

graduate student. Your research group is one of the reasons I was able to stick it through in

spite of a difficult first year.

To Ronald Williams, thank you for serving on my committee. Your question about caching

during my proposal turned out to be a significant concern and led to a refined system. It

certainly made reviewers happy on a subsequent journal submission.

To Natalie Edwards, thank you for your eternal patience and administrative help through-

out the doctoral process. Thank you especially for making sure I got paid! Travel and

reimbursement were made much easier due to your efforts.

To Nick Napoli, thank you for being a friend throughout this Iditarod through Hell they call

graduate school. I hope we can remain friends and work together in the future.

To Lin Gong, thank you for being my friend since my first year at UVa. Thank you for

introducing me to so many people in the department, and thank you for your confidence and

conversations over the years.

To Jon Dorn, Kevin Angstadt, Jamie Floyd, Nora Evans, Erin Griffiths, and the rest of

WRG, thank you for your help and support. Thank you for the laughs in the office, and

thank you for tolerating my loud mechanical keyboard. To Dorn and Kevin A., thank you

both for your help on the quadcopter demo while I was interning at GrammaTech. I hope

iv

you all have amazing success in whatever your future endeavors may be.

To Kate Highnam, my former undergraduate workhorse, thank you for your diligence and

hard work. I wish you the best of luck.

I am extremely fortunate to have loving and supportive family. To my parents, Richard

and Linda, thank you for your love and all your advice through the years. Thank you for

your financial support, and thank you for putting up with me. Most of all, thank you for

encouraging me to complete this doctoral degree. I was hesitant to complete the degree early

on, but I am so glad I have seen it through to the end.

To my brother, Eric, thank you for helping me print large volumes of text. Thank you for

your patience with me, and thank you for including me in the Fantasy Football league.

To Yu Huang, my wonderful fiancée and the love of my life, thank you for your love and

support. Thank you for tolerating me, and thank you for being so patient and good-natured.

I am lucky to have you in my life. Most importantly, thank you for helping me find somewhat-

related Chinese quotes to place in my dissertation chapters. I can’t wait for what the future

holds for us. 我爱你。

Most of all, thank you, the reader, for taking the time to read my dissertation. Thank you

for contributing to scientific research to bolster human knowledge. I hope you find this work

informative.

v

vi

Contents

Abstract i

Dedication iii

Contents ix

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1
1.1 History of Attacks Against Computer Systems 2
1.2 Problems with Malware Analysis . 4
1.3 Transparent System Introspection as a Solution 7
1.4 Organization of This Dissertation . 9
1.5 Malware Analysis Challenges . 9
1.6 Threat Model . 10
1.7 Thesis Statement . 10
1.8 System Overview . 11

2 Background and Related Work 13
2.1 Computer Architecture and Operating Systems 13

2.1.1 Intel CPU Basics . 14
2.1.2 Interrupts . 15
2.1.3 Virtualization . 17

2.2 System Management Mode . 18
2.3 Stealthy Malware . 20
2.4 Artifacts . 21
2.5 Malware Analysis . 22
2.6 Debugging . 23
2.7 Memory Introspection . 24

3 Hardware Assisted System Introspection via Custom FPGA 25
3.1 Introspection Using PCI Express and SATA 28

vii

3.2 Implementation Details . 28
3.3 Addressing Artifacts Exposed via FPGA-Based Introspection 30

3.3.1 Addressing Memory Bandwidth Artifacts 31
3.3.2 Addressing Disk Throughput Artifacts 33
3.3.3 Summary: Addressing Disk and Memory Artifacts 35

3.4 Malware Experimental Framework . 36
3.5 Bridging the Semantic Gap in LO-PHI . 40

3.5.1 Memory . 41
3.5.2 Disk . 41
3.5.3 Filtering Background Noise . 42

3.6 Experimental Evaluation of LO-PHI . 43
3.6.1 LO-PHI Experiment 1: Custom Rootkit 43
3.6.2 LO-PHI Experiment 2: Labeled Malware 46
3.6.3 LO-PHI Experiment 3: Unlabeled Malware 49
3.6.4 LO-PHI Experiment 4: Paranoid Fish 51
3.6.5 LO-PHI Experiment 5: Coarsely-Labeled Malware 53
3.6.6 Evaluation Conclusions . 58

3.7 Concluding Remarks for LO-PHI . 58

4 Hardware Assisted System Introspection via System Management Mode 61
4.1 System Architecture . 64

4.1.1 Remote System in MalT . 65
4.1.2 System Under Test in MalT . 66
4.1.3 Communication between SUT and RS in MalT 66

4.2 Design and Implementation . 67
4.2.1 Debugging Client on the Remote System (RS) 67
4.2.2 System Under Test in MalT . 67
4.2.3 Bridging the Semantic Gap in MalT 69
4.2.4 Triggering an SMI . 70
4.2.5 Breakpoints . 71
4.2.6 Step-by-Step Execution Debugging 72
4.2.7 System Restoration . 74

4.3 Experimental Evaluation of MalT . 77
4.3.1 Testbed Specification and Code Size 77
4.3.2 Breakdown of Operations in MalT For Timing Analysis 78
4.3.3 Step-by-Step Debugging Overhead 79
4.3.4 System Restoration Overhead . 80

4.4 Discussion and Limitations . 82
4.4.1 Evaluating Transparency Against Packing Malware 83

4.5 Transparency Analysis . 85
4.5.1 Artifacts Introduced by MalT . 86
4.5.2 Analysis of Anti-debugging, -VM, and -emulation Techniques 89
4.5.3 Concluding Remarks on the Transparency of MalT 89

4.6 Concluding Remarks for MalT . 90

viii

5 Tradeoffs Between Transparency and Fidelity 93
5.1 Approach . 94
5.2 Approach . 98

5.2.1 Input Assumptions . 98
5.2.2 Architecture . 100
5.2.3 Physical Memory Snapshots . 101
5.2.4 Reporting Variables . 101
5.2.5 Reporting Stack Traces . 102
5.2.6 Output . 103

5.3 Use Cases and Protocols . 104
5.3.1 Security Analysis of Malicious Binaries 105
5.3.2 Maintenance and Security Analysis of Benign Binaries 106
5.3.3 Human Study Protocol . 106

5.4 Experimental Evaluation of Hops . 109
5.4.1 Experimental Setup and Benchmarks 110
5.4.2 RQ1 — Variable Value Introspection 112
5.4.3 RQ2 — Stack Trace Introspection and Sampling Rate 114
5.4.4 RQ3 — Human Study . 117
5.4.5 RQ4 — pafish Case Study . 118
5.4.6 Evaluation Conclusions . 122

5.5 Concluding Remarks for Hops . 123

6 Conclusion 125

ix

x

List of Figures

1.1 System structure. 12

2.1 Interrupts overview. 16
2.2 Virtualization overview . 19

3.1 LO-PHI Architecture . 29
3.2 LO-PHI Memory Bandwidth . 32
3.3 LO-PHI filesystem throughput . 34
3.4 LO-PHI automation script . 37
3.5 Binary analysis execution time. 39
3.6 Binary analysis workflow. 40
3.7 LO-PHI Example Output . 42
3.8 Semantic output from rootkit experiment . 44

4.1 Architecture of MalT . 65
4.2 Workflow for Disk Restoration in MalT . 75

5.1 Stack trace visualization. 97
5.2 Hops Architecture . 100
5.3 Variable localization between two binaries 102
5.4 Call stack introspection accuracy for nullhttpd 115
5.5 Call stack introspection accuracy for wu-ftpd 116
5.6 pafish dynamic stack trace . 121

xi

xii

List of Tables

1.1 Summary of Anti-debugging, Anti-VM, and Anti-emulation Techniques . . . 5

3.1 Disk throughput, Virtual SUT, no LO-PHI 36
3.2 Disk throughput, Virtual SUT, with LO-PHI 36
3.3 Overall statistics for unlabeled malware (Section 3.6.3). 50
3.4 Top processes created by wild malware (Section 3.6.3). 50
3.5 Top 6 sockets (by port and protocol) created by wild malware (Section 3.6.3). 51
3.6 Artifacts detected by pafish in Anubis. 52
3.7 Artifacts detected by pafish in Cuckoo. 52
3.8 Artifacts detected by pafish in LO-PHI. 52
3.9 Description of Volatility modules used for evaluating evasive malware. . . 53
3.10 Evasive malware dataset. 54
3.11 Summary of anomalies detected in Volatility 54

4.1 MalT Prototype Communication Protocol. 68
4.2 Stepping Methods Available in MalT . 73
4.3 SMI Handler Timing Breakdown . 79
4.4 Stepping overhead on Windows and Linux 81
4.5 System Restoration Timing Breakdown . 82
4.6 Running packed Notepad.exe under different environments. 84

5.1 Description of test cases used in Hops experiments. 110
5.2 Variable introspection accuracy. 113
5.3 List of artifacts used by pafish. 119

6.1 Publications supporting this dissertation. 127

xiii

xiv

Glossary

Artifact A measurable piece of data (i.e., a “tell”) exposed by an analysis tool or instru-
mentation framework that code under test can use to subvert or disable such analysis
tools. xiii, xviii, 6–8, 10, 11, 17, 21, 22, 25–27, 30, 31, 33, 35, 38, 40, 52, 58, 59, 61–63,
70, 74, 79, 83, 85–91, 97, 98, 103, 105, 109–111, 118–123, 125–127

Bare metal A native, non-virtualized system. 9, 26, 27, 61–63, 74, 86, 89

Basic Input/Output System A small piece of code that executes when a system is first
powered on. It controls very low-level functions concerning the configuration of hard-
ware (e.g., it configures interrupt delivery for connected components). xv, 20

BIOS Basic Input/Output System. xv, 18, 20, 23, 33, 67, 74–76, 80–83, 88, Glossary: Basic
Input/Output System

Cat-and-mouse game An informal description of the constant retaliation between the
attacker and defender communities in computer security. Once a new attack is revealed,
a new defense against it is quick to follow, after which a new attack technique to
circumvent it is revealed. 4, 89, 90

Commercial off-the-shelf An informal term describing products that are widely available
through commercial vendors. As of 2016, examples of COTS software include Microsoft
Word, MATLAB, and Adobe Photoshop. xv, 26

COTS Commercial off-the-shelf. xv, 26–28, 94, 95, Glossary: Commercial off-the-shelf

CPU Mode On Intel x86 CPUs, the mode of execution connotes how the CPU addresses
system memory and performs operations. This approach was adopted so that Intel
could maintain backwards compatibility as newer generation CPUs were introduced.
Intel CPUs support 1) Real Mode, a legacy 16-bit addressing mode in which the CPU
addresses real physical addresses, 2) Protected Mode, in which the CPU addresses
virtual addresses for each process, and 3) System Management Mode. 14, 62, 66, 72,
82, 83, 86, 87

Direct Memory Access A architectural feature in computer systems that permits periph-
eral devices to directly read and write from system memory. For instance, a disk that
reads a file from storage may be configured to directly write the file’s contents into
memory for subsequent use by a program. xvi, 8

xv

DMA Direct Memory Access. xvi, 8, 25, 26, 29, 31, 33, 35, 40, 58, 93, 126, Glossary: Direct
Memory Access

Field-programmable gate array Reprogrammable hardware. Often used for hardware
prototype, FPGAs allow a developer to design a circuit and deploy it in a reusable
device. xvi, 8

FPGA Field-programmable gate array. xvi, 8, 11, 25–30, 33, 39, 58, 61, 93, 123, 126,
Glossary: Field-programmable gate array

Heisenbug An unexpected program behavior in which a program behaves differently while
executing in a debugger from native execution. Similar to the observer effect in physics,
where a system cannot be measured without affecting that system.. 106, 117, 123

Instruction set A set of instructions, or small operations, supported by a CPU. For in-
stance, instruction sets may include simple mathematical operations such as addition
and multiplication. 10, 14, 17, 21, 23, 127

Interrupt Asynchronous events produced by physical peripheral devices, such as keyboards,
mice, and network interfaces. This event-driven approach enables computer systems to
handle externally-produced events as they are produced instead of repeatedly polling
for a peripheral’s status. xvi, 14–17

Interrupt handler After an interrupt occurs, the CPU will begin executing a special piece
of code that handles the request associated with the device that produced the interrupt.
For example, a keyboard interrupt handler will check which key was pressed on the
keyboard that caused an interrupt. 15–17

Introspection In the context of malware analysis, introspection is the examination of a
sample’s execution, including variable locations and values in memory, disk or network
access, or other resource usage. This information helps an analyst understand the
overall behavior and intent of a sample. xviii, 18, 94–96, 98–101, 103, 111, 113–116,
118, 120, 122–124

Malware A general name for any malicious computer code that takes control of a computer
for nefarious purposes, including exhausting system resources or stealing sensitive in-
formation. xviii, 3, 4, 6, 7, 9, 10, 15, 18, 20–22, 27, 28, 30, 33, 36–38, 43, 48, 53, 54,
58, 62, 63, 70–72, 74, 75, 78, 81, 83–85, 87–89, 94, 95, 98, 105, 106, 125–127

Malware analysis The art of understanding the behavior of a malicious sample of code.
Often, analysis is performed to document the sort of malicious activity a sample per-
forms, with the end goal being the rapid detection of future instances of that malicious
sample. xvi–xviii, 4, 6–11, 18, 21, 22, 25, 27, 33, 58, 62, 63, 74, 75, 80, 81, 85, 86,
89–91, 93, 95, 105, 124, 126

Master File Table In New Technology File System (NTFS), a special record that main-
tains metadata about all files stored on the disk. xvii, 42

xvi

MFT Master File Table. xvii, 42, 43, Glossary: Master File Table

New Technology File System Microsoft’s proprietary filesystem used in Windows re-
leases based on the NT kernel. xvi, xvii

NTFS New Technology File System. xvi, xvii, Glossary: New Technology File System

Performance counter A set of special-purpose registers that help developers assess their
code’s performance with respect to various metrics. For instance, a CPU may count
the number of cache misses that occur during execution, which may inform a developer
that they should rethink their data structures to take advantage of locality. 26, 33, 61,
71–73, 78, 87, 88, 126

Peripheral Component Interconnect Express An industry standard protocol for com-
munications between a computer system and peripheral components attached to it. 9,
28, 29, 31, 33, 35, 40, 58, 93, 99, 113, 122, 123, 126

Ransomware A malicious computer program that extorts a victim. Often, ransomware
will destroy personal data unless the victim pays a certain amount of money. 2

Remote System A computer system engaged by a human analyst or automated triage
system that communicates with the System Under Test (SUT) during analysis. viii,
xvii

Rootkit A sophisticated malicious program that takes control of the operating system, not
just a single program. Rootkits often attempt to hide their presence by modifying
kernel structures vital to the operating system. 27, 43–46, 58, 62, 63, 74, 82

RS Remote System. viii, xvii, xviii, 11, 12, 29, 62–67, 70, 71, 75–77, 80, 87, 100, Glossary:
Remote System

SATA Serial Advanced Technology Attachment. xvii, 25, 28, 29, 33, 35, 39, 41, 58, 76,
Glossary: Serial Advanced Technology Attachment

Secure Guard Extensions An extended set of instructions included with Intel CPUs
starting in the mid 2010’s. These instructions permit the creation of and interaction
with secure regions of memory called enclaves . xvii

Semantic gap The challenge of gleaning meaningful semantic information from raw in-
trospection data, such as variables and data structures from chunks of raw system
memory. In the context of malware analysis, tools that reconstruct such semantic data
are said to bridge the semantic gap. 22, 24, 26, 40, 66, 69, 80, 96, 101

Serial Advanced Technology Attachment As of 2016, the standard communications
port and protocol used by storage devices in computer systems. xvii, 25

SGX Secure Guard Extensions. xvii, Glossary: Secure Guard Extensions

xvii

SMI System Managment Interrupt Handler. xviii, 20, 64–73, 75–79, 82, 83, 85–88, 90, 126,
Glossary: System Managment Interrupt Handler

SMM System Management Mode. xv, xviii, 8, 9, 11, 14, 18, 20, 22, 59, 62–64, 66, 68–71,
73, 75–78, 80–83, 85–88, 90, 93, 99, 100, 113, 123, Glossary: System Management
Mode

SMRAM System Management RAM. xviii, 20, 66, 72, 76, 78, 82, 83, 86–88, Glossary:
System Management RAM

Social engineering The use of psychological manipulation by a malicious agent to coerce
a victim to reveal sensitive information. 3

Stealthy malware A subset of malware that uses artifacts to determine whether it is being
analyzed. Such samples take significant human effort to understand. xviii, 6, 7, 9–11,
20, 21, 27, 28, 36, 43, 46, 58, 62, 64, 77, 90, 91, 93–95, 105, 106, 122, 125–127

SUT System Under Test. xvii, xviii, 11, 12, 26, 29–32, 35, 36, 39, 41, 42, 46–50, 52, 58, 59,
62–68, 70, 71, 73, 75–77, 80, 81, 90, 93, 95, 100, 126, Glossary: System Under Test

System Management Mode A special mode of execution on Intel x86 CPUs much like
Real or Protected modes. While in System Management Mode, the CPU logically
atomically executes the System Managment Interrupt Handler (SMI). xviii

System Management RAM On x86 platforms, a special location in system memory that
contains storage for the SMI. xviii, 20

System Managment Interrupt Handler A piece of code stored in the system’s BIOS
that is only executed when the CPU enters System Management Mode (SMM). xviii

System Under Test A computer system that executes a sample of stealthy malware as
part of its analysis. The SUT communicates with the RS during analysis. xvii, xviii

Transparency The property by which a system does not change a passing signal. In this
dissertation, malware analysis is said to be transparency if the malware sample cannot
predictably measure the precense of the malware analysis tool—that is, the tool does
not produce any artifacts. 7–11, 27, 31, 36, 58, 62–64, 72, 74, 76, 77, 80, 81, 83–86,
89–91, 93–100, 103, 105, 106, 111, 116–118, 122, 124, 126, 127

Virtual Machine Introspection A technique in which programs execute within a virtual
machine and are analyzed externally. An external tool introspects inside the VM to
examine the execution of the program. Often, malware analysis employs VMI tools to
understand malicious behavior in an isolated environment. xix, 18

Virtualization, Virtual Machine, VM, Hypervisor A technique that allows an emu-
lated computer system to run as a virtual machine (VM) process within a hypervisor
system or virtual machine monitor. Virtualization permits the creation and manage-
ment of isolated machines with controlled access to system resources. xviii, 6, 14,
17–19, 22, 24, 26, 27, 30, 36, 38, 40, 46, 51, 62, 63, 71, 73–75, 83–86, 90, 94, 95, 98,
105, 111

xviii

Virus A malicious computer program that exhausts system resources by automatically du-
plicating itself to other machines. 2

VMI Virtual Machine Introspection. xix, 18, 22, 30, 66, 69, 70, 99, Glossary: Virtual
Machine Introspection

xix

兵者，诡道也。故能而示之不能，用而示之不用，近而示之远，远而示之近。

War is an art of deception. We must show our enemy that we are incapable of winning while in

fact concealing our true prowess; that we are inactive while in fact mounting the attack; that we

are tracking some remote target while in fact stalking one nearby; that we are stalking some nearby

target while in fact tracking one far away.

The Art of War

1
Introduction

From 2009 to 2015, Volkswagen produced cars capable of cheating on emissions tests [124].

Volkswagen successfully exploited the fact that the emissions test administered by the En-

vironmental Protection Agency (EPA) consists of a specific sequence of precise inputs. The

car’s computer was designed to detect this predictable sequence and alter the engine’s be-

havior accordingly. When the computer detected the emissions test, it would enter a high

efficiency mode that made it appear to perform well. In practice, however, the Volkswagen

cars in question released as much as 10x the emissions required by the EPA [106] during nor-

mal operation. It would take years before the discrepancy between EPA test performance

1

CHAPTER 1. INTRODUCTION

and actual road performance would be detected. In brief, because the EPA test offered mea-

surable differences from typical driving patterns, Volkswagen was capable of telling precisely

when the vehicle was under test, and thus performed differently while the test was adminis-

tered. In this dissertation, we investigate a similar line of logic relevant to computer security:

how can we test samples of code without those samples determining whether they are being

tested?

Society’s dependence on computers has grown drastically in the past few decades. From

professional activities [167, 177] to social media [167, 179] to personal banking [95], com-

puting is now a linchpin of modern day-to-day life in the developed world. Unfortunately,

this increasing dependence has been met with rising interest in exploitation for nefarious

purposes [144, 155, 246]. With so much confidential and personal information being stored

in computers today, malicious agents can benefit tremendously from acquiring personal or

confidential information stored on computer systems [110, 153, 171, 174]. As a result of this

growth in high-profile malicious activity, securing computer systems has become a significant

and important focus of society [166,172,173,226].

1.1 History of Attacks Against Computer Systems

In decades past, clever developers would create programs that produced unexpected behav-

ior for the sake of showing it was possible [56,225]. For example, in 1971, Creeper [56] was

the first widespread self-replicating software (i.e., the first computer virus), which simply

printed a message. Later programs would maliciously cause damage—for example, in 1988,

the Morris Worm [198] copied itself many times to multiple machines. Eventually, mali-

cious developers would begin using such code for financial gain. For example, in 1989, the

AIDS [224] program rendered all files inaccessible by encrypting them and demanded money

to decrypt the files (indeed, this program was the first example of ransomware, software that

2

CHAPTER 1. INTRODUCTION

holds information hostage until a ransom is met). These early attacks demonstrated some

glaring problems with early computer system design.

While developers began addressing security concerns in computer systems, malicious agents

would respond with increasingly complex malicious software and code, called malware. In

1991, the Michelangelo [63] virus devastated Australian computer systems by preventing

computers from starting up. Later, during 2001, the Code Red [65] and Nimda [64] viruses

exploited vulnerabilities in Microsoft webserver software, using new means to propagate.

With the amount of personal and sensitive information stored on computers today, there is

now a large financial incentive to compromise computer systems [30,158,159].

The financial incentive can come from two sources: selling personal information, or selling

techniques for compromising systems. For example, in 2009, Virginia’s Prescription Mon-

itoring database was compromised [144], exposing social security numbers, driver’s license

numbers, and prescription records of many Virginians. In such cases, the data themselves

proved valuable, and the malicious agents involved were using malware developed separately.

However, malicious agents can additionally sell techniques used by malware for breaking in

to computer systems. In such cases, the agent does not care about who or what the victim

may eventually be; malicious agents may purchase such techniques to deploy their own at-

tacks against computer systems. For example, new iOS malware can be sold for as much as

$500,000 [178]. In response to the expanding market for attacks, companies now frequently

pay substantial sums of money to private parties who discover vulnerabilities in their own

code using bug bounty or white hat programs [87,109,113,178] to compete with underground

markets seeking to compromise their software.

This dissertation focuses on the distribution of malware, which takes advantage of weak-

nesses in the computer’s or software’s design to gain partial or complete control of a com-

puter system.1 As malware emerges, the computer security community responds in two

1Malicious agents can gain access to computer systems in a variety of ways, such as social engineering [114],
the psychological manipulation of a person causing them to disclose sensitive information. For example, a

3

CHAPTER 1. INTRODUCTION

ways: 1) developers deploy a fix or design change that renders the malware inoperable,

and 2) analysts deploy a technique for quickly detecting the malware to prevent it from

subsequently executing on new systems. The malware community then responds by deploy-

ing new malware that circumvents previously deployed fixes or detection mechanism. This

cat-and-mouse-game constantly challenges the malicious agents and security professionals to

adapt [201,214]. As a result, the security community benefits from techniques that facilitate

rapid analysis of malware to understand its behavior so that fixes and detection procedures

can be deployed.

1.2 Problems with Malware Analysis

The proliferation of malware has increased dramatically in the past few years, seriously

eroding user and corporate privacy and trust in computer systems [30, 133, 134, 158, 159].

Kaspersky Lab products detected over six billion threats against users and hosts in 2014,

consisting of almost two million specific, unique malware samples [133]. In 2015, this figure

doubled to four million unique samples of malware [134]. McAfee reported that malware

abundance has consistently increased by more than 40 million unique malware samples per

quarter during 2015 [158, 159] alone. While automated techniques exist for detecting pre-

identified malware [216], manual analysis is still necessary to understand new and unknown

threats [89,245]. Malware analysis is thus critical to understanding new infection techniques

and to maintaining a strong defense [31].

Understanding a malware sample’s behavior often involves executing the sample. As a result,

analysts employ laboratory setups [73, 230] in which to run a sample of malware for two

main reasons. First, executing a sample runs the risk of destroying data on the platform or

performing other dangerous tasks that may compromise tasks subsequently performed using

malicious agent may pretend to be a bank employee to coerce a victim to give away their bank account
information. However, as the focus of this dissertation is malware, these alternative malicious techniques are
out of scope.

4

CHAPTER 1. INTRODUCTION

Table 1.1: Summary of Anti-debugging, Anti-VM, and Anti-emulation Techniques
Anti-debugging [42, 88]
API Call Kernel32!IsDebuggerPresent returns 1 if target process is being debugged

ntdll!NtQueryInformationProcess: ProcessInformation field set to -1 if the process is being debugged
kernel32!CheckRemoteDebuggerPresent returns 1 in debugger process
NtSetInformationThread with ThreadInformationClass set to 0x11 will detach some debuggers
kernel32!DebugActiveProcess to prevent other debuggers from attaching to a process

PEB Field PEB!IsDebugged is set by the system when a process is debugged
PEB!NtGlobalFlags is set if the process was created by a debugger

Detection ForceFlag field in heap header (+0x10) can be used to detect some debuggers
UnhandledExceptionFilter calls a user-defined filter function, but terminates in a debugging process
TEB of a debugged process contains a NULL pointer if no debugger is attached; valid pointer if
some debuggers are attached
Ctrl-C raises an exception in a debugged process, but the signal handler is called without debugging
Inserting a Rogue INT3 opcode can masquerade as breakpoints
Trap flag register manipulation to thwart tracers
If entryPoint RVA set to 0, the magic MZ value in PE files is erased
ZwClose system call with invalid parameters can raise an exception in an attached debugger
Direct context modification to confuse a debugger
0x2D interrupt causes debugged program to stop raising exceptions
Some In-circuit Emulators (ICEs) can be detected by observing the behavior of the undocumented
0xF1 instruction
Searching for 0xCC instructions in program memory to detect software breakpoints
TLS-callback to perform checks

Anti-virtualization
VMWare Virtualized device identifiers contain well-known strings [57]

checkvm software [55] can search for VMWare hooks in memory
Well-known locations/strings associated with VMWare tools

Xen Checking the VMX bit by executing CPUID with EAX as 1 [10]
CPU errata: AH4 erratum [10]

Other LDTR register [186]
IDTR register (Red Pill [193])
Magic I/O port (0x5658, ‘VX’) [139]
Invalid instruction behavior [24]
Using memory deduplication to detect various hypervisors including VMware ESX server, Xen, and
Linux KVM [240]

Anti-emulation
Bochs Visible debug port [57]
QEMU cpuid returns less specific information [241]

Accessing reserved MSR registers raises a General Protection (GP) exception in real hardware;
QEMU does not [188]
Attempting to execute an instruction longer than 15 bytes raises a GP exception in real hardware;
QEMU does not [188]
Undocumented icebp instruction hangs in QEMU [241], while real hardware raises an exception
Unaligned memory references raise exceptions in real hardware; unsupported by QEMU [188]
Bit 3 of FPU Control World register is always 1 in real hardware, while QEMU contains a 0 [241]

Other Using CPU bugs or errata to create CPU fingerprints via public chipset documentation [188]

5

CHAPTER 1. INTRODUCTION

that system. Second, malware analysis often requires measuring a before and after snapshot

of the system; having a known good starting image and controlled environment helps to

determine the specific activities performed by a single malicious sample. Virtualization

technology allows rapidly deploying a controlled computer configuration called a virtual

machine (VM). A virtual machine provides some degree of controlled isolation. The advent

of system virtualization technologies such as VMWare [222], Xen [78], and VirtualBox [168]

has paved the way for a variety of computer security and analysis applications [11,20,26,28,

35, 47, 52, 53, 60, 76, 83, 97, 99, 104, 107, 116, 119–121, 125, 130, 141, 142, 176, 180, 190, 197, 208,

212,238].

Malware analysis often employs such virtualization [70, 71, 90] and emulation [15, 187, 241]

techniques that enable dynamic analysis of malware behavior. A given malware sample is

run in a virtual machine (VM) or emulator. An program (or a VM plugin) introspects the

malicious process to help an analyst determine its behavior [36]. Introspection is a technique

used to unveil semantic information about a program without access to source code. Initially,

conventional wisdom held that the malware sample under test would be incapable of altering

or subverting the debugger or VM environment [101,191]. Unfortunately, malware developers

can easily escape or subvert these analysis mechanisms using several anti-debugging, anti-

virtualization, and anti-emulation techniques [24, 42, 57, 88, 186, 188], which we refer to as

artifacts. We summarize known artifacts in Table 1.1. The wide diversity of types of artifacts

used by malware results in a time-intensive process to manually account for each of them

when analyzing a sample. Chen et al. [57] reported that 40% of 6,900 given samples were

found to hide or reduce malicious behavior when run in a VM or with a debugger attached.

Thus, the analysis and detection of malware, including such stealthy malware, remains an

open research problem which we call the debugging transparency problem.

There is a diverse array of anti-analysis artifacts as shown in Table 1.1. We divide arti-

facts into two broad types: software-based and timing-based. Software artifacts are func-

6

CHAPTER 1. INTRODUCTION

tional properties that can reveal the presence of analysis, such as the value returned by

isDebuggerPresent or improperly emulated features. Timing artifacts are introduced by

the cost of executing the analysis framework. Debuggers that allow single-stepping through

instructions incur a significant amount of overhead, which can be measured by the software

under test. Malware samples that are aware of these artifacts can thus heuristically detect

when they are being analyzed. Such stealthy malware requires additional effort to under-

stand. Solving the debugging transparency problem is thus concerned with reducing artifacts

or permitting reliable analysis in the presence of artifacts.

1.3 Transparent System Introspection as a Solution

We choose to focus on three aspects to help analyze stealthy malware. Many analysts em-

ploy existing analysis tools such as IDA Pro [126] or OllyDbg [244], but such tools introduce

slowdowns or other detectable artifacts. Thus, we first desire a solution that provides low

overhead and low artifact debugging capabilities. Second, these debugging capabilities ul-

timately rely on the ability to gather semantic information from a program. To provide

information that the analysis requires, we observe that a solution should therefore success-

fully read and report 1) variable values and 2) dynamic stack traces [85] as well as disk

activity. Third, we want to analyze tradeoffs between maintaining low artifacts and provid-

ing high-fidelity semantic information that is useful to an analyst.

To achieve these desired properties of a successful solution, we combine several insights

to form the basis of a novel system for transparent malware analysis. First, specialized

hardware exists that can be used to read a host’s memory and disk activity with extremely

low overhead and without injecting artifacts in the platform’s software. Second, we can use

existing program analysis techniques to reconstruct valuable semantic information from raw

memory dumps, including variable values and dynamic stack traces. Finally, we can use

7

CHAPTER 1. INTRODUCTION

these program analysis techniques to further examine the cost of maintaining transparency

to providing high-fidelity semantic information.

We present a system consisting of three components that use the above insights to solve the

debugging transparency problem. First, we discuss low-artifact memory acquisition in two

ways. Our first component incorporates a novel use of custom Field-programmable gate array

(FPGA) circuit, while our second component employs SMM on x86 platforms. The FPGA

approach can access memory (and disk activity) with low overhead (and therefore fewer

timing artifacts), and with only one visible functional artifacts (the Direct Memory Access

(DMA) access performance counter). SMM on x86 platforms can transparently acquire

physical memory associated with a single process. Compared to the FPGA approach, using

SMM introduces no functional artifacts, but at the cost of increased timing artifacts. Both

approaches are capable of providing a similar interface: the user provides an address, and

the system returns the value of physical memory at that address.

Finally, our third component explores the tradeoff space that exists between maintaining

transparency and the fidelity of the analysis. This component uses the snapshots produced

by the FPGA and SMM approaches described above to reconstruct semantic information

about a given program using well-known program analysis techniques. We can determine

values of variables based upon known memory locations. Similarly, since activation records

of function calls are stored on the stack, we can reconstruct a sequence of function calls if we

know where the program’s stack is stored. We use program analysis techniques to find this

information given a binary and a sequence of raw memory dumps produced by the FPGA

or SMM components, and then explore the how much value semantic information we can

reconstruct based upon the level of transparency we wish to maintain.

8

CHAPTER 1. INTRODUCTION

1.4 Organization of This Dissertation

In brief, we present three components:

– In Chapter 3, we present an approach for transparently acquiring memory snapshots

and disk activity of a bare metal system using PCI Express.

– In Chapter 4, we present an alternative approach for transparently acquiring memory

snapshots of a bare metal system using Intel SMM.

– In Chapter 5, we present a discussion of the tradeoffs between maintaining trans-

parency and the amount of variable and dynamic stack trace information that can

be reconstructed from memory snapshots provided by components discussed in Chap-

ters 3 and 4.

1.5 Malware Analysis Challenges

Malware analysis is an increasingly important area. As malware becomes more complex,

the strain on analysis resources escalates. Engineers from MIT Lincoln Laboratory fre-

quently take as long as one month to manually analyze a new single sample of stealthy

malware [205]. With millions of new samples appearing every year, this time investment is

not feasible, and is certainly no longer cost effective. Further, with the increased prevalence

and reliance upon computing in our everyday lives, large-scale malware such as Stuxnet [246]

and Careto [136] have caused significant financial damage. As for individual users, Kasper-

sky Labs reported 22.9 million attacks involving financial malware that targeted 2.7 million

individual users [135] in year 2014 alone and 3.5 million individual users in 2015 [134].

9

CHAPTER 1. INTRODUCTION

1.6 Threat Model

In the security literature, we often enumerate the capabilities of a hypothetical attacker to

help solidify the circumstances in which a new approach may apply. This enumeration is

referred to as a Threat Model.

The system presented in this dissertation entails malware analysis. We must therefore define

the scope of the malware that we analyze. We assume a malware sample can compromise

the operating system after executing its very first instruction. This assumption is strong

because it means we do not have a chance to observe the sample before it compromises the

system—rather, it begins executing malicious activity as soon as possible. We further assume

the malware can use unlimited computational resources. This strong assumption precludes

solutions that do not address fundamental behavior inherent to the malicious sample—for

instance, we cannot declare the problem solved by claiming the malware takes too long

to complete any malicious activity. In contrast, we assume that the physical hardware is

trusted; hardware trojans [217] are thus out of scope. As hardware trojans are a fertile

area of research in the hardware security community [34, 68, 94, 115, 189, 229, 231, 252], this

assumption is reasonable when considering samples of software instead of circuit design or

layout.

1.7 Thesis Statement

It is possible to develop a transparent malware analysis system capable of analyz-

ing stealthy malware samples by independently considering timing and functional

artifacts.

This dissertation consists of three research components that, together, form a cohesive system

supporting the automated, transparent analysis of stealthy malware. First, we discuss a

10

CHAPTER 1. INTRODUCTION

hardware-assisted introspection approach using a custom FPGA circuit to maintain low

timing artifacts. Second, we discuss an alternative hardware-assisted approach using SMM to

achieve low function artifacts. Third, we discuss tradeoffs between maintaining transparency

and the quality of semantic data recoverable from data produced by the first two components.

Together, these techniques help solve the debugging transparency problem in a way that can

be broadly applied.

1.8 System Overview

We present a system consisting of two hosts, 1) a System Under Test (SUT), and 2) a Remote

System (RS). The SUT is the platform that contains the code we want to observe (e.g., a

stealthy malware sample), while the RS is used by an analyst to guide introspection and

debugging on the SUT. This architecture is favorable because it isolates duties: the SUT

executes its code under test transparently. The RS, in turn, is responsible for debugging and

analysis. Figure 1.1 gives a high-level architectural diagram of our system.

11

CHAPTER 1. INTRODUCTION

Semantics

Userspace

Kernel

Hardware

System Under Test (SUT)

Variables Function Calls

Code Under Test

OS Introspection
(Spectre, VMI)

SMM Memory
Acquisition

PCIe Memory
Acquisition

Remote System (RS)

Use cases

Read Variables

Read Stack Trace

Component 1 – Hardware-assisted memory acquisition via PCI-e

Component 2 – Hardware-assisted memory acquisition via SMM

Component 3 – Transparent program introspection

Figure 1.1: System structure. The system on the left (SUT) executes the sample of code to
be instrumented. Various components shown in the shaded boxes correspond to chapters in
this dissertation. The system on the right (RS) contains the various use cases an analyst
may want to perform. The arrows show how the components presented in this dissertation
relate to a particular use case.

12

工欲善其事，必先利其器。

The diligent worker must sharpen his tools.

Analects of Confucius

2
Background and Related Work

In this chapter, we introduce terms, vocabulary, and background material used in, or related

to, this dissertation.

2.1 Computer Architecture and Operating Systems

In this section, we briefly introduce three concepts from computer architecture and operating

systems as they relate to this dissertation:

1. Intel CPU basics,

13

CHAPTER 2. BACKGROUND AND RELATED WORK

2. interrupts,

3. virtualization and virtual machines, and

For further information regarding computer architecture and operating systems, we refer the

reader to Hennessy and Patterson [118] and Silberschatz et al. [199].

2.1.1 Intel CPU Basics

Intel CPUs date back to the early 1970s [128]. Since the 8086 in 1976, all Intel desktop CPUs

have supported the same basic set of instructions—small operations the CPU performs in

sequence to realize the final intent of a program. The set of instructions used by Intel CPUs

is referred to as the x86 instruction set. In a running system, program code is stored in the

system’s memory, and the CPU continuously requests instructions from memory to execute.

As of 2016, x86 CPUs are configured to run in Protected Mode so that multiple programs

can run on the CPU without interfering with each other’s memory1(i.e., the programs are

protected from one another). In contrast, older software such as MS-DOS [218] would run

in Real Mode, in which the CPU would access real physical addresses of memory. In this

dissertation, we explore a novel use of a third mode of execution called System Management

Mode (SMM), which is discussed in Section 2.2.

In addition, Intel CPUs employ a layered security mechanism when executing instructions.

Code executes in one of four rings (i.e., ring 0 through ring 3), and each ring is associated with

a particular privilege level. For instance, high-privilege operating system code executes in

ring 0, where the CPU allows executing highly-privileged instructions that influence system

stability. In contrast, typical program code runs in ring 3, where the CPU prevents the

program from executing highly privileged instructions. Programs can request that the OS

perform privileged tasks on its behalf through the use of system calls. Thus, the CPU

1Protected Mode x86 instructions use virtual addresses managed by the operating system and Memory
Management Unit. The details are elided here for brevity. See Silberschatz [199] for more details.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

depends on the OS to ensure privileged instructions are executed safely. If, however, malware

compromises the OS (i.e., it compromises ring 0), it can potentially execute such privileged

instructions, altering system stability and compromising the integrity or privacy of data on

the system.

2.1.2 Interrupts

Computer systems interact with the outside world through peripheral devices such as key-

boards and mice. Additionally, computers use internal clocks to keep tasks in lock step while

executing code. For example, a computer running multiple tasks may configure a clock to

raise an alarm every 10ms to indicate when the computer should switch between tasks. In a

similar vein, the keyboard may be configured to raise an alarm every time a key is pressed.

Support for such event-based response elicitation is achieved through the use of interrupts. In

essence, the CPU of the computer system has a physical interrupt pin whose state is changed

when a particular event occurs. In practice, there are many types and priorities associated

with interrupts from particular peripheral devices (e.g., a timer interrupt may be a higher

priority than a keyboard interrupt). Once the CPU circuitry detects that an interrupt has

occurred, it saves its progress and begins executing special code called the interrupt handler

to service the device that caused the interrupt. The interrupt handler is usually specific to

the type of device causing the interrupt. For example, a keyboard interrupt handler will

determine which key was pressed by the user, while a network interrupt handler will read or

write information received by or sent to the computer over the network.

Figure 2.1 illustrates the high level operation of a typical timer interrupt. The CPU must

be shared between multiple tasks executing on the system. Thus, a timer interrupt is raised

by a device at regular intervals (every 10ms as of 2008 [199]) to force the CPU to switch

between tasks. Once an interrupt is raised, the CPU begins executing special code called the

interrupt handler, which services the particular device raising the interrupt. In the case of a

15

CHAPTER 2. BACKGROUND AND RELATED WORK

CPU flow of execution

Clock
Device

Interrupt handler, switch to Task 2

Task 1

Task 2

Interrupt handler, return to Task 1

Task 1

Time

O
ve

rh
ea

d
w

h
il
e

ex
ec

u
ti

n
g

h
an

d
le

r

interrupt completes 2©

Raise interrupt 1©

Raise interrupt 3©

interrupt completes 4©

Figure 2.1: High level workflow for interrupts. A device such as a keyboard or internal timer
is configured to deliver interruptss when it requires service. This figure considers a typical
timer device that the system uses to force the CPU to share execution time between two
tasks. In Step 1©, the timer device raises an interrupt, forcing the CPU to begin executing
the interrupt handler to service the timer and switch tasks. This time is considered overhead
because the CPU is not executing useful work for processes. In Step 2©, the interrupt
completes, at which point the CPU begins executing Task 2. The process repeats in Steps 3©
and 4©, except that the CPU resumes execution in Task 1.

16

CHAPTER 2. BACKGROUND AND RELATED WORK

timer interrupt, the CPU executes code to save its progress on the current task and decide

which task to execute next. Once the interrupt handler completes, the CPU can resume

execution where it left off before the interrupt. In the case of the timer interrupt, the CPU

will begin executing the newly selected task.

The interrupt handler is often considered wasted time because servicing the interrupt does

not contribute useful work to the progression of the tasks executing on the CPU. In this

dissertation, we use regularly-scheduled interrupts to instrument every single instruction that

the CPU executes. Thus, the amount of overhead produced during the interrupt handler is

crucial to understanding the extent to which our system produces timing artifacts.

2.1.3 Virtualization

One job of the operating system is to ensure that a single computer system can be shared

among multiple programs that need executing. As early as the 1960s, large mainframe

computers would be shared among multiple users and applications. In a similar vein, a sin-

gle computer system can be used to manage multiple instances of smaller virtual computer

systems. These virtual machines (VMs) are essentially computer programs that emulate por-

tions of a computer system, allowing one large system called a hypervisor to manage many

virtual machines concurrently. Virtual machines allow a user access to a logically isolated

machine that exists solely as software within a larger machine. This architecture enables

rapid reconfiguration of a computer system (e.g., to change system memory available to the

virtual machine) and higher utilization (if there are 10 virtual machines with 5% utilization,

they can be combined on a single hardware platform with 50% utilization overall). Virtual-

ization technologies such as VMWare [222], VirtualBox [168], Xen [61], and QEMU [32] are

widely known and studied [11,44,46,58,99,118,120,125,182,190,191,199,238].

Figure 2.2 illustrates a typical hypervisor and virtual machine configuration. A single phys-

ical system shares its physical hardware resources among multiple logically isolated virtual

17

CHAPTER 2. BACKGROUND AND RELATED WORK

machines (VMs). The hypervisor software allocates virtual resources that are used by the

virtual machines residing in the system. Each VM thus gains the illusion of total control

over its virtual resources. The hypervisor is ultimately responsible for ensuring that each

VM receives its fair share of resources according to its configuration (e.g., a VM may be con-

figured to receive 2 CPU cores out of 10 cores available on the underlying physical system).

The hypervisor uses historical resource consumption information to determine how much of

a particular resource should be made to each VM at a given time. For instance, if a VM has

been active on the CPU for the past 10 seconds, the hypervisor may force the VM off of the

CPU to allow another VM to run instead.

The isolation and rapid configurability of virtual machines has been used in the analysis of

malware. A sacrificial virtual machine can be deployed with a malware sample executing

inside the VM. This allows the malware to completely take over the virtual machine without

affecting the underlying system. In practice, special hypervisor software is used to introspect

inside of the virtual machine to understand how the malicious sample behaves [11,20,26,28,

35, 47, 52, 53, 60, 76, 83, 97, 99, 104, 107, 116, 119–121, 125, 130, 141, 142, 176, 180, 190, 197, 208,

212,238]. Such Virtual Machine Introspection (VMI) is the prevailing technique for malware

analysis [74, 103, 116, 129, 130, 151, 202, 207]. In this dissertation, we explore well-known

weaknesses in virtual machine introspection and present a cogent solution for the analysis of

stealthy malware.

2.2 System Management Mode

Our second component (Chapter 4) makes extensive use of System Management Mode

(SMM) [127]. SMM is a mode of execution similar to Real and Protected modes available

on x86 platforms. It provides a transparent mechanism for implementing platform-specific

system control functions such as power management. It is initialized by the Basic Input/Out-

18

CHAPTER 2. BACKGROUND AND RELATED WORK

Physical System

Physical Hardware
(CPU, memory, disks)

Hypervisor
(multiplexes hardware resources amongst virtual machines)

Virtual hardware

Virtual machine 1

Virtual hardware

Virtual machine 2

Virtual hardware

Virtual machine 3

Operating system 1 Operating system 2 Operating system 3

Program 1 Program 2 Program 3

Hypervisor exposes virtual hardware resources

Figure 2.2: Overview of virtualization. A single physical system shares its physical hard-
ware resources among multiple virtual machine instances that are logically isolated from
each other. Special control software called a hypervisor manages the physical resources and
allocates virtual resources that are used in turn by the virtual machines (VMs) residing in
the system. Each virtual machine contains its own operating system that gains the illusion
of total control over its virtual resources. Programs running within each virtual machine
engage their respective operating systems for resources. Programs and operating systems
running inside each virtual machine are ideally isolated from, and unaware of, programs
and operating systems on other virtual machines. The hypervisor layer is responsible for
ensuring a fair allocation of system resources among the virtual machines by measuring and
accounting for those resources requested and consumed by each virtual machine.

19

CHAPTER 2. BACKGROUND AND RELATED WORK

put System (BIOS). SMM was originally designed to enable the hardware to save power by

monitoring which peripherals were being used and turning off peripherals when idle. SMM

is transparent to the operating system, so its use in power management did not require

extensive driver support. We make use of this transparency aspect to execute analysis code

unbeknownst to code executing in both user and kernel space.

SMM is triggered by asserting the System Management Interrupt (SMI) pin on the CPU.

This pin can be asserted in a variety of ways, which include writing to a hardware port

or generating Message Signaled Interrupts with a PCI device. Next, the CPU saves its

state to a special region of memory called System Management RAM (SMRAM). Then,

it atomically executes the SMI handler stored in System Management RAM (SMRAM).

SMRAM cannot be addressed by the other modes of execution. This caveat therefore allows

SMRAM to be used as secure storage. The SMI handler is loaded into SMRAM by the BIOS

at boot time. The SMI handler has unrestricted access to the physical address space and

can run privileged instructions. SMM is thus a convenient means of storing and executing

OS-transparent analysis code.

2.3 Stealthy Malware

As of the 2010s, malware detection and analysis tools rely on virtualization, emulation, and

debuggers [24,42,55,88] (also, see Table 1.1). Unfortunately, these techniques are becoming

less applicable with the growing interest in, and prevalence of, stealthy malware [57]. Malware

is stealthy if it makes an effort to hide its true behavior. This stealth can emerge in several

ways (see Table 1.1 for a more complete list).

First, malware can simply remain inactive in the presence of an analysis tool. Such malware

will use a series of platform-specific tests to determine if certain tools are in use. If no tools

are found, then the malware executes its malicious payload.

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Second, malware may abort its host’s execution. For example, a sample may attempt to

execute an esoteric instruction that is not properly emulated by the tool being used. In this

case, attempting to emulate the instruction may lead to raising an unhandled exception,

crashing the analysis program.

Third, malware may simply disable defenses or tools altogether. For instance, OllyDbg

1.10 [244] would crash when attempting to emulate printf calls with a large number of ‘%s’

tokens [242]. This type of malware may also infect kernel space and then disable defenses

by abusing its elevated privilege level.

Stealthy malware analysis entails significant manual engineering effort because each stealth

technique applied by a sample must be accounted for during analysis. As this class of

malware grows in volume, the manual analysis and reverse engineering effort required is too

burdensome. A firm understanding of stealthy malware is and important part in reducing

the overall effort spend analyzing such stealthy malware samples.

2.4 Artifacts

Stealthy malware evades detection by concluding whether an analysis tool is being used to

monitor its execution and then changing its behavior. This means there must be some piece

of evidence available to the malware that it uses to make this determination.2 This may

be anything from execution time, (e.g., debuggers make programs run more slowly), to I/O

device names (e.g., if a device has a name with ‘VMWare’ in it), to emulation idiosyncrasies

(e.g., QEMU fails to set certain flags when executing obscure corner-case instructions). We

coin a novel term for these bits of evidence: artifacts. Ultimately, we seek more transparent

instrumentation and measurement of malware by reducing or eliminating the presence of

these artifacts.
2An analog in other scientific fields is the observer effect, which refers to observable changes that result

from the act of observation.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 Malware Analysis

Stealth techniques employed by malware have necessitated the development of increasingly

sophisticated techniques to analyze them. For benign or non-stealthy binaries, numerous

debuggers exist (e.g., OllyDbg [244], IDA Pro [126], GNU Debugger [108]). However, these

debuggers can be trivially detected in most cases (e.g., by using the isDebuggerPresent()

function). Such anti-analysis techniques led researchers to develop more transparent, security-

focused analysis frameworks using virtual machines [15, 70, 71, 90, 203, 241] which typically

work by hooking system calls to provide an execution trace which can then be analyzed.

System call interposition has its own inherent problems [100] (e.g., performance overhead)

which led many researchers to decouple their analysis code even further from the execution

path. Virtual-machine introspection (VMI) inspects the system’s state without any direct

interaction with the control flow of the program under test, thus mitigating much of the per-

formance overhead. VMI has prevailed as the dominant low-artifact technique and has been

used by numerous malware analysis systems [74,103,116,130,151,202,207]. Jain et al. [129]

provide an excellent overview of this area of research. However, introspection techniques

have very limited access to the semantic meaning of the data that they are acquiring. This

limitation is known as the semantic gap problem. There is significant work in the semantic

gap problem as it relates to memory [20, 75, 98, 130, 152] and disk [50, 145, 156] accesses.

All VM-based techniques thus far have nevertheless been shown to reveal some detectable

artifacts [57,186,188,193] that could be used to subvert analysis [91,185].

The semantic gap problem requires reconstructing useful information from raw data, but

this reconstruction process is completely separate from the method of acquisition. Numerous

techniques have been discussed which further decouple the analysis code from the software

under test by moving the analysis portion into System Management Mode [21,227,228,249]

or onto a separate processor altogether [27,161,163,181,251].

22

CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 Debugging

Most popular debuggers, such as the GNU Debugger (GDB), Pin [154], OllyDbg [244],

or DynamoRio [43], work by modifying the instructions of the process being debugging

by adding jump or interrupt instructions that will periodically call back to the debugging

framework to report the requested data. These techniques have obvious performance impacts

as they execute multiple instructions in-line within the debugged process, and are known

to be trivial to detect. More security-focused dynamic analysis engines either emulate the

CPU in software [25, 111, 232] or execute the instructions on the hardware and monitor

memory accesses or system calls to trigger their instrumentation [72,202,204,249]. However,

these techniques have also been shown to expose numerous artifacts and be susceptible to

subversion [91,185].

Hardware debuggers, such as JTag, Asset InterTech’s PCT [18], or ARM’s DStream [17],

expose no software artifacts, but still have a significant performance impact as they typi-

cally function by iteratively sending a sequence of instructions to the CPU and analyzing

system state upon completion of those instructions. These debugging interfaces are typically

orders of magnitude slower than the CPU that they are debugging, and thus introduce inher-

ent performance restrictions. The aforementioned timing constraints make single-stepping

techniques cumbersome for large programs, and are also easily detectable by malicious pro-

grams. Further, non-malicious processes dependent on time such as network servers may

be unstable in such environments. These techniques have also been widely unexplored in a

security context and are typically reserved for debugging the BIOS and boot loaders. This

approach explores low-artifact hardware-based debugging techniques for general software

programs.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

2.7 Memory Introspection

The idea of memory introspection is by no means a new field of study. Numerous tools

have been created to facilitate memory introspection on both physical and virtual machines

over the years [51, 77, 157, 175, 228], as well tools that bridge the semantic gap. Bhushan et

al. [129] summarized the research in the field with virtual machines, however the area of live

hardware-based memory introspection is mostly unexplored. In general, these techniques

require instrumentation to acquire memory, which is augmented to bridge the semantic gap

to extract high-level information from the system being analyzed. Many analysis techniques

use expert knowledge to reconstruct features of popular operating systems and processes, as

in Volatility [20]. Others use automated techniques to reproduce native process functionality,

such as enumerating running processes, via an introspection framework [75, 98, 130, 152]. A

third class of techniques achieve isolation by moving security critical introspection functions

to a higher-level hypervisor or external process [105, 207]. While a few hardware-based

techniques currently exist [181,228,251], they either have a very specific focus or a significant

performance overhead. We are unaware of any hardware-based systems capable of analyzing

arbitrary programs and providing debugging-like information that includes variable values

and stack traces while maintaining transparency from the software under test.

24

笑里藏刀。

Hide a knife behind a smile.

The Thirty-Six Strategems

3
Hardware Assisted System Introspection via

Custom FPGA

To support and carry out transparent malware analysis, we require transparent access to a

host’s memory and disk. In this Chapter and Chapter 4, we discuss two techniques toward

this end. First, we present a novel use of a custom FPGA circuit to rapidly acquire memory

contents via Direct Memory Access (DMA) and disk activity via Serial Advanced Technology

Attachment (SATA) interposition. This technique has the benefit of producing very little

measurable timing artifacts and minimal functional artifacts—specifically, software can mea-

25

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

sure the DMA performance counter. In Chapter 4, we present an alternative approach that

does not expose any functional artifacts while instead exposing timing artifacts. In both

cases, these hardware-assisted introspection techniques provide a similar interface for mem-

ory introspection: a desired address is given as input, and a value of the process’s memory

at that address is returned as output. For disk introspection, our FPGA technique permits

1) rapidly logging disk activity data and 2) rapidly restoring the disk to a known good state

after completion. Together, this transparently-acquired high-fidelity memory and disk data

contribute to a cohesive solution to the debugging transparency problem.

We present LO-PHI (Low-Observable Physical Host Instrumentation), a novel component

capable of analyzing software executing on Commercial off-the-shelf (COTS) bare metal

machines without the need for any additional software on those machines. LO-PHI permits

accurate monitoring and analysis of live-running physical hosts in real-time with a minimal

addition of plug-and-play components to an otherwise-unmodified SUT. We have taken a

two-pronged approach that is capable of 1) instrumenting machines with actual hardware

to minimize artifacts, or 2) using hardware virtualization to maximize scale. This permits a

tradeoff between transparency, scale, and cost as appropriate. Our architecture uses physical

hardware- and software-based sensors to monitor a SUT’s memory and disk activity as well

as simulate its keyboard, mouse, and power. The raw data collected from our sensors is then

processed with modified open source tools (i.e., Volatility [20] and SleuthKit [50]), to

bridge the semantic gap by converting raw sensor data into human-readable, semantically-

rich output. Because LO-PHI is designed to collect raw low-level data, it is both operating

system and file system agnostic. Our framework can easily be extended to support new or

legacy operating systems and filesystems as long as they are physically capable of interacting

with our FPGA.

All of the source code for LO-PHI is available under the Berkeley Software Distribution

(BSD) license at http://github.com/mit-ll/LO-PHI.

26

http://github.com/mit-ll/LO-PHI

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

We focus our discussion of LO-PHI on our ability to perform automated malware analysis

on physical machines, and demonstrate its usefulness by showcasing its ability to analyze

classes of malware that trivially evade existing dynamic analysis techniques.

In summary, LO-PHI is a novel approach to instrumenting 1) native, bare metal computer

systems, and 2) virtual machines. For hardware instrumentation, LO-PHI uses a custom-

designed FPGA built from COTS components that allow the collection of raw physical

memory snapshots and disk activity from a live-running system. For virtual machines, LO-

PHI uses custom-developed hypervisor plugins that acquire memory snapshots and disk

activity from a virtual machine guest. Together, LO-PHI contributes to an end-to-end

stealthy malware analysis system. We demonstrate that LO-PHI introduces minimally-

measurable timing artifacts. We show that LO-PHI is capable of analyzing sizable corpora

of malware and stealthy malware.

This chapter is organized in the following manner. First, we introduce a high level architec-

ture of this hardware-assisted introspection component. Secondly, we present preliminary

experiments showing potential artifacts exposed by this component. Third, we apply this

component to the analysis of real malware via five experiments:

1. We develop and analyze a stealthy rootkit by using well-known stealth techniques,

showing that LO-PHI works on controlled samples where other state-of-the-art tools

fail (Section 3.6.1).

2. We analyze a corpus of well-labeled malware, showing that LO-PHI can expose mali-

cious behavior consistent with the ground truth labels (Section 3.6.2).

3. We analyze a corpus of unlabeled malware, showing that LO-PHI can rapidly provide

useful introspection data when applied to malware (Section 3.6.3).

4. We analyze an open-source stealthy malware prototype, pafish, using LO-PHI, Anubis,

and Cuckoo, and show that LO-PHI remains transparent to stealthy malware during

27

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

analysis.

5. We analyze a corpus of coarsely-labeled stealthy malware, showing that LO-PHI is

transparent enough to convince stealthy samples to execute under its control (Sec-

tion 3.6.5).

3.1 Introspection Using PCI Express and SATA

We use a FPGA board with a PCI Express connector to create a sensor capable of acquiring

memory values transparently. PCI Express supports very high speed transfers. Customized

hardware in the form of an FPGA allows us to take full advantage of this high bandwidth.

Thus, we can acquire many samples of memory values with low overhead, and therefore few

timing artifacts. This approach is also attractive because we can use COTS components to

develop the sensor. As a result, we can potentially drastically lower the effort involved in

acquiring memory values.

In addition, our FPGA board also includes SATA connectors. SATA is the most common disk

connector as of 2016. By attaching a disk to one SATA connector, and the motherboard to

the other SATA connector, we can program the FPGA board to record communications

between the motherboard and disk. From this SATA communications data, we can 1)

reconstruct useful high-level semantic data relating to file operations, and 2) store write

activity separately thereby admitting rapid disk restoration. Thus, this approach is attractive

because it can save time between back-to-back analyses of different samples.

3.2 Implementation Details

We use a Xilinx ML507 development board to build a prototype of LO-PHI. This FPGA has

PCI Express and Gigabit Ethernet connectors. We designed an FPGA that supports reading

28

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

SUT

Host
Memory

Host SATA

Hard drive

LO-PHI FPGA

PCIe
connector

SATA 1 SATA 2

Ethernet
DMA

SATA

to Remote System

Figure 3.1: Architecture of LO-PHI. The FPGA circuit connects to the SUT’s PCI Express
port. We interpose the SATA connector by connecting the hard drive to one SATA port
and the SUT’s motherboard to the other SATA port. We spoof DMA packets over the PCI
Express bus to gain high-bandwidth access to memory. By interposing the SATA connector,
we gain access to all disk activity. The FPGA sends memory and disk data over its Gigabit
Ethernet connector from the SUT to the RS.

memory over PCI Express via DMA, then passes the values over Ethernet to the RS. In our

setup, the board communicates with the system under test via PCI Express. As we have

assumed hardware is trusted in our Threat Model (Section 1.6), there are no enforcement

mechanisms to stop a peripheral from reading arbitrary memory locations.1 This method

has been widely studied [51, 195, 228] and exploited [19, 77, 82, 117, 146, 195, 210]. However,

this use of this caveat in transparent memory acquisition for the legitimate study of stealthy

malware is novel. The RS connects via Gigabit Ethernet. An analyst then uses the RS to

orchestrate an introspection session on the SUT.

1Intel’s IO Memory Management Unit (IOMMU) optionally configures the specific ranges of memory
accessible by DMA from each peripheral device. IOMMU is out of scope as it is not yet in common use as
of 2016.

29

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

3.3 Addressing Artifacts Exposed via FPGA-Based In-

trospection

While hardware-level introspection provides numerous desirable security guarantees that are

not available for software-based solutions (e.g., hardware segregation of analysis code), it is

still critically important to introduce minimal artifacts and, in the ideal case, none at all.

We emphasize that the artifacts produced by LO-PHI are likely unusable by extant malware

as of 2016 for subversion because the malware would lack a baseline for comparison. For

example, to assess the presence of timing artifacts on a SUT instrumented with LO-PHI,

a hypothetical malware sample would first require access to an equivalent system without

LO-PHI instrumentation to establish ground truth timing.

Nevertheless, we enumerate the artifacts introduced by our FPGA instrumentation. We

discuss potential shortcomings in LO-PHI’s physical host instrumentation by comparing it

against similar instrumentation in a virtual machine meant to represent prevailing VMI

techniques [11, 20, 26, 28, 35, 47, 52, 53, 60, 76, 83, 97, 99, 104, 107, 116, 119–121, 125, 130, 141,

142,176,180,190,197,208,212,238]. In particular, we compare memory bandwidth and disk

throughput by comparing performance under the following four configurations:

1. Physical SUT, without instrumentation

2. Physical SUT, with LO-PHI instrumentation

3. Virtual SUT, without instrumentation

4. Virtual SUT, with LO-PHI-like instrumentation

In these performance experiments, the physical SUT consisted of a Dell T7500 equipped

with a 6-core Xeon X5670 CPU, 2GB of RAM, and a WD3200AAKX disk drive. Our

virtual machine was instantiated with one core of a Xeon E5-2665 CPU on a Dell T7600,

1GB of RAM, and a 10GB hard disk.

30

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

3.3.1 Addressing Memory Bandwidth Artifacts

As main memory is a shared resource, there is likely to be a performance impact (i.e., a timing

artifact) whether instrumenting a physical or virtual SUT. We quantify this performance

impact using RAMSpeed, a popular RAM benchmarking application [123]. We ran RAMSpeed

on the same system with and without our instrumentation on a fresh install of Windows

XP with no other active processes. In each case, we conducted four experiments designed to

stress each of the INT, MMX, SSE, and FL-POINT instruction sets. Each of these experiments

consists of 500 trials, which evaluate and average the performance of copy, scale, sum, and

triad operations. To ensure that the memory reads for our instrumentation were not being

cached, we configured our sensors to continuously read the entire memory space to produce

the worst-case performance impact. The memory polling rates were dictated by the hardware

and our particular implementation.2

Figure 3.2 appears to indicate that our instrumentation has a discernible effect on the sys-

tem. However, the deviation from the uninstrumented median is 0.4% in the worst case (SSE

in Figure 3.2a). We were unable to to definitively attribute any deviation to our polling of

memory. While our memory instrumentation may have some impact on the system, the

rates at which we are polling memory do not appear to be frequent enough to predictably

degrade performance. This result indicates that systems like ours could poll at significantly

higher rates while still remaining undetectable. For example, PCI Express implementations

can achieve DMA read speeds of 3 GB/sec [14], which could permit a new class of intro-

spection capabilities.3 Nevertheless, to detect any deviation in performance, the software

being analyzed would need to have the ability to baseline our SUT, which is not practical

for adversaries constrained by our Threat Model (Section 1.6).

2In this work, the maximum polling rate achievable by PCI Express is roughly one snapshot per 3200 bus
cycles. We explore the tradeoff space between polling rate and transparency in Chapter 5.

3To this end, we have successfully achieved rates as fast as 60 MB/sec using SLOTSCREAMER [92];
however, the implementation is not stable enough to incorporate into our framework and is left for future
work

31

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

SSE MMX INTEGER FL-POINT
Memory Operation Type

4900

4950

5000

5050

5100

5150
M

em
or

y
Th

ro
ug

hp
ut

 (M
B/

se
c)

Uninstrumented With Instrumentation

(a) Physical SUT Memory Bandwidth

SSE MMX INTEGER FL-POINT
Memory Operation Type

5000

6000

7000

8000

9000

10000

11000

M
em

or
y
Th
ro
ug
hp
ut
 (M

B/
se
c)

Uninstrumented With Instrumentation

(b) Virtual SUT Memory Bandwidth

Figure 3.2: Memory bandwidth reported by RAMSpeed on a physical SUT. The white box-
plots correspond to native memory bandwidth under no instrumentation, while the filled
box-plots correspond to memory bandwidth under LO-PHI instrumentation.

32

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

While performance concerns are a universal problem with instrumentation, adding hardware

to a physical configuration introduces numerous additional artifacts that must also be ad-

dressed. When using PCI Express, the BIOS and operating system can see our hardware via

enumerating the PCI Express bus. This inevitably reveals our presence on the machine; nev-

ertheless, mitigations do exist (e.g., masquerading as a different device). To avoid detection,

LO-PHI’s FPGA card could trivially use a different hardware identifier for each analysis to

avoid signature-based detection. However, even with a masked hardware identifier, Stewin et

al. [209] demonstrated that all of these DMA-based approaches will reveal some artifacts

that are exposed in the CPU performance counters. Similar techniques could be employed

by malware authors in both physical and virtual environments to detect the presence of a

polling-based memory acquisition system such as ours. These anti-analysis techniques may

necessitate more sophisticated acquisition approaches left for future work.

3.3.2 Addressing Disk Throughput Artifacts

To quantify the performance impact of LO-PHI’s disk instrumentation, we similarly em-

ployed a popular disk benchmarking utility, IOZone [2]. While IOZone’s primary purpose

is to benchmark the higher-level filesystem, any performance impacts on disk throughput

should nonetheless be visible to the tool. We used the same setup as the previous memory

experiments (Section 3.3.1) and ran IOZone 50 times for each case, both with and without

our instrumentation, monitoring the read and write throughputs with a record size of 16MB

and file sizes ranging from 16MB to 2GB.

Our hardware should only be visible when we intentionally delay SATA frames to meet the

constraints of our Gigabit Ethernet link.4 In practice, we rarely observed the system cross this

threshold; however, IOZone is explicitly made to artificially stress the limits of a filesystem.

For smaller files, caching masks most of our impact as these cache hits limit the accesses that
4We designed the system with this delay to minimize our packet loss since UDP does not guarantee

delivery of packets.

33

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

16 32 64 128 256 512 1024 2048
File Size (MB)

0

500

1000

1500

2000

2500
Di
sk
 T
hr
ou

gh
pu

t (
M
B/
se
c)

Uninstrumented With Instrumentation

(a) File reads

16 32 64 128 256 512 1024 2048
File Size (MB)

65

70

75

80

85

90

95

Di
sk
 T
hr
ou
gh
pu
t (
M
B/
se
c)

Uninstrumented With Instrumentation

(b) File writes

Figure 3.3: Filesystem throughput comparison as reported by IOZone on Windows XP, with
and without instrumentation on a physical machine. We collected 50 samples for each box
plot.

34

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

actually reach the disk. The caching effect is more prevalent when looking at the raw data

rates (e.g., the median uninstrumented read rate was 2.2GB/sec for the 16MB experiment

and 46.2MB/sec for 2GB case).

Figures 3.3a and 3.3b show the read and write throughputs for our IOZone experiments.

The discrepancies between the read and write distributions are attributed to the underlying

New Technology File System (NTFS) and optimizations in the hard drive firmware. Fig-

ure 3.3a shows that our instrumentation is essentially indistinguishable from the base case

when reading, the worst case being a degradation of 3.7% for 2GB files. With writes how-

ever, where caching offers no benefit, the effects of our instrumentation are clearly visible,

with a maximum performance degradation of 14.5%. Under typical operating conditions,

throughputs that reveal our degradation are quite rare. In these experiments, the UDP data

rates observed from our sensor averaged 2.4MB/sec with burst speeds reaching as high as

82.5MB/sec, which directly coincide with the rates observed in Figure 3.3b, confirming that

we are only visible when throttling SATA to meet the constraints of the Ethernet connec-

tion.

In the case of virtual machines, we would expect to have no detectable artifacts on a properly-

provisioned host aside from the presence of a Kernel Virtual Machine (KVM) [112]. This is

because our instrumentation adds very little code into the execution path for disk accesses,

and uses threading to exploit the numerous cores on our system. More precisely, our in-

strumentation only adds a memory copy operation of the data buffer, which is then passed

to a thread to be exported. Our experimental results confirmed this hypothesis as we were

unable to identify any consistent artifacts in our IOZone tests.

3.3.3 Summary: Addressing Disk and Memory Artifacts

On a physical SUT, LO-PHI produces no measurable differences in 1) memory bandwidth

via spoofing DMA packets over the PCI Express, and 2) disk throughput via SATA traffic

35

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Table 3.1: IOZone (Virtual SUT) — No LO-PHI
Test Avg (Kb/s) Std Dev (Kb/s)

Write Throughput 36264.01 896.47
Rewrite Throughput 38123.61 480.73

Read Throughput 38077.38 296.29
Reread Throughput 38129.14 426.98

Table 3.2: IOZone (Virtual SUT) — With LO-PHI
Test Avg (Kb/s) Std Dev (Kb/s)

Write Throughput 37689.81 1724.58
Rewrite Throughput 39933.51 611.40

Read Throughput 38734.89 1519.16
Reread Throughput 38873.33 1420.16

interposition. This suggests that LO-PHI is not currently detectable by extant stealthy

malware as of 2016. Results were similar for a virtual SUT In brief, LO-PHI is capable of

acquiring raw memory and disk introspection data from both a physical and virtual SUT

while maintaining transparency.

3.4 Malware Experimental Framework

To facilitate experimentation, we built a scalable infrastructure capable of running arbitrary

binaries on either a physical or virtual machine with a specified operating system. Our

software infrastructure consists of a master which accepts job submissions and delegates

them to an appropriate controller. A given controller is initialized with a set of SUTs, both

physical and virtual, that serve as the controller’s worker pool. Upon a job submission, the

controlled first downloads a script, which describes the actions to perform on the SUT, and

submits the job to a scheduler. This scheduler then waits for a SUT of the appropriate type

(i.e., physical or virtual) to become available in the pool, allocates it to the analysis, and

runs the requested routines. We stored all of our malware samples, analyses, and results in

36

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Rese t our d i s k u s i n g PXE
machine.machine_reset ()
machine.power_on ()
Wait f o r OS to appear on ne twork
while not machine.network_get_status ():

time.sleep (1)
Al low t ime f o r OS to con t i nu e l o a d i n g
time.sleep(OS_BOOT_WAIT)
S t a r t d i s k c ap t u r e
disk_tap.start()
Send key p r e s s e s t o download b i n a r y
machine.keypress_send(ftp_script)
Dump memory (c l e an)
machine.memory_dump(memory_file_clean)
S t a r t c o l l e c t i o n ne twork t r a f f i c
network_tap.start ()
Get a l i s t o f c u r r e n t v i s i b l e b u t t o n s
button_clicker.update_buttons ()
S t a r t our b i n a r y and c l i c k any b u t t o n s
machine.keypress_send(’SPECIAL:RETURN ’)
Move our mouse t o im i t a t e a human
machine.mouse_wiggle(True)
Al low b i na r y t o e x e c u t e (I n i t i a l)
time.sleep(MALWARE_START_TIME)
Dump memory (i n t e r im)
machine.memory_dump(memory_file_interim)
Take a s c r e e n s h o t (Be fore c l i c k i n g b u t t o n s)
machine.screenshot(screenshot_one)
C l i c k any new b u t t o n s t h a t appeared
button_clicker.click_buttons(new_only=True)
Al low b i na r y t o e x e c u t e (3 min t o t a l)
time.sleep(MALWARE_EXECUTION_TIME -elapsed_time)
Take a f i n a l s c r e e n s h o t
machine.screenshot(screenshot_two)
Dump memory (D i r t y)
machine.memory_dump(memory_file_dirty)
Shutdown Machine
machine.power_shutdown ()

Figure 3.4: Python script for running a malware sample and collecting the appropriate raw
data for analysis.

37

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

a MongoDB [162] database. Samples were submitted using a custom File Transfer Protocol

(FTP) server and a command line tool that interfaced with the master to instantiate a given

analysis script, which are stored on the master and dynamically sent to the controller.

Because of the duality of our framework, we wrote one script (shown in Figure 3.4) that: 1)

resets our machine to a clean state, 2) takes a memory snapshot before and after execution,

3) attempts to click any graphical buttons, 4) captures screenshots, and 5) captures all disk

activity throughout the execution. To download and execute an arbitrary binary (Figure 3.4,

line 12), our implementation uses hotkeys to open a command line interface, executes a

recursive FTP download to retrieve the files to be analyzed, and then runs a batch file to

execute the binary. From the resulting data, we reconstruct the changes in system memory,

in addition to a complete capture of disk activity generated by the binary.

To identify any graphical buttons that the malware may present, we used the Volatility

windows module to identify all visible windows with buttons, then spoofed USB packets to

move the mouse to each button’s location and click it.5 Our analysis framework also attempts

to remove any typical analysis-based artifacts by using a random file name and continuously

moving the mouse during the execution of the binary. Similarly, when possible, we also

properly shutdown the system at the end of the analysis to force any cached disk activity to

be flushed.

In our analysis setup, both the physical and virtual environments had a 10GB partition for

the operating system and 1GB of volatile memory. The operating system, Windows 7, was

placed into a Hibernate state to minimize the variance between executions and also reduce

the time required to boot the system. To minimize the space requirements of our system, we

compress our memory snapshots before storing them in our databases to save space. Finally,

the virtual machines’ networks were logically divided to ensure that samples did not interfere

with each other. The physical environment consisted of one machine, so no network isolation

5The Volatility windows module was configured to search for windows that had an atom class of 0xc061
or an atom superclass of 0xc017, which indicate a button.

38

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

0 2 4 6 8 10 12 14 16 18 20 22

Ph
ys
ic
al
 A
na
ly
si
s Disk Reset

OS Boot
OS Stabilize

Key Presses
Mem. (Clean)

Compress (Clean)
Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)
Extra Sleep

Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown
Store Results

0 1 2 3 4 5 6 7 8 9
Time Elapsed (Minutes)

Vi
rt
ua
l A

na
ly
si
s

Disk Reset
OS Boot

OS Stabilize
Key Presses

Mem. (Clean)
Compress (Clean)

Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)

Extra Sleep
Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown

Store Results

Figure 3.5: Time spent in each step of binary analysis. Both environments booted a 10GB
Windows 7 (64-bit) hibernated image with 1GB of system memory.

was required.

The respective runtimes for each portion of our analysis is shown in Figure 3.5. We en-

sured that every binary executed for at least three minutes before retrieving a final memory

snapshot and resetting the system. We used Volatility’s screenshot module to collect

screenshots on physical machines and were extracted from the captured memory snapshots.

Note that most of the time taken in the physical case is due to our resetting of the SUT’s

state using Clonezilla [41], waiting for the system to boot, and memory acquisition. The

reset and boot process could be decreased significantly by writing a custom PXE loader,6 or

completely mitigated by implementing copy-on-write as part of our FPGA SATA interposi-

6The Portable eXecution Environment (PXE, pronounced pixie is a specification for describing a
networked-enabled boot process in which a system boot configuration is retrieved from a network server.

39

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Raw SATA
Capture

Disk Reconstruction
(Custom Module)

Filesystem Reconstruction
(PyTSK + Custom Code) Filter Noise FS Modifications

(a) Disk Reconstruction

Memory Image
(Clean)

Semantic Reconstruction
(Volatility) OS Information

Memory Image
(Dirty)

Semantic Reconstruction
(Volatility) OS Information

Extract
Differences Filter Noise Memory

Modifications

(b) Memory Reconstruction

Figure 3.6: Binary analysis workflow. Rounded nodes represent data and rectangles represent
data manipulation.

tion. Similarly, the memory acquisition times could be more comparable to the virtual case,

if not faster, by optimizing our PCI Express implementation. Finally, full system snapshots

could reduce the time spent setting up the environment to mere seconds. While full sys-

tem snapshots are trivial with virtual machines, capturing them is still an open problem for

physical machines.

We note that LO-PHI may miss transient memory modifications made by the binary between

our clean and dirty memory snapshots. To analyze the transient behavior of a binary, LO-

PHI could be used to continuously poll the system memory during execution. However, while

this has the potential to produce higher fidelity, we do not feel that our current polling rates

are fast enough to warrant the tradeoff between the produced DMA artifacts and usefulness

of the output. We explore this area of research in Chapter 5.

3.5 Bridging the Semantic Gap in LO-PHI

Before any analysis can be conducted, we must first bridge the semantic gap—that is, trans-

late our memory snapshots and SATA captures, which contain low-level, raw, data into

high-level, semantically-rich, information.

40

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

3.5.1 Memory

To extract operating-system-level modifications from our memory captures, we run a num-

ber of Volatility plugins on both clean and dirty memory snapshots to parse kernel struc-

tures and other objects. Some of the general purpose plugins include psscan, ldrmodules,

modscan, and sockets, which extract the running processes, loaded dlls, kernel drivers,

and open sockets resident in memory. Similarly, we also run more malware-focused plugins

such as idt, gdt, ssdt, svcscan, and callbacks which examine kernel descriptor tables,

registered services, and kernel callbacks.

3.5.2 Disk

The first step in our disk analysis is to convert the raw capture of the SATA activity into a

4-tuple containing the 1) disk operation (e.g., read or write), 2) starting sector, 3) total num-

ber of sectors, and 4) data. Our physical drives, as with most drives available in 2016, used

an optimization in the SATA specification known as Native Command Queuing (NCQ) [69].

NCQ reorders SATA Frame Information Structure (FIS) requests to achieve better perfor-

mance by reducing extraneous disk head movement and then asynchronously replies based

on the optimal path. Thus, to reconstruct the disk activity, our SATA reconstruction module

must faithfully model the SATA protocol to track and restore the semantic ordering of FIS

packets before translating them to disk operations. Upon reconstructing the disk operations,

these read/write transactions are then translated into disk events (e.g., filesystem operations,

Master Boot Record modification, slack space modification) using our analysis code which is

built upon Sleuthkit and PyTSK [5]. Since Sleuthkit only operates on static disk images,

our module required numerous modifications to keep system state while processing a stream

of disk operations. Intuitively, we build a model of our SUT’s disk drive and step through

each read and write transaction, updating the state at each iteration and reporting appro-

priately. This entire process is visualized in Figure 3.6a. Unlike previous work [156], which

41

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Master File Table (MFT) modification (Sector: 6321319)

Filename /WINDOWS/. . . /drivetable.txt→/. . . /Desktop/New Text Document.txt

Allocated 0 → 1 Unallocated 1 → 0 Size 132 → 0

Modified 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Accessed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Changed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Created 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)

. . .

MFT modification (Sector: 6321319)

Filename /. . . /Desktop/New Text Document.txt →/. . . /Desktop/LO-PHI.txt

Changed 2015-02-19 15:47:17 (3281250) → 2015-02-19 15:47:25 (3437500)

Figure 3.7: Example log produced from creating LO-PHI.txt on desktop.

was designed for NTFS, our approach is generalizable to any filesystem supported by tools

similar to Sleuthkit. An example output from creating the file LO-PHI.txt on the desktop

is shown in Figure 3.7:

Note that we can infer from this output that the filesystem reused an old MFT entry for

drivetable.txt and updated the filename, allocation flags, size, and timestamps upon file

creation. A subsequent filename and timestamp update were then observed once the new

filename, LO-PHI.txt, was entered.

3.5.3 Filtering Background Noise

While the ability to provide a complete log of modifications to the entire system is useful in

its own right, it is likely more relevant to extract only those events that are attributed to the

binary in question. To filter out the activity not attributed to a sample’s execution, we first

build a controlled baseline for both our physical and virtual SUTs by creating a dataset from

10 runs using a benign binary: rundll32.exe with no arguments.7 We then use our analysis

7rundll32.exe is a program that loads other components and services in Windows. In this work, we
consider it a reasonable baseline because it is essentially a minimal working executable program in Windows.

42

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

framework to extract all of the system events for those trials and created a filter (akin to

diff) based on the events that frequently occurred in this benign dataset. We noted that

two of our memory analysis modules (i.e., filescan and timers) produced particularly high

false positives and proved less useful for our automated analysis. To reduce false positives in

our disk analysis, we decouple the filenames from their respective Master File Table (MFT)

record number.

3.6 Experimental Evaluation of LO-PHI

In the next five sections, we demonstrate the practicality of LO-PHI with five targeted

experiments. The experiments are intended to evaluate LO-PHI’s ability to:

– detect the behavior elicited by a controlled rootkit developed with typical anti-analysis

techniques (Section 3.6.1)

– detect the behavior elicited by real malware, confirmed with ground truth (Section 3.6.2)

– scale and extract meaningful results from unknown malware samples (Section 3.6.3)

– remain transparent to a controlled stealthy malware sample where other techniques

fail to do so (Section 3.6.4)

– analyze malware samples that employ anti-analysis and evasion techniques (Section 3.6.5)

3.6.1 LO-PHI Experiment 1: Custom Rootkit

To verify that LO-PHI is, in fact, capable of extracting behaviors of malware, we first

evaluated our system with known malware samples for which we have ground truth. We

first evaluate a rootkit that we developed using techniques from The Rootkit Arsenal [40]

(Section 3.6.1)

43

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Offset Name PID PPID

0x86292438 AcroRd32.exe 1340 1048
0x86458818 AcroRd32.exe 1048 1008
0x86282be0 AdobeARM.exe 1480 1048
0x864562a0 $$_rk_sketchy_server.exe 1044 1008

(a) New Processes (pslist)

PID Port Protocol Address

1048 1038 UDP 127.0.0.1
1044 21 TCP 0.0.0.0

(b) New Sockets (sockets)

Selector Base Limit Type DPL Gr Pr

0x320 0x8003b6da 0x00000000 CallGate32 3 - P

(c) GDT Hooks (gdt)

Name Base Size File
hookssdt.sys 0xf7c5b000 0x1000 C: \. . . \lophi\hookssdt.sys

(d) Loaded Kernel Models (modscan)

Table Entry Index Address Name Module

0 0x0000f7 0xf7c5b406 NtSetValueKey hookssdt.sys
0 0x0000ad 0xf7c5b44c NtQuerySystemInformation hookssdt.sys
0 0x000091 0xf7c5b554 NtQueryDirectoryFile hookssdt.sys

(e) SSDT Hooks (ssdt)

Created Filename
/. . . /lophi/$$_rk_sketchy_server.exe
/. . . /lophi/hookssdt.sys
/. . . /lophi/sample_0742475e94904c41de1397af5c53dff8e.exe

(f) Disk Event Log (81 Entries Truncated)

Figure 3.8: Post-filtered semantic output from rootkit experiment (Section 3.6.1).

44

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Our rootkit achieves stealth by adding hooks to the Windows Global Descriptor Table

(GDT)8 and System Service Dispatch Table (SSDT)9 that hide any directory or running

executable with the prefix $$_rk and then opens a malicious FTP server. The rootkit mod-

ule is embedded inside a malicious PDF file that drops and loads a malicious driver file

(hookssdt.sys) and the FTP server executable ($$_rk_sketchy_server.exe). Figure 3.8

shows the complete post-filtered results obtained when running this rootkit through our

framework. Note that we received identical results for both virtual and physical machines,

which exactly matches what we would expect given our ground truth. We clearly see our

rootkit drop the files to disk (Figure 3.8f), load the kernel module (Figure 3.8d), hook the

kernel (Figure 3.8e and Figure 3.8c), and then execute our FTP server (Figure 3.8a and

Figure 3.8b). We have omitted the creation of numerous temporary files by Adobe Acrobat

Reader and Windows as well as accesses to existing files (81 total events) in Figure 3.8f

to save space, however all disk activity was successfully reconstructed. Note that we can

trivially detect the presence of the new process as we are examining physical memory and

are not foiled by execution-level hooks.

We also ran our rootkit on the Anubis and Cuckoo analysis frameworks. Anubis failed to

execute the binary, likely due to the lack of Acrobat Reader or some other dependencies.

Cuckoo produced an analysis with very similar file-system-level output to ours, reporting

156 file events, compared to our 81 post filtered. However, Cuckoo did not find our listening

socket or our GDT and SSDT hooks in their output. While our FTP server was definitely

executed, and thus created a listening socket on port 21, it is possible that our kernel module

may not have executed properly on their analysis framework. Nevertheless, we feel that our

ability to introspect memory to find these obvious tells of malware is a notable distinction.

Subsequently, the failure to execute such a simple rootkit also emphasizes the importance of

8The GDT is a data structure in memory used by Intel CPUs that describes how to treat other locations
of memory. For example, segments of memory can be denoted read-only, writable, or executable.

9The SSDT is used by Windows to quickly locate code to perform general tasks such as creating new
processes.

45

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

having a realistic software environment as well as a hardware environment. We address this

issue for our analysis in Section 3.6.5.

3.6.2 LO-PHI Experiment 2: Labeled Malware

While LO-PHI’s ability to analyze a stealthy rootkit is quite useful, we also wanted to assess

whether LO-PHI can provide useful introspection information when analyzing real stealthy

malware samples. We obtained a set of 213 malware samples that were constructed in a clean-

room environment and were accompanied by their source code with detailed annotations.

All the binaries in this experiment were executed on both physical and virtual machines that

were running Windows XP (32bit, Service Pack 3) as their operating system.

For the analysis of these 213 well-annotated malware samples, we first performed a blind

analysis, and then later verified our findings with the labels. Note that there were samples

that exhibited more behaviors than those listed here, only the most prevalent behavior is

discussed here.

VM-detection

We found 66 of these samples employed either anti-VM or anti-debugging capabilities. How-

ever, none of the 66 anti-VM samples performed QEMU-KVM detection; instead they fo-

cused on VMWare, VirtualPC, and other virtualization suites. As expected, all of the

samples executed their full payload in both our virtual and physical analysis environments

(recall we use QEMU-KVM for our virtualized SUT). The ground truth indicated 66 such

samples, and our analysis with LO-PHI was able to uncover all of them.

46

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

New Processes

We found that 79 of the samples created new long-running processes detected by our memory

analysis. The most commonly created process was named svchost.exe, which occurred in 15

samples. In addition, 2 other samples had variations of svchost.exe, i.e., dddsvchost.exe

and cbasvchost.exe. These 17 samples wrote their own svchost.exe binary to disk, which

was detected by our filesystem analysis, and executed the binary, which opened up a TCP

listening socket on port 1053. Port 1053 is associated with the “Remote Assistance” service

by the Internet Assigned Numbers Authority (IANA). The second most common process

was named bot.exe and occurred in 12 samples, and four of these 12 samples also had the

third most common process, which was named dwwin.exe. The dwwin.exe binary claimed

to be Dr. Watson [160], a debugger included in Windows, but also appeared to be injected

with malicious code. The four samples each created two UDP listening sockets on ports

1045 and 1046, one owned by bot.exe and the other owned by dwwin.exe, respectively. We

inferred from this behavior that these two groups of samples were derived from the same two

malware families and contained Remote Administration Tools (RATs), which we confirmed

with the ground truth labels.

We also found three samples that executed the SUT’s legitimate firefox.exe browser, but

loaded with a suspicious library needful.dll that they wrote to disk. The firefox.exe

process opened TCP listening sockets on ports 1044 and 1045 in two of the three samples,

suggesting that these samples were also RATs attempting to masquerade as the Firefox

browser. This supposition was also confirmed by the ground truth data.

Data Exfiltration

We successfully detected 46 samples that attempted to collect and exfiltrate data through a

combination of our disk and memory analysis. We initially flagged two particular samples

because they appeared to be exfiltrating data via external IPs over port 25, which is reserved

47

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

for the Simple Mail Transfer Protocol (SMTP). Our disk analysis of these samples showed

a number of suspicious file reads, including reads of Firefox’s cert8.db and key3.db for

all user profiles stored on the SUT. These files store user installed certificates and saved

passwords, respectively, and there were no Firefox processes running during the execution of

those samples. Searching for similar suspicious disk behavior in the rest of the labeled set

yielded 44 additional samples that appeared to be exfiltrating data. Again, our detections

correctly matched the ground truth data.

Worms and Network Scanning

We detected approximately 30 (of 30 labeled samples) that propagated worms and scanned

the network. These samples contacted a significant number of IP addresses and created a

large number of network sockets in a five minute window. For example, eight of the samples

contacted over 140 IP addresses, and 13 samples opened more than 2000 sockets. The

same 13 samples appeared to target external IP addresses over port 135, which is associated

with Microsoft Remote Procedure Call (RPC), a service that has had remote exploitable

vulnerabilities targeted by worms in the past [215].

Command and Control

We detected 14 samples that attempted to contact external servers over TCP port 6667,

which is associated with the Internet Relay Chat (IRC) protocol. IRC is also commonly

used as a Command and Control (C2) mechanism for remotely controlling malware [184],

which was the case for these samples as confirmed by the ground truth data.

48

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Domain Name Service Queries

These malware samples would call out to a variety of different hosts—we could check Domain

Name Service (DNS) queries to verify which hosts were implicated by a sample’s malicious

behavior. The most common DNS queries were for the hostnames 579.info (55 samples),

windowsupdate.net (16 samples), time.windows.com (11 samples), wpad (11 samples), and

google.com (10 samples). The ground truth data indicated that some of these queries were

intended as red herrings, while other queries were for actual contact with more suspicious

hostnames such as irc.site406.com and asdf.it.

Kernel Modules

We detected three samples that unloaded the ipnat.sys driver and appeared to gain per-

sistence by replacing it with a malicious version.

3.6.3 LO-PHI Experiment 3: Unlabeled Malware

In this experiment, we demonstrate our framework’s ability to scale and extract useful results

from completely unknown malicious binaries, which were obtained from the same source as

the labeled data and also said to target Windows XP. The physical SUT was the same

as described previously (Dell T7500 with 1GB of RAM), but the virtual machines were

instantiated on a server with six quad-core Xeon X5670s (24 logical cores) and 68GB of

RAM. This enabled us to instantiate a pool of 20 virtual machines with instrumentation.

Due to the vast difference in runtimes and resources, we were able to run far fewer samples

in our physical environment. We ran 1091 samples in both environments. We present the

general types of behaviors detected by LO-PHI in this section. There is no ground truth

data associated with these samples to compare results against. However, we feel that the

findings clearly demonstrate the usefulness of our system. Basic statistics for our analysis of

49

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Table 3.3: Overall statistics for unlabeled malware (Section 3.6.3).
Observed Behavior Number of Samples

Created new process(es) 765
Opened socket(s) 210
Started service(s) 300
Loaded kernel modules 20
Modified GDT 58
Modified IDT 10

these unlabeled samples are shown in Table 3.3.

New Processes

We found that 70% of the wild samples created new processes that persisted until the end

of our analysis. The most common names are shown in Table 3.4. Unsurprisingly, most

of the malware appeared to either start legitimate processes or masquerade as innocuously-

named processes. We discovered 4 samples that started a process with the same name as

the currently logged in user. We found 11 samples created at least 10 new processes on the

SUT, one of which created an unusual 84 new processes.

Table 3.4: Top processes created by wild malware (Section 3.6.3).
New Process Number of Samples

IEXPLORE.exe 31
dwwin.exe 30
svchost.exe 30
explorer.exe 14
urdvxc.exe 13
dfrgntfs.exe 13
wordpad.exe 12
defrag.exe 12

50

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Sockets

About 19% of the wild samples opened at least one network socket. The most commonly-

opened sockets are shown in Table 3.5. Three samples stood out as potential worms or

network scanners as they created over 1900 sockets; the next highest sample created a mere

44 sockets. Unlike our labeled set, none of the wild malware seemed to use obvious C2 channel

ports such as 6667 (IRC). For example, only one sample sent traffic over port 80.

Table 3.5: Top 6 sockets (by port and protocol) created by wild malware (Section 3.6.3).
Port Protocol Number of Samples

1038 UDP 58
1039 TCP 42
1042 TCP 37
1038 TCP 36
1040 TCP 36
1041 TCP 32

Services

About 27.5% of the wild samples started and installed at least one new system service.

Most of these services suspiciously claimed to be hardware drivers such as USB or audio

drivers. For example, over 250 samples loaded a driver claiming to be hidusb.sys (for

Human Interface Devices over USB), possibly as an attempt to perform key logging.

3.6.4 LO-PHI Experiment 4: Paranoid Fish

First, we highlight our ability to analyze evasive binaries with a ground truth sample. We

chose Paranoid Fish (pafish v054) [170], a proof-of-concept open-source tool that demon-

strates various VM detection and anti-debugging techniques used by actual malware. When

pafish is executed, it writes a file to disk for each artifact that it observes. pafish is cur-

rently able to detect most popular analysis frameworks. For example, pafish detected 7

51

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Table 3.6: Artifacts detected by pafish in Anubis.
hi_qemu
hi_sandbox_NumberOfProcessors_less_2_GetSystemInfo
hi_sandbox_NumberOfProcessors_less_2_raw
hi_sandbox_drive_size
hi_sandbox_drive_size2
hi_sandbox_mouse_act
hi_sandbox_physicalmemory_less_1Gb

Table 3.7: Artifacts detected by pafish in Cuckoo.
hi_CPU_VM_rdtsc
hi_CPU_VM_rdtsc_force_vm_exit
hi_sandbox_mouse_act
hi_sandbox_drive_size
hi_sandbox_drive_size2
hi_hooks_deletefile_m1
hi_virtualbox

artifacts when run against Anubis [15] (shown in Table 3.6 and 7 different artifacts when

run against Cuckoo (shown in Table 3.7).

On the contrary, when executed in our physical analysis environment, pafish only detected

two artifacts: small disk size and small system memory (shown in Table 3.8).

In this instance, we were using a 750GB hard drive with a 10GB partition on it and 1GB of

physical memory. These artifacts are very easily removed by simply adding more hardware to

the SUT. However, this has a direct effect on the time per sample in an automated environ-

ment, as a larger disk image must be restored, and larger memory snapshots requires more

time and space. Nevertheless, LO-PHI is able to analyze pafish without detection.

Table 3.8: Artifacts detected by pafish in LO-PHI.
hi_sandbox_physicalmemory_less_1Gb
hi_sandbox_drive_size2

52

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Table 3.9: Description of Volatility modules used for evaluating evasive malware.
psscan Enumerates processes using pool tag scanning. (Capable of finding

processes that have previously terminated (inactive) and processes
that have been hidden or unlinked)

envars Extracts environment variables from processes in memory.

ssdt Lists the functions in the Native and GUI SSDTs.

netscan Enumerates network sockets using pool tag scanning.

ldrmodules Enumerates modules in the Virtual Address Descriptor (VAD) and
cross-references them with three unique PEB lists: InLoad, InInit,
and InMem.

driverirp Enumerates all DRIVER_OBJECT structures in memory

psxview Helps detect hidden processes by enumerating PsActiveProcessHead
using the following methods: PsActiveProcessHead linked list,
EPROCESS pool scanning, ETHREAD pool scanning, PspCidTable,
Csrss.exe handle table, and Csrss.exe internal linked list.

3.6.5 LO-PHI Experiment 5: Coarsely-Labeled Malware

In this experiment, we exhibit LO-PHI’s ability to analyze evasive malware, which thwart

existing analysis frameworks. Because we aim to analyze more modern malware samples

compared to previous experiments discussed above, we ran these analyses on the same hard-

ware, but with Windows 7 (64-bit) as our operating system. Subsequently, we also installed

numerous potentially vulnerable and frequently targeted applications [66]. Specifically, Ac-

robat 9.4.0,10 Flash 10.1.85.3, Java 7u0 (64-bit), Firefox 38.0.1, Chrome 43.0.2357.64 (64-bit),

.NET 4.5.2, and Python 2.7 (64-bit). The analysis was performed exactly as described above.

However, the Volatility modules used were limited to those that supported Windows 7,

from which we selected the following to use in our analysis: psscan, envars, ssdt, netscan,

ldrmodules, driverirp, and psxview (see Table 3.9). It is worth noting that the ssdt and

driverip modules did not return any findings in our dataset.

We obtained a set of 429 coarsely-labeled evasive malware samples from Kirat et al. [140]

10This was the last release before strict sandboxing.

53

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

in their previous work. Because these samples were specifically labeled as evasive, we only

present the findings from executing them in our physical environment. While we knew these

samples employed evasion techniques capable of evading most popular analysis frameworks,

we were not given the intended effect or target operating system of the samples as we were

with the samples in Section 3.6.2. Thus, we do not make claims as to specific intent of the

malware discussed here. We present our aggregated findings below, which indicate that our

framework successfully avoided their evasive behaviors. The dataset consisted of malware

labeled as using the evasion techniques outlined in Table 3.10. A summary of our findings

is presented in Table 3.11.

Table 3.10: Evasive malware dataset.
Technique Employed # Samples

Wait for keyboard 3
Bios-based 6
Hardware id-based 28 of 82
Processor feature-based 62 of 134
Exception-based 79 of 197
Timing-based 251 of 690 total

Table 3.11: Summary of anomalies detected in Volatility modules and GUI buttons found
in our evasive dataset when executed in our physical environment on Windows 7 (64-bit).

Volatility Module

en
var

s
ne
tsc

an

ldr
mo

du
les

psx
vie

w

bu
tto

ns

M
al
w
ar
e
L
ab

el Keyboard 0 3 1 0 1
Bios 3 6 6 6 0

Hardware 28 27 28 26 11
Processor 53 54 59 51 7
Exception 76 79 77 76 7

Timing 229 247 231 239 4

54

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

Wait for keyboard

Due to the small number of samples employing this type of technique, we were not able to

draw any interesting conclusions from these samples. However, all of these samples appeared

to execute successfully. One presented an error dialog window that our framework was able

to locate and click, which appeared to kill the sample. This particular sample also made a

DNS query to goldcentre.ru. The other two had no notable effects on our system.

BIOS-based

All of the examples in this category appeared to trigger their payload. That is, they were

unsuccessful in detecting our analysis framework and exhibited some interesting behaviors.

Every sample attempted to create an output network connection to smtp.mail.ru. Two of

them attempted to determine their IP addresses using “whatismyip” services. The samples

also spawned new processes that persisted throughout our analysis, most masquerading as

existing Windows services. The psxscan module indicated that the processes 122.exe and

123.exe were spawned in two cases; explorer.exe was also spawned by two of the samples.

Most interestingly, one of the samples created a hidden svchost.exe which was invisible to

every process enumeration method except psscan.

Hardware-id-based

These samples also exhibited interesting behaviors. Most notably, 23 of them started

TrustedInstaller.exe, while 25 of the original processes continued running for the du-

ration of our analysis, and the others appeared to spawn new processes. All of the samples

also attempted to reach out to network resources: 24 of them attempted to connect to

219.235.1.127:80, one attempted to connect to 62.75.235.238:443, and two attempted

TCP connections to either 8.8.8.8 or 8.8.4.4, both Google-owned DNS servers, on port

55

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

53, which is the DNS port for UDP communications. All of the samples imported at least

32 modules, with the most active sample importing 156 unique modules. Finally, 11 of them

appeared to present buttons that were detected and clicked by LO-PHI, and two of them

set the particularly interesting environment variables 9Yy9Y9YYy9YYy and YYY9YYY9YYY99,

which both had the value of E4EC4E2160D8E128C919C56915BFED6C.

Processor feature-based

These samples produced the least compelling findings. While most of them persisted, or

installed new processes, 11 had no new processes in memory. Those that did spawn new pro-

cesses had filenames similar to before, with four of them once again loading TrustedInstall-

er.exe, three starting a more stealthy netsh.exe, 1 spawning a malicious taskhost.exe,

and, perhaps the least stealthy sample, launching trojan.exe. Most of them also exhib-

ited network activity, primarily DNS traffic, with eight of the samples querying a variation

of boxonline, and seven of the samples attempting reach port 8 on various IP addresses.

More interestingly, one of the samples attempted to contact 219.235.1.127, and then opened

a local listening socket. A single sample in this set also set the SEE_MASK_NOZONECHECKS

environment variable to “1”, which is a variable that will hide security warnings in Windows

XP. This leads us to believe that at least some of the malware in this set was targeting an

older version of windows, and likely explains why some of the samples appeared to have

no effect. Two of samples also presented dialog boxes and the button “OK” was clicked by

LO-PHI.

Exception-based

The exception-based malware samples also exhibited similar behavior, with all but three

of the samples spawning new processes or continuing to execute for the duration of our

analysis. Unsurprisingly, many of these samples also attempted to engage the network.

56

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

There appeared to be two distinct clusters that reached out to various domains with the

strings boxonline (31 samples) and backupdate (26 samples), with the others calling out

to unique domains. The boxonline samples indicate that these may be the same class of

malware that was previously observed in the processor-feature-based samples. Again, a few

of the samples appeared to present a graphical interface with the text “OK,” which was

successfully clicked by LO-PHI.

Timing-based

This was our largest dataset, and thus yielded the most diverse findings. Again, a majority

of the samples (193 out of 251) spawned new processes or persisted throughout our analysis.

Some interesting names included: skype.exe, which was launched by one process and also

hidden from normal windows process enumeration; taskhost.exe, which was spawned in a

hidden state by 22 processes and a less-stealthy manner by 10 other samples; conhost.exe,

which was also spawned in a stealthed state; and one sample spawned facebook.exe. Once

more, we saw four samples set the SEE_MASK_NOZONECHECKS environment variable, indicating

that Windows XP was likely their intended target. This dataset also had a significant

number of samples (156) making boxonline DNS queries, and five of the samples querying

backupdate. None of these samples produced network traffic aside from DNS.

While our analysis did not indicate malicious behavior in all of the samples in this dataset,

we were able to detect typical malware behavior from a large majority. Some of our findings

indicate that at least some of the samples were targeting Windows XP, which could explain

the lack of anomalies for the few that appeared benign. Nevertheless, we feel that our

findings are more than sufficient to showcase LO-PHI’s ability to analyze evasive malware

without being subverted, and subsequently produce high-fidelity results for further analysis.

In fact, behaviors like unlinked EPROCESS entries and listening sockets can be exceptionally

difficult to detect with software-based methodologies. Because LO-PHI has a complete view

57

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

of the entire memory space and disk activity, the ability for the malware to hide its presence

is greatly hindered.

3.6.6 Evaluation Conclusions

In Sections 3.6.1, 3.6.2, 3.6.3, 3.6.4, and 3.6.5, we presented results of rigorous ex-

perimentation that demonstrate that LO-PHI is a powerful transparent malware analysis

tool. First, we wrote a custom rootkit using well-known stealth techniques, and showed how

LO-PHI was capable of providing useful analysis information. Second, we blindly analyzed

213 well-labeled stealthy malware samples using LO-PHI, matching all of the ground truth

data correctly. Third, we analyzed a corpus of 1091 unlabeled malware samples using LO-

PHI to report general behavior of the samples in the corpus, ultimately demonstrating how

LO-PHI can be used to analyze real malware. Fourth, we analyzed a stealthy malware proto-

type, pafish, using LO-PHI and two other malware analysis tools, ultimately showing how

LO-PHI remains transparent to stealthy malware. Finally, we analyzed a set of 429 coarsely-

labeled malware samples using LO-PHI, further demonstrating its ability to provide useful

introspection data for malware analysis. In brief, our experiments show that LO-PHI is an

integral component to our overall solution to the debugging transparency problem.

3.7 Concluding Remarks for LO-PHI

In this Chapter, we presented LO-PHI, a custom FPGA-based approach to transparent

system introspection. We use the FPGA to spoof DMA packets over the PCI Express bus

to rapidly acquiring snapshots of a physical SUT’s memory during execution. We further

interpose SATA traffic on a physical SUT to access its disk activity. Together, this FPGA

component can acquire valuable introspection data from a SUT while maintaining timing

transparency (i.e., it produces no timing artifacts.

58

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

In the next Chapter, we discuss an alternative approach to acquiring this introspection data

from a physical SUT by using SMM. This alternative approach does not produce functional

artifacts, but instead produces timing artifacts. In Chapter 5, we explore and discuss the

tradeoffs between the two approaches. Together, these components form a cohesive solution

to the debugging transparency problem.

59

CHAPTER 3. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA CUSTOM
FPGA

60

明修栈道，暗度陈仓。

Build a walkway to attract your adversary, but send your soldiers through another path.

The Thirty-Six Strategems

4
Hardware Assisted System Introspection via

System Management Mode

In the previous Chapter, we discussed an approach using a custom FPGA circuit to rapidly

acquire snapshots of memory and disk activity from a live-running bare metal system. While

it produces no measurable timing artifacts, there are two potential issues: 1) it potentially

produces measurable artifacts from saturating the memory bus (and influencing a CPU

performance counter as a result), and 2) it potentially misses transient activity that occurs

between snapshots of memory (see Section 3.4). In this Chapter, we discuss an alternative

61

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

approach using Intel System Management Mode (SMM) that sacrifices timing transparency

to gain functional transparency.

In this chapter, we present MalT, a novel approach that helps to achieve transparent de-

bugging by leveraging SMM (described in detail in Section 2.2) on bare metal systems. Our

system is motivated by the intuition that malware debugging needs to be transparent—

it should not leave functional artifacts introduced by the debugging functions. SMM is a

special-purpose CPU mode in all x86 platforms as of 2016. The main benefit of SMM is to

provide a distinct and easily-isolated processor environment that is transparent to the OS or

running applications. By using SMM, we achieve a high level of transparency, which enables

debugging and analyzing stealthy malware.

We briefly describe its basic workflow as follows: we run malware on one physical SUT and

employ SMM to communicate with the analyst on a RS. While SMM executes, Protected

Mode is essentially paused. The OS and hypervisor are therefore unaware of code executing

in SMM. Because we run introspection code in SMM, we expose far fewer artifacts to the

malware, enabling a more transparent execution environment for the debugging code than

existing approaches.

The RS communicates with the SUT using a gdb-like protocol with serial messages. We im-

plement the basic debugging commands (e.g., breakpoints and memory/register examination)

in our prototype implementation of MalT. Furthermore, we implement four techniques to

provide step-by-step debugging: (1) instruction-level, (2) branch-level, (3) far control trans-

fer level, and (4) near return transfer level. We also provide an interface for MalT that can

adapt to commonly-used tools such as IDAPro [126] and gdb. In addition, we implement

a novel technique to completely restore the SUT to a clean state after analyzing a sample

whose execution may have corrupted system state. We use SMM to perform this restoration

process to remain immune to high-privilege malware and rootkits.

MalT runs the debugging code in SMM without using a hypervisor. Thus, it has a smaller

62

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Trusted Code Base (TCB) than hypervisor-based debugging systems [15, 71, 187, 241], sig-

nificantly reducing the attack surface of MalT. Moreover, MalT is OS-agnostic and im-

mune to hypervisor attacks (e.g., VM-escape attacks [143,237]). Compared to existing bare

metal malware analysis [139, 233], SMM executes with the same privilege level as the hard-

ware. Thus, MalT is capable of debugging and analyzing kernel and hypervisor rootkits as

well [138,194].

In our MalT prototype, we use SMM on a physical SUT to execute code to interact with

an analyst on the RS. To demonstrate the efficiency and transparency of our approach, we

test MalT with popular packing, anti-debugging, anti-virtualization, and anti-emulation

techniques. The experimental results show that MalT remains transparent against these

techniques. MalT introduces a reasonable overhead: It takes about 12µs on average to

execute the introspection code. Moreover, we use popular benchmarks to measure the per-

formance overhead for four types of step-by-step execution on Windows and Linux platforms.

The overhead ranges from 1.46x to 1519x slowdown on the target system, depending on the

user’s selected instrumentation method.

The main contributions of this work are:

– We provide a bare metal debugging tool called MalT that leverages SMM for malware

analysis. It produces few functional artifacts on SUT, providing a more transparent

execution environment for the malware than existing approaches.

– We introduce a hardware-assisted malware analysis approach that uses neither the

hypervisor nor OS code. MalT is OS-agnostic and is capable of conducting hypervisor

rootkit analysis.

– We implement various debugging functions including breakpoints and step-by-step ex-

ecution. Our experiments demonstrate that MalT induces moderate but manageable

overhead on Windows and Linux environments.

63

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

– We implement a novel technique to completely and reliably restore the SUT to a clean

state after analyzing a sample.

– Through testing MalT against popular packers, anti-debugging, anti-virtualization,

and anti-emulation techniques, we demonstrate that MalT remains transparent to

stealthy malware, ultimately remaining undetected.

4.1 System Architecture

Figure 4.1 shows the architecture of the MalT system. The RS is equipped with a simple

gdb-like debugger. The user inputs basic debugging commands (e.g., list registers), and then

the SUT executes the command and replies to the RS as required. When a command is

entered, the RS sends a message containing the debugging comand via a serial cable to the

SUT. While in SMM, the SUT transmits a response message containing the information

requested by the command. Since the SUT executes the actual debugging command within

the SMI, its operation remains transparent to the target application and underlying operating

system.

As shown in Figure 4.1, the RS first sends a message to trigger the SMI on the SUT; MalT

reroutes a serial interrupt to generate an SMI when the message is received by the SUT.

Once the SUT enters SMM, the RS starts to send debugging commands to the SMI handler

on the server. Finally, the SMI handler transparently executes the requested commands

(e.g., list registers, set breakpoints at addresses) on the SUT and sends a response message

back to the RS.

The SMI handler on the SUT inspects the Code Under Test at runtime. If the Code Under

Test reaches a breakpoint, the SMI handler sends a breakpoint hit message to the RS and

remains in SMM until further debugging commands are received. Once SMM has control

of the SUT, we configure the next SMI to occur on the CPU via performance counters so

64

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Remote System (RS)

GDB-like

Debugger

System Under Test (SUT)

SMI

handler

Code

Under

Test

1) Trigger SMI

2) Debug command

3) Response message

Inspection

Breakpoint

Figure 4.1: Architecture of MalT. The RS starts an analysis session by sending an initial
trigger SMI message to the SUT. The SUT waits for the RS to provide a debugging command
and then responds as required. Subsequent SMIs are triggered to repeat the process while
the Code Under Test executes.

that the debugging process can continue during the life of execution of the Code Under Test.

Next, we describe each component of the MalT system.

4.1.1 Remote System in MalT

The client on the RS can ideally implement a variety of popular debugging options. For ex-

ample, we could use the SMI handler to implement the gdb protocol so that it would properly

interface with a regular gdb client. Similarly, we might implement the necessary plugin for

IDAPro to correctly interact with our system. However, this would require implementing a

complex protocol within the SMI handler, which we leave for future work. Instead, we im-

plement a custom protocol with which to communicate between the debugging client and the

SMI handler. MalT implements a small gdb-like client to simplify our implementation. For

the system restoration process, we store a clean disk image on the debugging client machine.

Section 4.2.7 explains this in detail.

65

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

4.1.2 System Under Test in MalT

The SUT consists of two parts—the SMI handler and the Code Under Test. The SMI

handler implements the critical debugging features (e.g., breakpoints and architectural state

reports), thus restricting the execution of debugging code to SMM. The debugging target

executes in Protected Mode or its other usual execution mode. Since the CPU state is saved

within SMRAM when switching to SMM, we can reconstruct useful information and perform

typical debugging operations each time a SMI is triggered.

SMRAM contains architectural state information (e.g., register values) of the process that

was running when the SMI was triggered. Since the SMIs are produced regardless of the

running thread, SMRAM is frequently populated with state information from another process

besides the Code Under Test. To find relevant state information, we must solve the well-

known semantic gap problem. By bridging the semantic gap within the SMI handler, we

can ascertain the state of the process executing in Protected Mode. This is similar to VMI

systems [129]. We continue our analysis in the SMI handler only if the SMRAM state

corresponds to the process we are interested in debugging. Otherwise, we exit the SMI

handler immediately. Note that MalT does not require Protected Mode; SMM can be

initialized from other x86 modes (e.g., Real Mode), but the semantics of various structures

would be different.

4.1.3 Communication between SUT and RS in MalT

We define a simple communication protocol used between the RS and SUT. The detailed

protocol is described in Table 4.1. The commands are derived from basic gdb stubs, which

are intended for debugging embedded software. The commands cover the basic debugging

operations upon which the client can expand. The small number of commands greatly

simplifies the process of communication within the SMI handler. For the disk restoration

66

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

process, the SUT requests a chunk location from the RS, which responds with that chunk’s

value. Section 4.2.7 provides further details.

4.2 Design and Implementation

The MalT system is composed of two main parts discussed in Section 4.1. In this section, we

provide implementation details such as specific memory addresses and x86 instructions that

are relevant to our prototype. We provide these details in the interest of reproducibility.

4.2.1 Debugging Client on the RS

The RS consists of a simple command line application. A user can direct the debugger

to perform useful tasks, such as setting breakpoints. For example, the user writes simple

commands such as b 0xdeadbeef to set a breakpoint at address 0xdeadbeef. The specific

commands are described in Table 4.1. We did not implement features such as symbols.1 The

RS uses serial messages to communicate with the SUT.

4.2.2 System Under Test in MalT

The target machine consists of a computer with a custom Coreboot-based [67] BIOS. We

changed the SMI handler in the Coreboot code to implement a simple debugging server

on the SUT. This custom SMI handler is responsible for typical debugging functions found

in other debuggers such as gdb. We implemented remote debugging functions via the serial

protocol to achieve common debugging functions such as breakpoints, step-by-step execution,

and state inspection and mutation.

1Resolving symbols is a standard feature included in gdb. If we fully implemented gdb stubs, symbol
resolution would be taken care of by the gdb client.

67

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.1: MalT Prototype Communication Protocol.
Message format Description

R A single byte, R is sent to request that all registers be read. This
includes all the x86 registers. The order in which they are transmitted
corresponds with the Windows trap frame. The response is a byte, r,
followed by the registers r1r2r3r4...rn.

mAAAALLLL The byte m is sent to request a particular memory address for a given
length. The address, A, is a 32-bit little-endian virtual address indicat-
ing the address to be read. The value L represents the number of bytes
to be read.

Wr1r2r3...rn The byte W is sent to request that the SMI handler write all of the
registers. Each value ri contains the value of a particular register. The
response byte, + is sent to indicate that it has finished.

SAAAALLLLV... The command, S, is sent when the debugger wants to write a partic-
ular address. A is the 32-bit, little-endian virtual address to write, L
represents the length of the data to be written, and V is the memory
to be written, byte-by-byte. The response is a byte, +, indicating that
the operation has finished, or a - if it fails.

BAAAA The B command indicates a new breakpoint at the 32-bit little-endian
virtual address A. The response is + if successful, or - if it fails (e.g.,
trying to break at an existing address). If the SMI handler is triggered
by a breakpoint, it will send a status packet with the single character,
B, to indicate that the program has reached a breakpoint and is ready
for further debugging. The SMI handler will wait for commands from
the client until the Continue command is received, whereupon it will
exit from SMM.

C The C command continues execution after a breakpoint. The SMI
handler will send a packet with single character, +.

X The X command clears all breakpoints and indicates the start of a new
debugging session.

KAAAA The K command removes the specified breakpoint if it was set previ-
ously. The 4-byte value A specifies the virtual address of the requested
breakpoint. It responds with a single + byte if the breakpoint is re-
moved successfully. If the breakpoint does not exist, it responds with
a single -.

SI, SB, SF, SN Each command changes the stepping mode: SI→ single instruction, SB
→ branches, SF→ far control transfers, SN→ near return instructions.
The SUT responds with one characters, +.

68

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

4.2.3 Bridging the Semantic Gap in MalT

As with VMI systems [104], SMM-based systems encounter the well-known semantic gap

problem. In brief, code running in SMM cannot understand the semantics of raw mem-

ory. The CPU state saved by SMM only belongs to the process that was running when the

SMI was triggered. During step-by-step execution, there is a chance that another process

is executing when the SMI occurs. Thus, we must be able to identify the target process

so that we do not interfere with the execution of unrelated process. This requires recon-

structing OS semantics. Note that MalT has the same assumptions as traditional VMI

systems [129].

In Windows, we start with the Kernel Processor Control Region (KPCR) structure associated

with the CPU, which has a static linear address, 0xffdff000. At offset 0x34 of KPCR,

there is a pointer to another structure called KdVersionBlock, which contains a pointer

to PsActiveProcessHead. The PsActiveProcessHead serves as the head of a doubly and

circularly linked list of Executive Process (EProcess) structures. The EProcess structure is

a process descriptor containing critical information for bridging the semantic gap in Windows

NT kernels.

In particular, the Executive Process contains the value of the CR3 register associated with

the process. The value of the CR3 register contains the physical address of the base of the

page table of that process. We use the name field in the EProcess to identify the CR3 value

of the target application when it executes first instruction. Since malware may change the

name field, we only compare the saved CR3 with the current CR3 to identify the target

process for further debugging. Bridging the semantic gap in Linux is a similar procedure,

but there are fewer structures and thus fewer steps. Previous work [131, 249] describe the

method, which MalT uses to debug applications on the Linux platform. Note that malware

with ring 0 privilege can manipulate the kernel data structures to confuse the reconstruction

process, and semantic gap solutions suffer from this limitation as of 2014 [129]. As with

69

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

VMI systems, MalT assumes that malware does not mutate kernel structures for correctly

bridging the semantic gap (cf. Threat Model in Section 1.6).

4.2.4 Triggering an SMI

The system depends upon reliable assertions of SMIs because the debugging code is placed

within the SMI handler.

We can assert an SMI via software or hardware. The software method writes to an Advanced

Configuration and Power Interface (ACPI) port to trigger an SMI, and we can use this

method to implement software breakpoints. We can place an out instruction in the malware’s

code so that when the malware’s control flow reaches that point, SMM begins execution so

that malware can be analyzed. The assembly instructions are:

mov $0x52f, %dx; out %ax, (%dx);

The first instruction moves the SMI software interrupt port number2 into the dx register,

and the second instruction writes the contents stored in ax to that SMI software interrupt

port (the value stored in ax is inconsequential). In total, these two instructions take six

bytes: 66 BA 2F 05 66 EE. While this method is straightforward, it is similar to traditional

debuggers using INT3 instructions to insert arbitrary breakpoints. Some malware samples

can checksum their own code to detect such modifications (i.e., this approach produces

functional artifacts). The alternative methods described below are harder to detect by such

self-checking malware.

In MalT, we use two hardware-based methods to trigger SMIs. The first uses a serial port to

trigger an SMI to start a debugging session. For the RS to interact with the SUT and start a

session, we reroute a serial interrupt to generate an SMI by configuring the redirection table

in the I/O Advanced Programmable Interrupt Controller (APIC). We use serial port COM1

2The SMI port number is 0x2b on Intel and 0x52f in our chipset [220]

70

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

on the SUT whose Interrupt Request (IRQ) number is 4. We configure the redirection table

entry of IRQ 4 at offset 0x18 in I/O APIC and change the Delivery Mode (DM) to be SMI.

Therefore, an SMI is generated when a serial message arrives. The RS sends a triggering

message, causing the target machine to enter SMM. Once in SMM, the RS sends further

debugging commands to which the SUT responds. In MalT, we use this method to trigger

the first SMI and start a debugging session on the SUT. We trigger the first SMI before

starting to execute the Code Under Test because our Threat Model (Section 1.6) assumes

the first instruction can compromises the SUT.

The second hardware-based method uses performance counters to trigger an SMI. This

method leverages two architectural components of the CPU: performance monitoring coun-

ters and the Local Advanced Programmable Interrupt Controller (LAPIC) [12]. First,

we configure the Performance Counter Event Selection (PerfEvtSel0) register to select the

counting event. There is an array of events from which to select; we use different events to

implement various debugging functionalities. For example, we use the Retired Instructions

Event (C0h) to single-step the whole system. Next, we set the corresponding performance

counter (PerfCtr0) register to the maximum value. In this case, if the selected event oc-

curs, it overflows the performance counter. Lastly, we configure the Local Vector Table

Entry (LVTE) in the LAPIC to deliver SMIs when such an overflow occurs. Similar meth-

ods [22,223] are used to switch from a guest VM to the hypervisor VMX root mode.

4.2.5 Breakpoints

Breakpoints can be implemented via software and hardware. Software breakpoints allow for

unlimited breakpoints, but they must modify a program’s code, typically placing a single

interrupt or trap instruction at the breakpoint. Self-checking malware can easily detect or in-

terfere with such changes (e.g., by checksumming its own code). On the other hand, hardware

breakpoints do not modify code, but there can only be a limited number of hardware break-

71

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

points as restricted by the CPU hardware. Moreover, ring 0 malware can detect the presence

of hardware breakpoints by accessing the corresponding hardware registers. Techniques such

as VMPiRE [219] aim to address the limitations of breakpoints, but they ultimately rely on

the OS and so are not effective against ring 0 malware. We believe transparent breakpoint

insertion with ring 0 malware is an open problem.

MalT tackles this problem by using performance counters to generate SMIs. Essentially, we

compare the Extended Instruction Pointer (EIP) register of the currently-executing instruc-

tion with the stored breakpoint address during each instruction. We use 4 bytes to store the

breakpoint address and 1 byte for a validity flag. Thus, we need only 5 bytes to store such

pseudo-hardware breakpoints. For each Protected Mode instruction, the SMI handler takes

the following steps: (1) Check if the Code Under Test is the running thread when the SMI

is triggered, 2) check if the current EIP is in the set of stored breakpoint addresses, 3) start

to count retired instructions in the performance counter, and set the corresponding perfor-

mance counter to the maximum value, 4) configure the LAPIC so that the next performance

counter overflow generates a subsequent SMI.

Breakpoint addresses are stored in SMRAM, and thus the number of active breakpoints

we can have is limited by the size of SMRAM. In our system, we reserve a 512-byte region

from SMM_BASE+0xFC00 to SMM_BASE+0xFE00. Since each hardware breakpoint takes 5 bytes,

we can store a total 102 breakpoints in this region. If necessary, we can expand the total

region of SMRAM by taking advantage of a region called TSeg, which is configurable via the

SMM_MASK register [12]. In contrast to the limited number of hardware breakpoints on the

x86 platform, MalT is capable of storing more breakpoints in a transparent manner.

4.2.6 Step-by-Step Execution Debugging

As discussed above, we break the execution of a program by using different performance coun-

ters. For instance, by monitoring the Retired Instruction event, we can achieve instruction-

72

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.2: Stepping Methods Available in MalT
Performance Counter Description [12]

Retired instructions Counts retired instructions, plus exceptions and
interrupts (each count as one instruction)

Retired branch Includes all types of architectural control flow
changes, including exceptions and interrupts

Retired mispredicted branch Counts the number of branch retired that were
not correctly predicted

Retired taken branches Counts the number of taken branches that were
retired

Retired taken branch mispredicted Counts number of retired taken branch instruc-
tions that were mispredicted

Retired far control transfers Includes far calls/jumps/returns, IRET, SYSCALL
and SYSRET instructions, exceptions and inter-
rupts

Retired near returns Counts near return instructions (RET or RET Iw)
retired

level stepping in the system. Table 4.2 summarizes the performance counters we used in

our prototype. First, we assign the event to the PerfEvtSel0 register to indicate that the

event of interest will be monitored. Next, we set the value of the counter to the maximum

value (i.e., a 48-bit register is assigned 248 − 2). Thus, the next event to increase the value

will cause an overflow, triggering an SMI. Note that the -2 term is used because the Retired

Instruction event also counts interrupts. In our case, the SMI itself will cause the counter to

increase as well, so we account for that change accordingly. Incorrect configuration of this

value can cause the SUT to become deadlocked.

Vogl and Eckert [223] also proposed the use of performance counters for instruction-level

monitoring. Their system delivers a Non-Maskable Interrupt (NMI) to force a VM Exit

when a performance counter overflows. However, their work is implemented on a hypervisor.

MalT leverages SMM and does not employ any virtualization, which provide a more trans-

parent execution environment. In addition, Vogl and Eckert incur a time gap between the

occurrence of a performance event and the NMI delivery, while MalT does not encounter this

problem. Note that the SMI has priority over both NMIs and maskable interrupts. Among

73

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

the stepping methods listed in Table 4.2, instruction-by-instruction stepping achieves fine-

grained tracing (and therefore high functional transparency), but at the cost of a significant

performance overhead (and therefore higher timing artifacts. Using the Retired Near Re-

turns event causes low system overhead, but it only provides coarse-gained debugging (thus

potentially missing transient malware behavior as discussed in Section 3.4).

4.2.7 System Restoration

Restoring a system to a clean state after each debugging session is criticial to ensuring safe

malware analysis on bare metal systems. In general, there are two approaches to restore a

system: reboot and rebootless. The reboot approach needs only to reimage the non-volatile

devices (e.g., hard disk or BIOS), but this is time-consuming. The rebootless approach must

manually reinitialize the whole system state, including memory and disks, but takes less

time. For the rebootless approach, hardware devices must be restored in addition to the disk

and memory. Modern I/O devices as of 2016 now have their own processors and memory

(e.g., GPU and NIC); quickly and efficiently reinitializing these hardware devices remains a

challenging problem.

BareBox [139] used a rebootless approach to restore the memory and disk of the analysis

machine. However, BareBox only focuses on user-level malware; it disables loading new

kernel modules and prevents user-mode access to kernel memory. In other words, ring 0

malware can easily detect the presence of BareBox using a memory scan and manipulate

the restoration process, while MalT can successfully operate in the presence of kernel and

hypervisor rootkits. Additionally, BareBox does not fully restore the I/O devices (e.g.,

the internal memory of GPU). BareCloud [140] used LVM-based copy-on-write to restore a

remote storage disk. MalT also supports a similar approach to restore the disk. However,

this method introduces artifacts (e.g., configurations for the remote disk) that malware can

detect, which violates the transparency goal.

74

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Remote System (RS)

Clean

Disk

System Under Test (SUT)

SMI

hanlder

NIC

Local

Disk
chunk location

chunk value

Restore disk
Operate NIC

Figure 4.2: Workflow for Disk Restoration in MalT. When the SUT must restore its disk,
it sequentially requests chunk locations from the RS, which stores a clean disk image. The
RS responds with the clean values stored in the requested chunks until the entire disk is
reimaged on the SUT.

System Restoration in MalT

To completely restore the SUT, we consider four components in MalT: (1) volatile memory

(i.e., RAM), (2) I/O devices, (3) hard disks, and (4) the BIOS. For the first and second

components, MalT uses the aforementioned reboot approach to restore them. Since we

reboot the debugging server, the memory and I/O devices are reset to clean states. This

addresses the problem of system restoration for malware analysis—I/O device and kernel

memory can be reinitialized when ring 0 malware is present.

For the third component (hard disks), we reimage the disk by using SMM. Since the debugged

malware is assumed to have ring 0 privilege in our Threat Model (Section 1.6), we cannot use

the disk restoration tools provided by the OS or hypervisor. One simple solution is to remove

the disk and restore it using another system. However, this is not convenient for users. In

MalT, we use SMM as a trusted execution environment to remotely reimage the disk over

the network. Figure 4.2 shows the workflow for disk restoration in MalT. The RS stores a

copy of the clean disk. We use the SMI handler to copy the clean image from the RS to the

SUT chunk-by-chunk over the network. As a result, this approach is OS-agnostic.

75

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Since we do not trust any code in the OS (including device drivers), we write two simple

device drivers in the SMI handler: one for the hard disk and the other for the network card.

We use SATA-based hard disks. The I/O base address of the primary SATA controller is

0x38a0 on our SUT. We can access disk data by performing SATA read/write operations.3

The BIOS and OS initializes the network card when booting, so we only need to write the

transmit/receive descriptors to enable network communication.

Since replacing the whole disk image is time consuming (roughly 8 hours to replace a 500GB

disk sector-by-sector on our platform), we only restore the modified contents on the disk. In

this case, we use a bitmap to record the modified sectors. If we use a single bit for a sector,

the bitmap requires 128MB for a 500GB disk with a sector size of 512-byte. To reduce

the size of the bitmap, we group sectors into a 32KB chunk. This method is similar to

BareBox [139]. To record the modified chunks, we trigger an SMI for each SATA operation.

Specifically, we configure IRQ 14 in the I/O APIC to reroute a SATA controller interrupt to

become an SMI. Next, we check the SATA operation to see if it is a write. If it is, we mark

the bitmap at the corresponding location. This bitmap is stored in the trusted SMRAM.

When the SUT requires disk restoration, we can use the bitmap to request clean versions of

the chunks that were modified by the SUT from the RS.

Finally, for restoring the BIOS, we use the tool Flashrom [93] to flash firmware. We need

to flash the BIOS twice per debugging session; once after the debugging session to inject

the modified SMM code into the BIOS; and once before the subsequent debugging session

to remove the presence of the modified SMM code to maintain transparency. Section 4.5

discusses this further.

3In addition, SATA access is performed at the block-level with 512-byte sectors on our platform.

76

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

4.3 Experimental Evaluation of MalT

In this section, we describe the details of the testing setup (i.e., the specifications of the

SUT and RS. We describe our experimental parameters and present results. In particular,

we present three targeted experiments:

1. We analyze the time taken per invocation of SMM to determine the time taken to

perform our introspection task.

2. We examine how much overhead is incurred on a system-wide basis as a result of using

MalT on indicative workloads.

3. We measure the overhead incurred by transparently restoring the SUT’s disk to a

known clean state.

4. We analyze the transparency of MalT when applied to analyzing stealthy malware.

4.3.1 Testbed Specification and Code Size

We evaluated MalT using two physical machines. The SUT used an ASUS M2V-MX_SE

motherboard with an AMD K8 northbridge and a VIA VT8237r southbridge. We used a

2.2 GHz AMD LE-1250 CPU and 2GB Kingston DDR2 RAM. The SUT used Windows XP

SP3, CentOS 5.5 with kernel 2.6.24, and Xen 3.1.2 with CentOS 5.5 as domain 0. To simplify

the installation, they were installed on three separate hard disks using SeaBIOS to manage

the boot process. We used Seagate Barracuda 7200 RPM hard disks with 500GB capacity.

The RS is a Dell Inspiron 15R laptop with Ubuntu 12.04 LTS, with a 2.4GHz Intel Core

i5-2430M CPU and 6 GB DDR3 RAM. We use a USB 2.0 to Serial (9-Pin) DB-9 RS-232

converter cable to connect two machines for communication.

We use cloc [62] to compute the number of lines of source code. Coreboot and its SeaBIOS

payload contain 248,421 lines. MalT adds about 1900 lines of C code in the SMI hander.

77

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

After compiling the Coreboot code, the size of the image is 1MB, and the SMI hander

contains 3749 bytes. The debugger client consists of 494 lines of C code.

4.3.2 Breakdown of Operations in MalT For Timing Analysis

To understand the performance of our debugging system, we measure the time elapsed during

particular operations in the SMI handler. We use the Time Stamp Counter (TSC) to measure

the number of CPU cycles elapsed during each operation; we multiplied the clock frequency

by the delta in TSCs to obtain total time elapsed in seconds. After a performance counter

triggers an SMI, the system hardware automatically saves the current architectural state into

SMRAM and begins executing the SMI handler. The first operation in the SMI handler is

to identify the last running process in the CPU. If the last running process is not the target

malware, we only configure the performance counter register for the next SMI and exit from

SMM. Otherwise, we perform several checks. First, we check for newly-received messages and

whether a breakpoint has been reached. If there are no new commands and no breakpoints to

evaluate, we reconfigure the performance counter registers for the next SMI. Table 4.3 shows

a breakdown of the operations in the SMI handler if the last running process is the target

malware. This experiment shows the mean, standard deviation, and 95% confidence interval

of 25 runs. The time taken to switch into SMM is about 3.29µs. Command and breakpoint

checking take about 2.19µs in total. Configuring performance monitoring registers and SMI

status registers for subsequent SMI generation takes about 1.66µs. Lastly, resuming from

SMM takes 4.58µs. Thus, when examining the target malware, MalT takes about 12µs to

execute an instruction without debugging command communication. Note that the SMM

switching and resume times are dictated by the hardware vendor’s implementation of SMM.

We would need to cooperate with hardware vendors to lower the time elapsed by these

operations. This 12µs is assessed every time a performance counter overflows in MalT.

78

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.3: Breakdown of SMI Handler (Time: µs)
Operations Mean STD 95% CI

SMM switching 3.29 0.08 [3.27,3.32]
Command and BP checking 2.19 0.09 [2.15,2.22]
Next SMI configuration 1.66 0.06 [1.64,1.69]
SMM resume 4.58 0.10 [4.55,4.61]

Total 11.72

4.3.3 Step-by-Step Debugging Overhead

To demonstrate the efficiency of our system, we measure the performance overhead (i.e.,

timing artifacts) for each of the stepping methods shown in Table 4.2 on both Windows and

Linux platforms. We use a benchmark program, SuperPI [213], version 1.8 on Windows

and version 2.0 on Linux. SuperPI is a single-threaded benchmark that calculates the value

of π to a specific number of digits and outputs the calculation time. This tightly written,

arithmetic-intensive benchmark is suitable for evaluating CPU performance. We configure

SuperPI to calculate 64K digits of π, which takes 1.610s and 1.898s on Windows and Linux,

respectively, without instrumentation. Note that the speed of π calculation varies depend-

ing on the selected algorithm. Additionally, we use a popular Linux Command, gzip, to

compress 4M digits of π computed by SuperPi to measure the performance overhead. On

Windows, we install Cygwin to execute gzip version 1.4. On Linux, we use gzip version

1.3.5. The compression operation takes 1.875s on Windows and 1.704s on Linux without

instrumentation. We then enable each of the stepping methods separately and record the

runtimes to compute system overhead incurred by MalT. We run each experiment 5 times

and show the average results in Table 4.4.

Table 4.4 shows the performance slowdown (and thus the extent of timing artifacts) in-

troduced by step-by-step debugging. The first column specifies the stepping method; the

following four columns show the running time of the SuperPI and gzip; and the last four

columns represent the slowdown of the programs, which is calculated by dividing the instru-

79

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

mented running time by the base running time. The table shows that far control transfer

(e.g., IRET instruction) stepping only introduces a 1.5x slowdown on Windows and Linux,

which facilitates coarse-grained tracing for malware analysis. As expected, fine-grained step-

ping methods introduce more overhead. The instruction-by-instruction debugging causes

about 1519x slowdown on Windows for gzip compressing 4M digits of π, which demon-

strates the worst-case performance degradation among our debugging methods. One way to

improve the performance is to reduce the time elapsed while switching to and resuming from

SMM. Note that MalT is twice as fast as the state-of-the-art Ether approach [71, 241] in

the single-stepping mode.

Despite a three order-of-magnitude slowdown on Windows, the SUT is still usable and re-

sponsive to user interaction. In particular, the instruction-by-instruction debugging is in-

tended for use by a human operator from the RS, and we argue that the user would not

notice this overhead while interacting with the RS.4 We believe that achieving high functional

transparency at the cost of sacrificing timing transparency is necessary for certain types of

malware analysis. Note that the overhead in Windows is larger than that in Linux. This

is because 1) the semantic gap problem is solved differently in each platform, and 2) the

implementations of the benchmark programs are different for each platform.

4.3.4 System Restoration Overhead

To measure the overhead of a complete SUT restoration in MalT, we measure the time taken

by each restoration step, including rebooting the SUT, restoring its disk, and flashing its

BIOS. To calculate the time taken to reboot the SUT, we start an external timer when the OS

executes the reboot command (i.e., reboot on Linux and shutdown -h now on Windows),

and we stop the timer when the OS GUI is displayed after rebooting. Note that the boot

time is OS-dependent. Since we only restore the changed chunks in the disk, the time taken
4To visualize the performance slowdown, we record a video (https://youtu.be/NP6Bb4CdqN0) that shows

MalT operating in the instruction-stepping mode in Windows (cf. highest overhead in Table 4.4).

80

https://youtu.be/NP6Bb4CdqN0

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.4: Stepping overhead on Windows and Linux
Stepping method Runtime (Seconds) Slowdown

Windows Linux Windows Linux
π gzip π gzip π gzip π gzip

Without MalT 1.610s 1.875s 1.898s 1.704s 1.00x 1.00x 1.00x 1.00x
far control transfers 2.230s 2.564s 2.495s 2.432s 1.38x 1.36x 1.46x 1.42x
near returns 74.43s 73.14s 61.56s 59.08s 46.2x 39.1x 36.1x 34.7x
taken mispredicted 155.3s 145.7s 68.42s 138.3s 96.5x 40.2x 77.7x 81.2x
taken branches 1020s 1754s 476.6s 1538s 634x 935x 280x 903x
mispredicted branches 160.3s 280.0s 77.31s 236.3s 99.6x 149x 45.4x 138x
branches 1200s 2243s 494s 1760s 745x 1196x 290x 1033x
instructions 1645s 2849s 839s 2333s 1021x 1519x 492x 1369x

to restore the disk depends on the number of the modified chunks. In the experiment, we

copy a 10MB file on the disk. Then, we use SMM to restore the disk. We use the TSC to

measure the time elapsed for disk restoration and flashing the BIOS. Table 4.5 shows the

breakdown of the system restoration process. Rebooting the system takes about 25 seconds.

This includes shutting down the OS, initializing the BIOS, executing the boot loader, and

loading the OS. Since we only need to restore the modified contents in the disk (i.e., 10

MB file and OS system logs), restoring the hard disk takes only 21 seconds. Recall that

we need to flash the BIOS twice. Each flash operating takes about 28 seconds, yielding a

total of about 56 seconds. Therefore, the total SUT restoration process takes about 102

seconds. Compared to BareBox [139], MalT requires more time to complete the system

restoration. However, BareBox relies on a Meta-OS and only works for user-level malware,

while MalT is capable of analyzing ring 0 code so that privileged malware cannot tamper

with the restoration process. We believe our system provides a more transparent approach

for system restoration in malware analysis.

81

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.5: Breakdown of System restoration Process (Time: s)
Steps Mean STD 95% CI

System reboot 25.03 1.01 [24.01, 26.12]
Hard disk restoration 20.75 2.33 [17.39, 22.34]
BIOS flash 56.23 1.34 [54.55, 57.97]

Total 102.01

4.4 Discussion and Limitations

MalT uses SMM as its foundation to implement various debugging functions. Before 2006,

computers did not lock their SMRAM in the BIOS [86], and researchers used this flaw to

implement SMM-based rootkits [45, 79, 86]. Since then, computers lock the SMRAM in the

BIOS so that SMRAM is inaccessible from any other CPU modes after booting. Wojtczuk

and Rutkowska demonstrated bypassing the SMRAM lock through reclaiming memory [196]

or cache poisoning [236]. The memory reclaiming attack is addressed by locking the remap-

ping registers and Top of Low Usable DRAM (TOLUD) register. The cache poisoning

attack forces the CPU to execute instructions from the cache instead of SMRAM by manip-

ulating the Memory Type Range Register (MTRR). Duflot also independently discovered

this architectural vulnerability [80], but this issue was fixed with Intel’s introduction of the

System Management Range Register (SMRR) [127]. Furthermore, Duflot et al. [81] listed

some design issues of SMM, but they are addressed by correcting configurations in BIOS

and careful implementation of the SMI handler. Wojtczuk and Kallenberg [234] presented

an SMM attack by manipulating a UEFI boot script that allows attackers to bypass the

SMM lock and modify the SMI handler with ring 0 privilege. Fortunately, as discussed in

Wojtczuk and Kallenberg [234], the BIOS update around the end of 2014 fixed this vulnera-

bility. In MalT, we assume that SMM is trusted (cf. trusted hardware in the Threat Model

in Section 1.6.

Butterworth et al. [49] demonstrated a buffer overflow vulnerability in the BIOS updating

82

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

process in SMM, but this is not an architectural vulnerability and is specific to that particular

BIOS version (our SMM code does not contain that vulnerable code). Since MalT adds

1500 lines of C code in the SMI handler, it is possible that our code has bugs that could be

exploited. Fortunately, SMM provides a strong isolation from other CPU modes (i.e., sealed

memory). The only inputs from a user are through serial messages (see Section 4.1), making

it difficult for malicious code to be injected into our system. We implement MalT on a

single-core processor for compatibility with Coreboot, but SMM also works on multi-core

systems [127]. Each core has its own set of Manufacturer Specific Registers (MSRs), which

define the SMRAM region. When an SMI is generated, all the cores will enter SMM with

their own SMI handler. One simple way is to let one core execute our debugging code and

spin the other cores until the first has finished. SMM-based systems such as HyperSentry [22]

and SICE [23] are implemented on multi-core processors. In a multi-core system, MalT can

debug a process by pinning it to a specific core while allowing the other cores to execute

the rest of the system normally. This will change thread scheduling for the Code Under

Test by effectively serializing its threads, which may be detectable by an adversary (i.e., a

functional artifact). Intel introduced its SMM-Transfer Monitor (STM) technology, which

virtualizes the SMM code [127]. It addresses attacks against Trust Execution Technology

(TXT) [235]. Unfortunately, the use of an STM involves blocking SMIs, which potentially

prevents our system from executing. However, we can modify the STM code in SMRAM,

which executes in SMM, to provide our transparent debugging functionality without affecting

our system.

4.4.1 Evaluating Transparency Against Packing Malware

Packing is used to obfuscate the binary code of a program. It is typically used to protect the

executable from reverse-engineering. As of 2016, malware writers also use actively-studied

packers for obfuscation [29, 132]. Packed malware is more difficult for security researchers

83

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

Table 4.6: Running packed Notepad.exe under different environments.
Packing Tool MalT OllyDbg DynamoRIO VMware Fusion

UPX v3.08 X X X X
Obsidium v1.4 X 7 (access violation) 7 (segfault) X
ASPack v2.29 X X X X
Armadillo v2.01 X 7 (access violation) 7 (crash) 7(crash)
Themida v2.2.3.0 X 7 (exception) 7 (exception) 7(no VM)
RLPack v1.21 X X X X
PELock v1.0694 X 7 7 (segfault) X
VMProtect v2.13.5 X 7 X 7 (crash)
eXPressor v1.8.0.1 X 7 7 (segfault) 7 (crash)
PECompact v3.02.2 X 7 (access violation) X X

to reverse-engineer than binary code. In addition, many packers contain anti-debugging

and anti-VM features (see Table 1.1 from Chapter 1, further increasing the challenge of

reverse-engineering packed malware).

To demonstrate the transparency of MalT, we use popular packing tools to pack the

Notepad.exe application in a Windows environment and run this packed application in

MalT with near return stepping mode. We also compare against OllyDbg [244] v1.10,

DynamoRIO [84] v4.2.0-3, and a Windows XP SP3 guest in VMware Fusion [221] v6.0.2.

Ten packing tools are used, including UPX v3.08 [6], Obsidium v1.4 [3], ASPack v2.29 [1],

Armadillo v2.01 [239], Themida v2.2.3.0 [169], RLPack v1.21 [192], PELock v1.0694 [4],

VMProtect v2.13.5 [7], eXPressor v1.8.0.1 [54], and PECompact v3.02.2 [38]. All these pack-

ing tools were run with anti-debugging and anti-VM functions where appropriate. Running

the packed Notepad.exe successfully executes if the Notepad window appears after unpack-

ing. Table 4.6 lists the results. All the packing tools except UPX, ASPack, and RLPack

can detect OllyDbg. Obsidium, Armadillo, Themida, PELock, and eXPressor are able to

detect DynamoRIO, and the VM can be detected by Armadillo, Themida, VMProtect, and

eXpressor. In contrast, MalT remains transparent to all these packing tools as we ex-

pected.

84

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

4.5 Transparency Analysis

In this section, we consider the transparency from four perspectives: 1) virtualization, (2)

emulation, (3) SMM, and (4) debuggers.

Virtualization: Transparent virtualization is difficult to achieve. For instance, Red Pill [193]

uses an unprivileged instruction, SIDT, to read the interrupt descriptor (IDT) register to de-

termine the presence of a virtual machine. To work on multi-processor systems, Red Pill

needs to use the SetThreadAffinityMask() Windows API call to limit thread execution to

one processor [186]. nEther [10] detects hardware virtualization using CPU design defects.

Furthermore, there are many footprints introduced by virtualization such as well-known

strings in memory [57], magic I/O ports [139], and invalid instruction behaviors [24]. More-

over, Garfinkel et al. [102] argued that building a transparent virtual machine is impracti-

cal.

Emulation: Researchers have used emulation to analyze malware. QEMU simulates all the

hardware devices, including the CPU, and malware runs atop the emulated software. Because

of the emulated environment (i.e., functional artifacts), malware can detect it. For example,

accessing a reserved or unimplemented MSR causes a general protection exception, but

QEMU does not raise an exception [188]. The underlying problem is that the emulator was

not designed specifically for transparent malware analysis (e.g., the emulator architect may

not implement CPU errata). Table 1.1 in Chapter 1 shows more anti-emulation techniques.

In theory, these defects could be fixed, but it is impractical to patch all of them in a timely

manner.

SMM: As explained in Section 2.2 of Chapter 2, SMM is a hardware feature existing in

all x86 machines. Regarding its transparency, the Intel manual [127] specifies the following

mechanisms that make SMM transparent to application programs and operating systems: 1)

the only way to enter SMM is by means of an SMI, 2) the processor executes SMM code in

85

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

a separate address space (SMRAM) that is inaccessible from the other operating modes; 3)

upon entering SMM, the processor saves the context of the interrupted program or task; 4) all

interrupts normally handled by the operating system are disabled upon entry into SMM; and

5) the RSM instruction can be executed only in SMM. Note that SMM effectively steals CPU

time from the Code Under Test, which introduces a potentially-measurable timing artifact.

Even so, SMM is still more functionally transparent than virtualization and emulation.

Debuggers: An array of debuggers have been proposed for transparent debugging. These

include in-guest [126, 219], emulation-based [15, 203], and virtualization-based [70, 71] ap-

proaches. MalT is an SMM-based system. As for transparency, we only consider the arti-

facts introduced by debuggers themselves, not the environments (e.g., hypervisor or SMM).

Ether [71] proposes five formal requirements for achieving transparency, including 1) high

privilege, 2) no non-privileged side effects, 3) identical basic instruction execution semantics,

4) transparent exception handling, and 5) identical measurement of time. MalT satisfies

the first requirement by running the analysis code in SMM with ring -2. We enumerate all

the artifacts introduced by MalT in Section 4.5.1 and attempt to meet the second require-

ment in our system. Since MalT runs on the bare metal, it immediately meets the third

and fourth requirements. Lastly, MalT partially satisfies the fifth requirement by adjusting

the local timers in the SMI handler to reduce the prevalence of timing artifacts. We further

discuss the timing artifacts below.

4.5.1 Artifacts Introduced by MalT

MalT transparently analyzes malware with minimal functional artifacts. In this section, we

enumerate artifacts introduced by MalT and show how we mitigate them. Note that achiev-

ing the highest level of transparency requires MalT to run in single-stepping mode.

CPU: We implement MalT in SMM, which provides an isolated environment for executing

code. After recognizing the SMI assertion, the processor saves almost the entirety of its

86

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

state to SMRAM. As previously discussed, we rely on the performance monitoring registers

and the LAPIC to generate SMIs. Although these registers are inaccessible from user-level

malware, attackers with ring 0 privilege can read and modify them. LAPIC registers in

the CPU are memory-mapped.5 In MalT, we relocate LAPIC registers to another physical

address by modifying the value in the 24-bit base address field of the IA32_APIC_BASE

Model Specific Register (MSR) [127]. To find the LAPIC registers, attackers would need to

read IA32_APIC_BASE MSR first, which we can intercept. Performance monitoring registers

are also MSRs. RDMSR, RDPMC, and WRMSR are the only instructions that can access the

performance counters [12] or MSRs. To mitigate the artifacts exposed from these MSRs, we

run MalT in the per-instruction mode and adjust the return values seen by these instructions

before resuming Protected Mode. If we find a WRMSR attempting to modify the performance

counters, the debugger client on the RS is notified.

Memory and Cache: MalT uses an isolated memory region (SMRAM) from normal mem-

ory in Protected Mode. Any access to this memory in other CPU modes will be redirected to

VGA memory. Note that this memory redirection occurs in all x86 machines, even without

MalT; this is not unique to our system. In 2009, Intel introduced System Management

Range Registers (SMRR) [127] that limits cache references of addresses in SMRAM to code

running in SMM to address cache poisoning attacks [236]. The AMD64 architecture does

not have SMRR, but the processor internally keeps track of SMRAM and system memory

accesses separately and properly handles situations where aliasing occurs (i.e., main-memory

locations as aliases for SMRAM locations) [13]. MalT does not flush the cache when enter-

ing and exiting SMM to avoid cache-based side-channel detection.

I/O Configurations and BIOS: MalT reroutes a serial interrupt to generate an SMI

to initialize an analysis session, and the modified redirection table entry in the I/O APIC

can be read by malware with ring 0 privilege. We revert the redirection table entry to its

original value to remove this functional artifact in the first SMI handler. Once SMM has

5LAPIC memory-mapper registered reside at base address 0xFEE00000.

87

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

control of the system, the SMIs are triggered by configuring performance counters. MalT

uses Coreboot to program the SMM code. An attacker with ring 0 privilege can checksum

the BIOS to detect the presence of our system. We flash the BIOS with the original image

before executing the Code Under Test to address this functional artifact. At that time, the

SMI handler, including the MalT code, has been loaded into SMRAM and locked. Note

that we also need to reflash the Coreboot image for the next system restart.

Timing: There are many timers and counters on the motherboard and chipsets, such as

the Real Time Clock (RTC), the Programmable Interval Timer (8253/8254 chip), the High

Precision Event Timer (HPET), the ACPI Power Management Timer, the APIC Timer, and

the Time Stamp Counter (TSC). Malware can read a timer and calculate its running time.

For configurable timers, we record their values after switching into SMM. When SMM exits,

we set the values back using the recorded values minus the SMM switching time. Thus,

malware is unaware of the time spent in the SMI handler using interally-present timers.

However, some of the timers and counters cannot be changed even in SMM. To address this

problem, we adjust the return values of these timers in the instruction-level stepping mode.

For example, the RDTSC instruction reads the TSC register and writes the value to the EAX

and EDX registers. While debugging, we check if the current instruction is RDTSC, and adjust

the values of EAX and EDX before leaving the SMI handler. This approach provides the

illusion that the SMI handler is not consuming CPU time based on cycle count alone.

Unfortunately, MalT cannot eliminate timing artifacts involving an external timer. For

instance, malware can send a packet to a remote server to get correct timing information

(e.g., Network Time Protocol (NTP) service). One potential solution to address this type

of timing artifact is to intercept the instruction that reaches out for timing information and

prepare a fake time for the OS. Naturally, this would not be foolproof as an attacker could

retrieve an encrypted time from a remote location. Such artifact are difficult to eliminate

because we cannot always know when a particular packet contains timing information. To

88

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

the best of our knowledge, all existing debugging systems with any measurable performance

slowdown suffer from this attack. We believe that malware will avoid using external timing

artifacts precisely because it wants to minimize its footprint on the victim’s computer. If

a malware sample uses an external timing artifact, we could consider using an alternative

approach such as LO-PHI (see Chapter 3).

4.5.2 Analysis of Anti-debugging, -VM, and -emulation Techniques

To analyze the transparency of the MalT component, we employ anti-debugging, anti-

virtualization and anti-emulation techniques from established work [24, 57, 88, 186, 188] to

verify this component. Since MalT runs on a bare metal system, these anti-virtualization

techniques fail to work in this component. Additionally, MalT does not change any code

nor does it affect the running environment, operating system, or applications so that normal

anti-debugging techniques cannot work against it. For example, the debug flag in the PEB

structure on Windows will not be set while MalT is running. Table 1.1 in Chapter 1 summa-

rizes popular anti-debugging, anti-virtualization, and anti-emulation techniques. Through

rigorous experimentation, we have verified that MalT can evade all these detection tech-

niques.

4.5.3 Concluding Remarks on the Transparency of MalT

Our experimentation has demonstrated that MalT provides a transparent malware analysis

tool that introduces few functional artifacts while introducing timing artifacts. In this sec-

tion, we discuss potential future issues that may arise with MalT as a result of the ongoing

cat-and-mouse-game in security research.

Functions and Code Added by MalT: Sections 4.5.2 and 4.4.1 show that existing anti-

debugging, anti-VM, anti-emulation, and packing techniques cannot detect the presence of

89

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

MalT. This is because the current techniques do not target MalT’s functions or code,

so it is possible that future malware could detect MalT due to the ever-present cat-and-

mouse-game between attackers and defenders. As for ‘tomorrow’s malware,’ we enumerate

and mitigate the artifacts introduced by MalT in Section 4.5.1. Note that mitigating all

artifacts requires the high fidelity associated with single-stepping instructions. As with other

debugging systems, MalT cannot eliminate external timing artifacts.

Running Environment Used by MalT: MalT is built on SMM, so its transparency

depends on the implications of SMM usage. Since SMM is not intended for debugging, the

hardware and software on the system may not expect this usage, which may introduce ar-

tifacts for attackers to detect MalT (e.g., performance slowdown and frequent switching

to and from SMM). However, we believe using SMM is more transparent than using virtu-

alization or emulation as done in previous approaches due to its minimal TCB and attack

surface.

4.6 Concluding Remarks for MalT

In this Chapter, we presented MalT, a functionally transparent malware analysis com-

ponent. We used a custom SMI handler in SMM to achieve per-instruction introspection

granularity. In addition, MalT can transparently reimage a SUT’s disk to a clean state to

ensure safe malware analysis. MalT introduces a 12µs timing cost each time we execute

our SMI handler code, resulting in slowdowns from 1.5x to 1519x on indicative workloads in

Windows and Linux environments. We evaluated MalT against several packers equipped

with anti-analysis techniques, and demonstrated that it is transparent to such behavior where

existing state-of-the-art tools fail. In brief, MalT is an integral component in our stealthy

malware analysis tool.

This Chapter and Chapter 3 discuss two alternatives to hardware-assisted introspection

90

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

supporting the analysis of stealthy malware. Chapter 3 presented LO-PHI, a technique

that incurs low timing artifacts but potentially misses transient malicious behavior and

introduces functional artifacts. In this Chapter, we presented an alternative that achieves

low functional artifacts while introducing timing artifacts. In the next Chapter, we discuss

the tradeoff space that exists between maintaining transparency while sacrificing fidelity of

introspection data.

91

CHAPTER 4. HARDWARE ASSISTED SYSTEM INTROSPECTION VIA SYSTEM
MANAGEMENT MODE

92

假痴不癫。

Feign madness but keep your balance.

The Thirty-Six Strategems

5
Tradeoffs Between Transparency and Fidelity

Chapters 3 and 4 discussed two hardware-assisted approaches for transparently introspecting

a physical system in support of analyzing stealthy malware. LO-PHI (Chapter 3) used a

custom FPGA to rapidly acquire snapshots of SUT memory by spoofing DMA packets over

the PCI Express bus, while MalT (Chapter 4) used SMM to instrument a physical SUT

on a per-instruction basis. Each approach comes with its own benefits and drawbacks with

respect to transparency. In particular, LO-PHI can acquire snapshots of memory every 3200

PCI Express bus cycles (see Chapter 3). As a result, some transient malicious behavior may

be missed by LO-PHI if it completes within this 3200 cycle window. In brief, maintaining

93

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

transparency comes at the cost of the fidelity of introspection data. In this Chapter, we

discuss an approach to exploring this transparency-fidelity tradeoff space.

5.1 Approach

We present Hops, an approach for hardware-supported low-overhead asynchronous debug-

ging and analysis. Hops is a technique that iteratively inspects snapshots of physical memory

(recorded asynchronously via LO-PHI from Chapter 3 and MalT from Chapter 4) and re-

covers semantic information. Using a combination of operating systems and programming

languages techniques, we locate local, global, and stack-allocated variables and their values.

In addition, we determine the current call stack. Because we may operate on COTS opti-

mized code and only assume access to memory (e.g., and not the CPU), our approach may

not be able to report the values of some variables (such as those stored in registers) or some

stack frames (such as those associated with inlined functions). Additionally, the limited rate

at which we may poll for memory may impact availability of correct variable or stack trace

information. This approach provides a rich set of information for common security analysis

tasks in practice, which serves as the basis for determining the extent to which transparency

can be preserved to achieve a certain degree of introspection fidelity.

We envision two use cases for this dissertation. First, in automated malware analysis and

triage systems, we want to analyze a large corpus of malware samples as quickly as possible.

Unfortunately, existing solutions to this problem depend on virtualization. For example,

the popular Anubis [15] framework, which analyzes binaries for malicious behavior, depends

on Xen to run its analysis. This dependency on virtualization allows stealthy or VM-aware

malware to subvert the triage system (see Table 1.1 for a list of techniques stealthy malware

can use to subvert analysis).

In contrast, we assume the presence of low-overhead sampling hardware (i.e., LO-PHI from

94

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Chapter 3) that enables fast access to a host’s memory. This dissertation, therefore, is

charged with introspecting the process while it is running in the triage system. For such a

triage system, we want to understand the SUT’s behavior in part by reasoning about the

values of variables and producing a dynamic stack trace during execution. For example,

the system might inspect control variables and function calls to determine how a stealthy

malware sample detects virtualization, or might inspect snapshots of critical but short-lived

buffers for in-memory cryptographic keys. In this use case, the primary metric of concern is

accuracy with respect to variable values and stack trace information.

Additionally, this use case may reduce the manual effort involved in reverse engineering state-

of-the-art stealthy malware samples. This dissertation enables debugging-like capabilities

that are transparent to the sample being analyzed. This power allows analysts to save time

when reverse engineering the anti-VM and anti-debugging features employed by current

malware so that they can focus on understanding the payload’s behavior.

The second use case is for deployments of benign code that may contain vulnerabilities

that could be exploited by a stealthy adversary. In this case, we have vulnerable software

running and, if an exploit occurs, we want to know what memory locations are implicated in

the exploit. Here, we have a limited amount of time between when malicious data is placed

into program memory and when malicious behavior begins(1this is a relaxation of the Threat

Model in Section 1.6 for the sake of experimentation). Thus, we want to study which buffers

may be implicated by malicious exploits in COTS software. In this use case, an additional

metric is the relationship between the speed and accuracy of our asynchronous debugging

approach: for example, we may require that accurate information about potentially-malicious

data be available quickly enough to admit classification by an anomaly intrusion detection

system [122,137,149].

In both use cases, we begin with a binary that we want to study. If the source code to

1Careto [136] is an example of malware that cleans up buffers during execution—without high-fidelity
introspection data, we may miss observing this transient malicious behavior.

95

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

this binary is available (as is likely in the second use case but unlikely in the first), we take

advantage of it to formulate hypotheses about variable locations. In any case, we desire to

find and report 1) variables of interest in program memory, and 2) a dynamic stack trace of

activation records to help understand the semantics of the program.

We assume that we have a binary compiled with unknown optimizations or flags (the deployed

binary). For the purpose of experimentation, we also assume access to the source code for the

binary to gather ground truth by compiling the binary with detailed variable and function

call information (called the instrumented binary). This ground truth information is meant

to simulate what an analyst would produce if given enough time to manually annotate a

stripped binary. We compile the instrumented binary with symbol information to formulate

the runtime memory locations of global and local variables and formal parameters. We then

use this information as a guide for finding the same variables in the deployed binary. For

instance, if global a is stored at offset x from the data segment in the instrumented binary,

then a should be near x in the deployed binary.

We also assume the binary makes use of a standard stack-based calling convention (i.e.,

continuation passing style [16] is out of scope). Thus, we can reconstruct a stack trace by

finding the stack in our memory snapshots and looking for the return address. We can

then map the return address to the nearest enclosing entry point in the code segment using

the symbol table generated in our test binary. Because the hardware assisted introspection

components are based on polling for memory, reconstructing the stack trace in this manner

could fail. If we do not poll frequently enough, we may miss activations altogether (e.g., if a

function is called and quickly returns before we can poll). Figure 5.1 explains this tradeoff

visually.

Hops provides transparent introspection capabilities by asynchronously acquiring snapshots

of program memory at runtime. Given such snapshots, we bridge the semantic gap (i.e., re-

construct important program data), converting from operating system information to process

96

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Example Dynamic Stack Trace

S
ta
ck

T
ra
ce

Time t (cycles)

main main

foo

main

foo

bar

main

foo

main

foo

qux

main

foo

main

10 20 30 40 50 60 70

(a) Example ground truth dynamic stack trace. The dynamic stack trace is a time series of static call
stacks showing which functions are called over time in the program.

Example Observed Stack Trace

S
ta
ck

T
ra
ce

Time t (cycles)

main main

foo

main

foo

main

foo

bar

main

foo

main

10 15 20 30 60 70

(b) This example set of stack trace observations demonstrates the tradeoffs between accuracy and
transparency. Sampling too frequently may require additional resources or introduce artifacts without
yielding additional information (e.g., sampling at t = 15 and t = 20). Conversely, sampling too coarsely
may cause miss function calls (e.g., between t = 30 and t = 60).

Figure 5.1: Visual representation of (a) an idealized stack trace and (b) a stack trace gener-
ated by this component.

97

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

address spaces to variables, buffers, and stack frames of interest to the analyst. We build our

transparent program introspection framework atop the hardware-assisted introspection tools

discussed in Chapters 3 and 4. With the advent of commodity hardware and virtual machine

techniques capable of quickly reading system memory as of 2016, we believe a transparent

program introspection framework is now possible. In brieft, Hops is a lightweight, native,

accurate, asynchronous introspection technique that usefully supports analysis tasks. We

use Hops to investigate the tradeoffs between transparency and introspection fidelity.

We consider the transparency of our system and the artifacts it might produce, with a

particular focus on timing artifacts. We measure the accuracy of our system’s variable value

and stack trace information against ground truth. Finally, we conduct a human study of

30 participants to evaluate our system’s ability to support standard debugging tasks, as

well as an expert case study to evaluate our system’s ability to support a malware reverse

engineering task. We find that Hops is generally accurate for variable values and stack

traces, is able to support conventional maintenance tasks as well as gdb can, and supports

domain-specific reverse engineering tasks. In addition, because we build atop low-overhead

approaches from Chapters 3 and 4, Hops can be used in systems where traditional debuggers

cannot apply.

5.2 Approach

5.2.1 Input Assumptions

We describe the assumptions of our approach that delineate its applicability.

98

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Assembly Code

We assume access to the assembly code of the target executable, but not knowledge of the

exact assembler or compiler flags or options used to produce that executable. For example,

we may know that the target machine is running a particular version of the Apache HTTP

Server, but not whether the deployed version was compiled with “–O2” or “–O3”. We can

make use of the source code, when applicable.

Memory Snapshots

Most critically, we assume access to periodic samples or snapshots of physical memory. Such

snapshots could be provided via hardware-based approaches as discussed in Chapters 3 and 4.

(e.g., [37, 51, 59, 211, 243]), or through VMI. In Section 5.4, we evaluate our approach using

both LO-PHI and MalT techniques to gather memory snapshots.

We focus on LO-PHI (described in Chapter 3) as the ideal candidate for memory introspec-

tion because of its promising throughput rates. The rate at which we can obtain snapshots

is limited theoretically by peak PCI Express transfer speeds (i.e., to 15.754GB/s, or roughly

to 3.85 million page samples per second). In practice, however, most implementations can

expect to achieve an effective transfer rate of 250MB/s per PCI lane, or 4GB/s total using

16 lanes [14]. This equates to 1.05 million page samples per second, or roughly 3200 cycles

per page acquisition on our experimental platform (see Section 5.4).

Alternatively, we can acquire snapshots via SMM on x86 machines using MalT (Chapter 4).

SMM remains available on extant x86 systems as of 2016, admitting broad applicability.

Using SMM allows the capture of individual pages of memory at a time, albeit with high

overhead (roughly 12µs to capture a page of memory).

In either case, we seek to reconstruct useful semantic information from these acquired snap-

shots, and subsequently evaluate the tradeoff between transparency and fidelity of semantic

99

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Semantics

Userspace

Kernel

Hardware

System Under Test (SUT)

Variables Function Calls

Code Under Test

OS Introspection

PCIe and/or SMM
Memory Acquisition

Remote System (RS)

Use cases

Read Variables

Read Stack Trace

Assumed component – Hardware-assisted memory acquisition (PCIe, SMM)

Hops component – Transparent program introspection

Figure 5.2: Architecture of the Hops system. We assume access to hardware (discussed in
Chapters 3 and 4) that can transparently acquire snapshots of system memory from the SUT.
Combined with OS introspection techniques [20,249] to find the program being tested (Code
Under Test), we use these snapshots to reason about variable and stack trace information in
the Code Under Test on the RS.

information.

Normal Systems

We do not consider any modification to the target machine or the target executable beyond

the hardware required to log memory snapshots. That is, one plug-in PCI device for LO-PHI

or an unchanged x86 processor for SMM via MalT. In particular, we do not replace, patch,

or otherwise change the target executable or the OS on the SUT.

5.2.2 Architecture

Our approach follows a pipelined architecture in which raw snapshots of physical memory are

passed through a number of analyses, each of which refines or approximates the information

available. The raw snapshots are collected at regular intervals. We focus on reporting the

values of variables (local, global, or stack-allocated) as well as determining the dynamic stack

100

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

trace. Figure 5.2 illustrates the approach. We start with raw snapshots and combine existing

OS introspection techniques (e.g., Spectre [249], Volatility [20]) to reason about variable

and stack trace information in a particular program being tested (denoted Code Under Test

in the figure).

5.2.3 Physical Memory Snapshots

First, we direct the memory snapshot hardware (see Chapters 3 and 4) to log physical pages

related to the target executable. This is a matter of bridging the semantic gap between

raw bit patterns and logical program data and code. This is done by inspecting in-kernel

data structures in physical memory to find the virtual address space mapping for the target

process. From the virtual address space mapping, we can obtain a sequence of physical

pages that correspond to the process’s virtual address space. In addition, from in-kernel

data structures, such as the process control block, we note the memory ranges associated

with the stack segment, data segment, and code segment. Interpretation of relevant kernel

data structures is well-described in the semantic gap literature [97,129,150,175,249]. Hops

can use any such black-box analysis to bridge the semantic gap.

5.2.4 Reporting Variables

Given a correctly-ordered snapshot of a process’s virtual address space as well as the locations

of the various segments, our analysis proceeds by enumerating hypotheses about the locations

of variables. These hypotheses are heuristically ordered by decreasing level of confidence.

We start with the standard techniques used by debuggers.

For global variables, we use information from the symbol table (e.g., PE in memory for Win-

dows executables, ELF for Linux). For locals, we focus on variables that were stack allocated

(by the writer of the assembly code or by the compiler). We use debugging information when

101

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Instrumented Binary
P
ro
gr
am

M
em

or
y

Globals

Locals

High addr

Low addr

← x = start of globals

← y = frame pointer

← Var a

← Var b

addr(a)− x = k1

Deployed Binary

Globals’

Locals’

start of globals →

frame pointer →

Var a→

Var b→
addr(b)− y = k2

Figure 5.3: We hypothesize for some binaries that two variables exist at the same offsets
between two different compiled version. In both versions, we hypothesize that a variable a
exists at the same offset from the start of the globals (x in the figure). Similarly, we also
hypothesize that stack allocated variables (b) exist at a fixed offset from the frame pointer
(y).

available.

Some variables do not admit localization in this manner (e.g., variables that are stored in

registers at certain optimization levels). In such cases, our second hypothesis is based on

the relative location of the those variables in an instrumented binary on a test machine.

Recall that we do not assume knowledge of the exact assembler, linker or compiler flags

used to produce the target executable. Thus, we track the relative locations of variables and

hypothesize that those offsets will be the same for the target executable. This hypothesis

does not always hold, but it allows us to recover information for additional variables in

practice. Figure 5.3 explains this hypothesis visually.

5.2.5 Reporting Stack Traces

In addition to the values of particular local and global variables, we also produce snapshots

of the stack trace and the values of variables in caller contexts. We consider a number of

standard calling conventions (e.g., stdcall, cdecl, fastcall) and attempt to locate the

chain of activation records on the stack following standard debugger techniques [244]. For

example, the name of the calling function is determined by finding the return address on

102

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

the stack and mapping it to the nearest enclosing entry point in the code segment via the

symbol table.

We also consider samples for which there is no source available. We can operate on labeled

disassembly, as produced by IDA Pro or a similar tool. In such cases, synthetic label names

or unique heuristic names are used [126] (e.g., “printf-like function #2” may label a function

that behaves like the printf function). While walking the stack, we gather hypotheses about

the locations and values of stack-allocated variables (such as the actual arguments or locals

in-scope in parent contexts), as above.

Figures 5.1a and 5.1b illustrate our notion of a dynamic stack trace and the potential tradeoffs

between transparency and introspection accuracy. We refer to the sequence of activation

records (i.e., stack frames) present at a particular point in a program’s execution as a static

call stack. A dynamic stack trace of a program is a time series of static call stacks. Ideally,

a dynamic stack trace includes a new static stack frame every time the code under test

calls or returns from a procedure. Recording the static call stack after every instruction

would observe every call and return, but would likely be resource- and timing-intensive

and introduce anti-analysis artifacts (cf. 1500x overhead with MalT single-stepping in

Section 4.3.3), Conversely, recording too few static call stacks results in a dynamic stack

trace that may miss important behavior (cf. missing transient behavior in Section 3.4).

5.2.6 Output

One basic output of our technique is a dynamic stack trace: A sequence of static call stacks,

one call stack per snapshot of physical memory. Each call stack lists the name of each called

function and the values of its actual arguments. In addition, the analyst can request to

inspect the value of a particular local, global, or stack-allocated variable. Both call stack

reports and variable value inspections are asynchronous, as in MalT (Chapter 4).

103

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Note that any presented information may be incorrect. For example, no information may be

available about variables optimized away by the compiler or stored in registers. However, we

hypothesize that optimized-away variables are not implicated in standard maintenance or

security use-cases. For example, if the variable x is optimized away after x=4;, a developer

with access to the source code may be able to reason about conditions involving x even if

Hops cannot report its value. In security settings, if a variable in the source is optimized

away and not present in the deployed code, it is unlikely that that variable could be used

maliciously. Alternatively, we may miss variables due to the limited polling nature of our

approach—for example, if we can only poll every 3200 cycles for a page of memory, we may

miss changes to variable values within a 3200-cycle window.

Similarly, a hand-crafted leaf function that uses a non-standard calling convention (e.g.,

a custom hybrid of callee-saves and caller-saves for registers without pushing the return

address) may not show up on a heuristic stack trace. However, such behavior is not commonly

observed in general software systems (e.g., it is not easy to express in standard C), and in

particular is not common in malware in the wild: stack and heap overflow, heap spray,

and return-oriented programming (ROP [183]) and jump-oriented programming (JOP [39])

attacks depend on the traditional stack model for both Linux and Windows platforms.

5.3 Use Cases and Protocols

In this section, we describe intended use cases for Hops that set the stage for restrictions

about the environment used by our technique. We describe the general implementation of

the algorithm and protocol used to conduct our human study. Experiment-specific details

are described in Section 5.4.

In both use cases, we begin with a binary that we want to study. If the source code to

this binary is available (as is likely in the second and second cases but unlikely in the first),

104

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

we take advantage of it to formulate additional hypotheses about variable locations (see

Section 5.2.4). In all cases, we desire to find and report 1) variables of interest in program

memory, and 2) a dynamic stack trace of activation records to help understand the semantics

of the program, then use this information to evaluate the tradeoffs between transparency

and fidelity of the reconstructed semantic data.

5.3.1 Security Analysis of Malicious Binaries

In automated malware triage systems, we desire to analyze a large corpus of malware samples

as quickly as possible. Unfortunately, existing solutions to this problem depend on virtu-

alization. For example, the common Anubis [15] framework, which analyzes binaries for

malicious behavior, depends on Xen for virtualization, which allows stealthy or VM-aware

malware to subvert the triage system. In contrast, our system assumes the presence of low-

overhead sampling hardware that enables fast access to a host’s memory. Our algorithm

is thus charged with introspecting the malware process when running in the triage system.

In such a triage system, we want to understand a sample’s behavior in part by knowing

the values of variables and producing a dynamic stack trace as the sample executes. For

example, the system might inspect control variables and function calls to determine how the

malware sample detects virtualization or might inspect snapshots of critical but short-lived

buffers for in-memory keys. In this use case, the primary metric of concern is the fraction

of critical malware aspects (e.g., artifacts used to evade analysis) an analyst can identify

while supported by information from Hops. A secondary metric is accuracy with respect to

variable values and stack trace information.

Similarly, we envision an extension of this use case for reducing the manual effort in-

volved in reverse engineering state-of-the-art stealthy malware samples. Our system enables

debugging-like capabilities that are transparent to the sample being analyzed. This power

allows analysts to save time reverse engineering the anti-VM and anti-debugging features

105

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

employed by current malware so that they can focus on understanding the payload’s behav-

ior.

5.3.2 Maintenance and Security Analysis of Benign Binaries

In addition to analyzing stealthy malware, Hops supports the analysis and maintenance

of non-malicious software by providing information about variable values and stack traces.

In particular, for benign software that may have vulnerabilities, we are interested in un-

derstanding how a hypothetical attacker compromises such software. We consider standard

maintenance tasks such as fault localization, refactoring, or debugging that would normally

be supported by a tool such as gdb. In this use case, the source code is likely to be available,

but heisenbugs, timing dependencies, or similar issues still require the use of a transparent

analysis technique. The primary metric is the fraction of maintenance questions the analyst

is able to answer correctly when supported by information from Hops. Secondary met-

rics include Hops’s accuracy when reporting variable values and stack traces, and Hops’s

transparency.

5.3.3 Human Study Protocol

The goal of our human study is to measure how well humans can perform debugging and

maintenance tasks when supported by Hops—exploring our first use case, the maintenance

analysis of benign programs. Simply put, we presented each participant with a snippet of

code and the output from either Hops or gdb. We then measured participant accuracy

on maintenance questions regarding that snippet. Multiple snippets were shown to each

participant in a survey.

Participants were presented instructions for completing the survey, as well as example ques-

tions and possible answers. This instructive introduction helps address mistakes attributed

106

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

to confusion or training effects. Each snippet was shown with corresponding output from a

debugging tool—either from Hops or gdb—randomly selected for each participant on each

question. Additionally, each snippet was shown with a corresponding question meant to

test understanding of the snippet during execution. Participants were asked to answer the

question in free form text. Finally, participants were presented with an exit survey ask-

ing for personal opinions on the debugging tools and experience. This study falls under

IRB#2013-0466-00, which covers human assessments of artifacts and activities associated

with debugging and maintenance. We describe participant selection, snippet selection, and

question selection in detail.

Participant Selection

We required participants that have at least novice software development skills. We solicited

responses from 24 third- and fourth-year undergraduate students enrolled in a computer

security course and 6 graduate students. Participants were kept anonymous and were offered

a chance to win one of two $50 Amazon gift cards or class extra credit (via randomized

completion codes). We removed participants from consideration if they scored more than

one standard deviation below the average score or if they failed to provide responses to all

questions. We imposed this restriction due to the difficulty of controlling for C development

and debugging experience. Participants were made aware of these requirements and that

their potential reward depended on it.

Snippet Selection

The goal of the human study was to simulate debugging or maintenance in a controlled

environment. We selected snippets of code from the two open source projects, nullhttpd

0.5.0 (1861 LOC) and wu-ftpd 2.6.0 (29,167 LOC). To create a snippet, we first randomly

selected a function defined in the source code of each project. Only functions that were

107

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

at least 10 lines long and were reachable by one of our test cases were considered [48, 96].

Similarly, functions longer than 100 lines were truncated to their first 100 lines. We then

chose a random reachable point within that function.

The snippet thus consisted of that function, with the particular reachable point visibly

marked as a breakpoint—as if the participant had placed a breakpoint on that line in a

debugger and run the program until the breakpoint was reached and execution paused. As

every snippet corresponded to a point in the test suite, debugging information was obtained

by running the program on the test suite and invoking gdb or Hops at that point. Ultimately,

23 snippets were created. Snippet counts and size limits were selected to ensure a reasonable

completion time by the participants.

Software Maintenance Questions

This study measured how the information provided by our technique aids a developer when

reasoning about code. We required participants to answer questions that are indicative of

debugging activities that developers might ask during the maintenance process. Sillito et

al. [200] identify several different types of questions real developers ask during maintenance

tasks. Following previous human study protocols involving software maintenance [96], we

used these three human study questions (HSQ):

HSQ1 What conditions must hold true to reach line X during execution?

HSQ2 What is the value of variable “y” on line X?

HSQ3 At line X, which variables are in scope?

Many questions discussed by Sillito et al. were general in nature and would not have been

applicable for gauging participants’ understanding of the snippets used in the study (e.g.,

one question reads “Does this type have any siblings in the type hierarchy?”, which is not

applicable to our subject C programs). Questions were randomly assigned to each snip-

108

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

pet.

5.4 Experimental Evaluation of Hops

We consider four primary research questions (RQ) when evaluating Hops.

RQ1. On average, what fraction of local, global, and stack-allocated variable values can our

system correctly report under multiple hardware regimes?

RQ2. How accurately can our system correctly report dynamic stack traces as a function of

the asynchronous sampling rate of memory snapshots?

RQ3. Is the information provided useful for reasoning about debugging tasks compared to

the state of the art?

RQ4. Could the information provided by our system help analysts reason about stealthy

malware?

At any given point in time, some subset of the target program’s variables are available. For

RQ1, we measured success at each time step in terms of the fraction of those variables for

which our technique reports the correct value (w.r.t. ground truth). Similarly, at any given

point in time during execution, there is a particular stack of activation records. We further

evaluated the performance of our technique when implemented atop both LO-PHI (Chap-

ter 3) and MalT (Chapter 4) to establish our approach’s feasibility on current hardware.

For RQ2, we introduce a metric that requires functions to be reported and correctly ordered

(w.r.t. ground truth). We then evaluated Hops in terms of this metric as a function of the

sampling rate (i.e., how often asynchronous memory snapshots are made available). For RQ3,

we conducted a human study in which 30 participants answer debugging questions about

snippets of code using information from Hops and gdb. Finally, for RQ4, we considered a

case study involving a VM-aware program sample that checks a number of different artifacts

109

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Table 5.1: Description of test cases used in Hops experiments.
calls Description # calls Description

Test nullhttpd wu-ftpd

1 239 GET standard HTML page 407 Change directory
2 239 GET empty file 453 Get /etc/passwd, text
3 239 GET invalid file 457 Get /bin/dmesg, binary
4 240 GET binary data (image) 22 Attempt executing binary
5 245 GET directory 267 Login with invalid user
6 385 POST information 22 Exploit: format string [8]
7 180 Exploit: buffer overrun [9]

to detect analysis and report the fraction of those artifact queries that can be identified using

Hops.

5.4.1 Experimental Setup and Benchmarks

We evaluate Hops using two indicative security-critical systems, nullhttpd 0.5.0 and wu-ftpd

2.6.0, each of which has an associated security vulnerability and publicly-available exploit.

For nullhttpd, we consider a remote heap-based buffer overflow [9], while for wu-ftpd, we

consider a format string vulnerability [8]. In addition to these exploits, for each program we

consider non-malicious indicative test cases taken from previous research [147]. For example,

one of the web server test cases retrieves a webpage, while one of the FTP server test cases

logs in anonymously and transfers a file. Table 5.1 summarizes the test cases used in our

experiments. As in Section 5.3, when the source code is available, our approach uses it to

construct additional hypotheses about variable locations, but we do not assume that the

compiler flags used in the deployed executable are known or the same. In these experiments,

we simulate that disparity by gathering hypotheses from programs compiled with “–O2” but

evaluating against different binaries produced with “–O3”.

Evaluating RQ1 and RQ2 requires that we establish ground truth values of variables and

stack traces at every program point. For the purposes of evaluation only, we employ source-

110

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

level instrumentation [165] to gather these values. Because our approach is based on memory

snapshots and local, global, and stack-allocated variables, we instrument and evaluate at

all points where a variable enters or leaves scope or is placed on the stack, including all

function calls, function entry points, and loop heads. We also separately instrument for

timing information, using the Intel rdtsc instruction. Recording the timing information for

instrumentation points introduces a small overhead (2% on average on these benchmarks).

Note that any instrumentation overhead applies only to gathering ground truth information

for our experimental evaluation and is not part of our general approach. Moreover, because

we seek to analyze the tradeoffs associated with maintaining transparency and maximizing

fidelity of introspection data, the overhead incurred in this stage does not apply to general

transparent debugging tools.

We also note that, as with a standard debugger [126, 244], heap-allocated variables are

accessed in our system by traversing expressions that start with local or global variables

(“roots”). For example, after glob_ptr = malloc(...), if an analyst wishes to inspect

glob_ptr->x, the request is handled in four steps: 1) locate the (constant) address of

glob_ptr in the data segment; 2) read the (dynamic) value stored there from the memory

snapshot; 3) add the (constant) offset associated with x; and 4), read the (dynamic) value

stored there from the memory snapshot. Accuracy on heap-allocated variable expressions

thus reduces to accuracy on local, global, or stack-allocated variables.

In addition, for RQ4, we also consider Paranoid Fish (pafish, first introduced in Chapter 3)

v04, an open source program for Windows that uses a variety of common artifacts to deter-

mine the presence of a debugger or VM, printing out the results of each check. Evaluating

RQ4 requires that we know the ground truth set of artifacts that pafish considers to detect

analysis. We obtain this set by manual inspection of the pafish code and comments.

Software and LO-PHI experiments concerned with RQ1 and RQ2 were conducted on a

3.2GHz Intel Xeon X5672 machine with 48GB RAM. This system uses 64-bit Linux 3.2.

111

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

SMM-based experiments were conducted using 32-bit Linux 2.6 on a system with an AMD

Sempron CPU and 4GB RAM. In each case, we consider two versions of the same binary—

ultimately, this means the runtime locations of variables will change due to address ran-

domization. To facilitate experimental reproducibility and determinism, we disabled Ad-

dress Space Layout Randomization (ASLR). However, our architecture admits accounting

for ASLR by bridging the semantic gap in kernel memory to find the offset used for random-

ization.

For RQ4, we ran pafish on a 64-bit Windows 7 system with two Intel Xeon E5-2660 CPUs

at 2.2GHz and 48GB RAM.

5.4.2 RQ1 — Variable Value Introspection

We evaluate the accuracy of Hops with respectto asynchronous requests for variable values:

what fraction of variables will our technique accurately report, averaged over every variable

in scope at every function call, function entry, and loop head? To admit a more fine-grained

analysis of our technique, we partition the set of all in-scope program variables into local,

global, and stack-allocated. For this experiment, the set of local variables for a function

is all locally-declared variables including those in various nested local scopes, as allowed in

C. The set of global variables for a function is all global variables in scope at that function

(e.g., not including global variables declared after that function or static variables in other

modules). The set of stack-allocated variables of a function includes the function’s arguments

as well as the local and stack-allocated variables of all (transitive) callers of the function.

We do not consider variables that are optimized away by the compiler because variables

that are not present at run-time are unlikely to be implicated by exploits and may admit

maintenance reasoning via context clues (see Section 5.2 for a qualitative explanation, as

well as Section 5.4.4 for a quantitative justification). At each point, we query the value of

each variable using our system and report the result. The result is correct if it matches the

112

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Table 5.2: Variable introspection accuracy.
nullhttpd wu-ftpd

Software SMM PCI Software SMM PCI

Locals 43% 66% 41% 46% 48% 45%
Stack 65% 13% 58% 56% 31% 54%

Globals 100% 83% 96% 92% 93% 90%

Overall 69% 54% 65% 65% 57% 76%

ground truth: for strings, this takes the form of a string comparison while all other variables

(e.g., integers, pointers) are compared numerically.

Table 5.2 reports the results. The “Software” columns record our accuracy via software

simulation (rather than any special hardware). The “SMM” columns report our accuracy

using MalT via SMM. The “PCI” columns report our accuracy using LO-PHI via PCI

Express hardware.

For each program, the results are averaged over all test inputs (non-malicious indicative tests

and one malicious exploit) and all relevant points (all function calls, all function entries, all

loop heads). Specifically, these results help address the question, “if an analyst were to ask

at a random point to introspect the value of a random variable, what fraction of such queries

would our system be able to answer correctly?”

These results show 83–100% accuracy for global variables. This high introspection accuracy

is because many of these variables are available at a constant location described in the sub-

ject program’s symbol table. However, our approach still produces reasonable introspection

accuracy for local and stack-allocated variable queries. For these variables, the values are

not necessarily unavailable, but the hypotheses considered by our system do not account

for differences caused by dynamic allocation of structures (or, indeed, whether compiler op-

timizations change the structures or layout altogether). Conversely, some values are not

available to our technique based on its design assumptions (e.g., variables that live exclu-

sively in registers). Over the three snapshot-gathering techniques, Hops answered 54–76%

113

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

of variable introspection queries correctly. We consider what these accuracy results mean in

the context of supporting software maintenance questions in Section 5.4.4.

5.4.3 RQ2 — Stack Trace Introspection and Sampling Rate

For this research question we evaluated the portion of dynamic stack trace information that

our technique can accurately report given a memory snapshot every k cycles. We report a

single activation record as a tuple consisting of a function name and a list of actual argument

values. A single static stack trace (at a given point in time) is thus a sequence (stack) of

activation records.

We are ultimately interested in changes to the stack over time: a full dynamic stack trace is

a sequence of static stack traces (each one corresponding to a point in time). For simplicity

of presentation, we elide variable values (for which our accuracy is evaluated in RQ1) and

denote a dynamic stack trace as a sequence of tuples (t, s) where t is the time in cycles and

s the static call stack (e.g., f1 → f2 → f3) corresponding to the activation records live at

time t.

Our ground truth answer is equivalent to having a full memory snapshot available at every

cycle. That is, a ground truth dynamic stack trace corresponds to 100% of the function calls

that were invoked or returned from during that execution. For this experiment, we consider

function calls only in userspace (e.g., program functions like main and library functions like

printf are included, but actions taken by the kernel on behalf of system calls like write are

not).

The metric used for this experiment is the number of function calls missed in our output stack

trace that were present in the ground truth stack trace. For example, if the ground truth

sample contains 〈(1, f1), (2, f1 → f2), (3, f1 → f2 → f3)〉 and we sample at cycles 1, 3, 5, . . . ,

then our approach would report a stack trace missing the call to f2 at t = 2. Our metric

114

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Page 1

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100

Nullhttpd Call Stack Introspection Accuracy

T1 (Get Text)

T2 (Get Empty)

T3 (404 Error)

T4 (Get Image)

T5 (Get Dir List)

T6 (Post Form)

T7 (Exploit)

Cycles Between Memory Samples

Pe
rc

en
t

of
 C

al
ls

 R
ep

or
te

d
C

or
re

ct
ly

Figure 5.4: Call stack introspection accuracy for nullhttpd as a function of the number of
machine cycles between memory samples. The reference line at 3200 corresponds to current
hardware. On all tests sampling every 1200 cycles yields perfect accuracy.

counts the total number of such omissions. Because the stack trace length differs among

test cases and programs, we normalize this value to 100%. Thus, a stack trace identical

to the ground truth corresponds to an accuracy of 100%, while the example above, missing

program behavior at t = 2, has an accuracy of 66%. In other words, the final value we

report is f−m
f

, where m is the number of misses and f is the number of function calls in

the ground truth data. While other evaluation metrics are possible for dynamic stack traces

(e.g., edit distance [164], largest common subsequence [33]), we prefer this metric because it

is conservative and corresponds to our algorithmic framework (see Figure 5.1b).

Figure 5.4 reports the results for stack trace introspection for nullhttpd. As discussed in

Section 5.2, current LO-PHI hardware can read roughly 1 million pages per second or 1

page every 3200 cycles. Thus, current hardware approximately corresponds to 3200 cycles

between memory snapshots in these figures. Our introspection system loses accuracy when

functions execute faster than the chosen inter-sample cycle count. Each test case causes

115

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Page 1

0 4000 8000 12000 16000 20000 24000
0

10

20

30

40

50

60

70

80

90

100

Wuftpd Call Stack Introspection Accuracy

T1 (chdir)

T2 (get text)

T3 (get binary)

T4 (site exec)

T5 (bad login)

T6 (exploit)

Cycles Between Memory Samples

Pe
rc

en
t

of
 C

al
ls

 R
ep

or
te

d
C

or
re

ct
ly

Figure 5.5: Call stack introspection accuracy for wu-ftpd as a function of the number of
machine cycles between memory samples. The reference line at 3200 corresponds to current
hardware. On all tests sampling every 4800 cycles yields perfect accuracy.

a different execution path to be taken, thus explaining the difference in results between

test cases. For nullhttpd, we remain 100% accurate until the inter-sample cycle counter

reaches approximately 1800 cycles. After this point, the accuracy steadily declines until the

inter-sample cycle count exceeds the total execution time of the program—at that point,

the accuracy is 0%. Note that with the 3200 cycle sample rate, we observe a stack trace

accuracy over 50% for all test cases.

Figure 5.5 reports the accuracy for stack trace introspection for wu-ftpd. This program,

which contains longer-running procedures, admits perfect call stack introspection up to a

sampling interval of 4800. With available LO-PHI hardware, Hops would report 100% ac-

curate stack traces for all test cases. For such programs and workloads, a faster sampling rate

(i.e., a smaller inter-cycle rate) may allow for even greater introspection transparency.

116

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

5.4.4 RQ3 — Human Study

We conducted a human study to measure how helpful or informative Hops is to humans in

practice. The study involved 30 participants (24 undergraduate and 6 graduate students).

Each participant was shown 23 snippets of code and corresponding debugging output from

either Hops or gdb, and then asked a debugging question. Each question was randomly

selected from a pool of three questions (HSQ1–3 in Section 5.3.3). We measured the accuracy

of each participant on each question as well as the time taken to answer each question. We

calculate accuracy by manually grading each participant’s responses: each answer given by

each participant is assigned a score from 0.0 to 1.0. For HSQ1 and HSQ3, the correct answer

may consist of multiple parts (e.g., multiple conditions may be required to reach a particular

line of code). For these cases, the participant’s score is the fraction of correctly identified

conditions or variables. For HSQ2, the participant’s score is either 0 or 1.

We divide our human study results into two groups: the gdb group (control) and the Hops

group (treatment). We find that the control and treatment groups answered questions with

an average accuracy of 59.2% and 68.0%, respectively.2 The Hops treatment group is at least

as accurate as the control group with statistical significance (p < .01 using the Wilcoxon

rank-sum test). Additionally, the control group took an average of 105±6.4 seconds to

answer each question while the treatment group took an average of 118±8.2 seconds on each

question. Differences in timing were not statistically significant.

Because humans are at least as accurate using Hops when answering indicative software

maintenance questions, we conclude that Hops could usefully support standard software

maintenance analysis tasks. We do not claim that Hops is generally better than gdb—

indeed, gdb has many features, such as changing variable values or poking memory, that

Hops does not support. However, Hops is transparent, allowing it to be used in heisenbug

or security-analysis tasks where gdb is inapplicable. Without such a tool, developers had
2Human study materials and anonymized responses are available at http://church.cs.virginia.edu/

hops-materials/all.tar.gz.

117

http://church.cs.virginia.edu/hops-materials/all.tar.gz
http://church.cs.virginia.edu/hops-materials/all.tar.gz

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

little to no information in such situations; Hops transparently provides information that is

accurate enough to usefully support analysis tasks.

5.4.5 RQ4 — pafish Case Study

This case study evaluates the utility of the information provided by our approach in assessing

the artifacts inspected by stealthy malware. We manually annotated pafish to collect

ground truth data, as in RQ1 and RQ2.

pafish is particularly useful in evaluating Hops because 1) it is is amenable to complete

ground-truth annotation (unlike a wild malware sample, for which we could entirely miss

a stealthy check and thus have false negatives) and 2) it helps answer RQ4 in a general

manner (because it contains a large number of indicative artifact checks), which ultimately

gives confidence that our tool applies to our considered use cases.

Using Hops, we can introspect visible variables and dynamic stack traces as in RQ1 and

RQ2. We consider the question: “are the variables and stack traces values that Hops reports

accurate enough to conclude which anti-debugging techniques pafish is employing?” While

analyst skill plays a role in such tasks, for this evaluation we used a conservative criterion,

indicating success only for cases in which variables and function calls directly implicating the

artifact were introspected correctly. For example, calling the OutputDebugString method

in Windows would cause an error if a debugger is not attached. Hops reports the call

to OutputDebugString (ultimately culminating in a write-like system call), as well as its

parameter (a stack variable in RQ1). From this, an analyst could accurately determine

the artifact being employed in this scenario (i.e., OutputDebugString’s conditional behav-

ior).

Table 5.3 summarizes which of the 22 artifacts considered by pafish can be detected with

our stack tracing and variable introspection technique. A X indicates that an analyst could

118

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Table 5.3: List of artifacts used by pafish.

Method or Artifact Hops Success

Debuggers

IsDebuggerPresent 7

CheckRemoteDebuggerPresent 7

OutputDebugString X

General Sandboxes

GetCursorPos X
GetUserName 7

GetModuleFileName X
Disk legitimacy X
Disk size X
GetTickCount X

QEMU Registry Keys

Device names X
BiosVersion X

Sandboxie

sbiedll.dll 7

VirtualBox

Registry information X
Drivers X
MAC Address X
Window 7

Processes X

VMWare

Device names X
VMWare Tools X
Drivers X

Wine

kernel32.dll features X

Hooking

various n/a

119

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

use introspection information from Hops to determine that pafish is using the given anti-

analysis method or artifact. A 7 indicates that perfect variable or stack trace introspection

information would allow the analyst to determine that the given anti-analysis method is

being used, but in practice Hops does not provide accurate information about the relevant

variables or stack frames (i.e., we cannot sample quickly enough with current hardware). For

example, the IsDebuggerPresent API call is very fast. As a result, our current sampling

rate is too coarse to capture the calls to this function. In fact, all five of the failing cases

result from too coarse a sampling rate. In these situations, Hops could acquire accurate

stack traces, and thus implicate the artifacts, with a faster sampling rate (i.e., improved

hardware). Finally, some methods or artifacts are beyond the scope of our technique. For

instance, checking for hooked functions does not require calling any functions at all (instead,

it scans virtual addresses of API functions for particular signatures, using values in registers).

However, Hops requires activation records created by function calls or variables stored in

memory, so even with perfect memory introspection accuracy, Hops could not reveal such

artifact usage. We refer to these types of artifacts as being not applicable to our approach

and denote them with an “n/a” in Table 5.3.

Overall, Table 5.3 shows that we can accurately discern when pafish attempts to use 16 of

the 22 artifacts in its suite. That is, for these 16 artifacts, our technique can be applied to

provide useful information to an analyst who can conclude that a specific artifact was used.

As an example, pafish uses the GetCursorPos API call to determine the position of the

mouse cursor. It calls this twice and concludes it is being analyzed if the mouse does not

move at all after 2 seconds. Figure 5.6 shows a run of our system against pafish. We elide

other function calls and focus specifically on the code near its use of GetCursorPos. We

show that Hops allows an analyst to see the calls to GetCursorPos and Sleep (samples 2,

3, and 4 in the Figure). At these points, we can also correctly introspect the values of the

stack allocated variables p1 and p2, which are pointers to POINT structures with x and y

fields that correspond to the cursor’s position. In summary, our system permits the analyst

120

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

Pafish Stack Trace

S
ta

ck
T

ra
ce

Time t (cycles)
Sample x

main

0

... main

gs m a

12821779
1

main

gs m a

GCP

13089882
2

main

gs m a

Sleep

14157321
3

main

gs m a

GCP

3879031005
4

Code around sample 1

t = ... int gensandbox mouse act(){
12821779 POINT p1, p2;
13089882 GetCursorPos(&p1);
14157321 Sleep(2000);
3879031005 GetCursorPos(&p2);

if (p1.x==p2.x && ...)
traced("found");

else
3879559528 nottraced("not found");

Figure 5.6: Stack trace gathered against pafish, specifically focused on the GetCursorPos
artifact. The top of the figure shows the stack trace acquired by Hops over time as a function
of CPU clock cycles. At the bottom, the source code is annotated by the timestamp at which
the line runs. At these points of time, we are capable of acquiring the values of structures p1
and p2. The traced line is never executed during this run because the mouse was moved.

121

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

to see 1) the stack trace including the two GetCursorPos invocations, and 2) the variables

in which the cursor’s x and y positions are stored. This information implicates the exact

artifact used (i.e., lack of mouse movement over time).

5.4.6 Evaluation Conclusions

This evaluation of our system against three programs (i.e., nullhttpd, wu-ftpd, and pafish)

provides promising results in terms of accuracy and is indicative for the types of programs

and workloads in our use cases. Our empirical results measure the tradeoff between intro-

spection accuracy and transparency (sampling rate) for our low-artifact analysis technique.

Essentially, Hops constructs meaningful debugging information (variables and stack traces)

from raw memory dumps provided via low-artifact hardware (e.g., via LO-PHI). Recall that

the ultimate goal of this system is to assist program analysis, whether for software mainte-

nance, manual analysis, or automated triage. In this regard, Hops is 84% accurate over all

variables and test cases considered (cf. Table 5.2, but note that there are more globals and

stack-allocated variables than local variables). Third, in a human study involving 30 partic-

ipants, information provided by Hops was no worse than information provided by gdb when

supporting debugging questions with statistical significance. Lastly, we again demonstrate

that Hops is useful in practice by testing it against pafish. Hops is capable of detecting

when pafish uses 16 out of 22 artifacts during its execution.

By implementing Hops on two different hardware platforms, we demonstrated its general-

izability under multiple hardware regimes. However, both hardware implementations have

restrictions in terms of transparency. First, using MalT-based introspection incurs high

overhead (roughly 12µs to access one page), meaning that a malware sample could mea-

sure time elapsed during execution. Secondly, LO-PHI potentially influences performance

counters (see Chapter 3, which could be measured by stealthy malware with ring 0 privilege.

Similarly, in systems where the PCI Express bus is under high load, the use of LO-PHI could

122

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

adversely affect throughput.

5.5 Concluding Remarks for Hops

Many software systems, from embedded devices to virtualization to security, cannot make

use of standard debuggers. The act of analyzing a system can change that system, leading

to heisenbugs in benign software and admitting anti-analysis by stealthy malware. We thus

focus on zero-overhead approaches that leave no functional artifacts or traces that a program

could use to behave differently when analyzed. We presented Hops, an approach to program

introspection that infers and reports variable values and dynamic stack traces from hardware-

provided memory snapshots. Our approach is based on two key observations. First, it

is possible, using existing hardware from Chapters 3 and 4, to log snapshots of memory

pages with low to no overhead. Second, it is possible to bridge the semantic gap between

raw memory snapshots and software semantics using a combination of program analysis,

operating system, and security techniques.

Our approach formulates hypotheses about the locations of variables and stack frames, al-

lowing analysts to introspect malicious and non-malicious programs. In our experiments,

Hops was 84% accurate, overall, at reporting the values of local, stack-allocated, and global

variables. We also implemented Hops using SMM-based MalT and PCI Express-based LO-

PHI FPGA to test our hypotheses on real hardware. In addition, it was over 50% accurate

at reporting entire dynamic stack traces using conservative memory timings associated with

available hardware. Third, in a human study involving 30 participants with statistical sig-

nificance, Hops was no worse than gdb at supporting the analysis of standard maintenance

questions. Finally, we examined 22 methods or artifacts that can be used by stealthy mal-

ware to detect analysis and observed that the introspection information provided by Hops

was sufficient to reveal 16 of 22 artifacts used by pafish (and could reveal 5 more with faster

123

CHAPTER 5. TRADEOFFS BETWEEN TRANSPARENCY AND FIDELITY

hardware). Overall, we see Hops as an approach towards transparent process introspection

as well as a thorough investigation as to the tradeoffs that exist between maintaining trans-

parency during analysis while obtaining high-fidelity introspection data that can be used in

real malware analysis and software maintenance tasks.

124

我想不出别的典故了。

I ran out of quotes. Time to end it.

Kevin Leach

6
Conclusion

The proliferation of malware has increased dramatically in the past few years, seriously erod-

ing user and corporate privacy and trust in computer systems [30, 133, 134, 158, 159]. This

growing volume of malware requires analysis to build cogent defenses against it. Unfortu-

nately, novel malware employs a variety of anti-analysis techniques by measuring artifacts

introduced by the analysis tool. Such stealthy malware requires significant manual effort to

analyze, sometimes taking as long as a person month to fully understand [205]. Additionally,

automated techniques for triage and analysis such as Cuckoo and Anubis fail to execute some

stealthy malware samples because they detect the underlying analysis framework. With the

125

CHAPTER 6. CONCLUSION

rapidly-growing volume of malware and the increasing effort required to analyze stealthy

malware, there is a need to produce malware analysis tools that do not produce any artifacts

and thus are transparent against detection by stealthy malware.

In this dissertation, we presented an end-to-end malware analysis system that admits the

analysis of stealthy malware. We presented two approaches to minimize functional and

timing artifacts, as well as an analysis of the tradeoff space that exists between maintaining

transparency and fidelity of analysis data.

– In Chapter 3, we presented LO-PHI, which employs a custom FPGA circuit that uses

DMA over PCI Express to rapidly acquire snapshots of a SUT’s memory. We showed

that LO-PHI produces no measurable timing artifacts (memory throughput within

a margin of error), but potentially introduces functional artifacts (e.g., DMA access

performance counter). We showed that LO-PHI was capable of analyzing large corpora

of malware, including hundreds of stealthy malware samples that would evade existing

approaches.

– In Chapter 4, we presented MalT, which employs a custom SMI handler to acquire

snapshots of a SUT’s memory on a per-instruction basis. We showed that MalT can

eliminate functional artifacts as well as some internal timing artifacts (0 of 10 stealthy

packers detected MalT), but causes significant system overhead (1514x in the worst

case).

– In Chapter 5, we presented Hops, which helps to analyze the tradeoffs that exist

between transparency and fidelity of useful semantic data produced by tools like LO-

PHI and MalT. We showed, in a human study, that LO-PHI is capable of providing

useful semantic data no worse than gdb for standard maintenance and analysis tasks

(p < .01), but with the added desirable transparency property.

Table 6.1 lists several peer-reviewed publications that support the findings presented in this

dissertation. The work in this dissertation addresses the unwieldy burden associated with

126

CHAPTER 6. CONCLUSION

Table 6.1: Publications supporting this dissertation.
IEEE S&P 2015 Using Hardware Features for Increased Debugging Transparency [250]

(Chapter 4)
TDSC 2016 Towards Transparent Debugging [248] (Chapter 4)
Patent Towards Transparent Debugging [247]
NDSS 2015 LO-PHI: Low-Observable Physical Host Instrumentation [206] (Chap-

ter 3)
SANER 2016 Towards Transparent Introspection [148] (Chapter 5)

analyzing stealthy malware in two ways: 1) making manual analysis faster by removing the

need to consider the mechanism for stealth used by a sample of malware, and 2) enhancing

the expressive power of automated analysis and triage systems by introducing low-artifact

analysis techniques so that automated analyses can apply to stealthy malware samples.

To that end, we have presented and rigorously evaluated two hardware-assisted introspec-

tion techniques that apply to stealthy malware and examined the tradeoffs associated with

maintaining transparency while providing useful semantic information. We believe that the

increasing volume of malware and the growing body of stealthy malware will require tools

akin to LO-PHI or MalT to efficiently analyze for years to come. Additionally, we believe

such systems will shift focus to include transparently instrumenting the CPU in addition to

memory and disk. Moreover, with the growth of mobile devices, the ARM instruction set

will become increasingly important to analyze transparently.

127

CHAPTER 6. CONCLUSION

128

Bibliography

[1] ASPack. http://www.aspack.com. Retrieved November 2016.

[2] IOZone filesystem benchmark. http://www.iozone.org/.

[3] Obsidium. https://www.obsidium.de/show/download/en. Retrieved November
2016.

[4] PELock. https://www.pelock.com. Retrieved November 2016.

[5] pytsk, Python Bindings for the SleuthKit. https://github.com/py4n6/pytsk. Re-
trieved November 2016.

[6] UPX: The Ultimate Packer for eXecutables. https://upx.github.io. Retrieved
November 2016.

[7] VMProtect. http://www.vmpsoft.com. Retrieved November 2016.

[8] CVE-2000-0573: Format string vulnerability. https://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2000-0573, 2000.

[9] CVE-2002-1496: Heap-based buffer overflow. https://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2002-1496, 2002.

[10] nEther: In-guest detection of out-of-the-guest malware analyzers. In Proceedings of
the 4th European Workshop on System Security (EUROSEC ’11) (2011).

[11] Aderholdt, F., Han, F., Scott, S. L., and Naughton, T. Efficient check-
pointing of virtual machines using virtual machine introspection. In Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on
(2014), IEEE, pp. 414–423.

[12] Advanced Micro Devices, Inc. BIOS and Kernel Developer’s Guide for AMD
Athlon 64 and AMD Opteron Processors.

[13] Advanced Micro Devices, Inc. AMD64 Architecture Programmer Manual Vol-
ume 2: System Programming. http://support.amd.com/TechDocs/24593.pdf, June
2015.

[14] Altera Corporation. PCI Express High Performance Reference Design. http:
//www.altera.com/literature/an/an456.pdf, 2014.

[15] Anubis. Analyzing unknown binaries. http://anubis.iseclab.org.

129

http://www.aspack.com
http://www.iozone.org/
https://www.obsidium.de/show/download/en
https://www.pelock.com
https://github.com/py4n6/pytsk
https://upx.github.io
http://www.vmpsoft.com
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2000-0573
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2000-0573
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-1496
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-1496
http://support.amd.com/TechDocs/24593.pdf
http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/literature/an/an456.pdf
http://anubis.iseclab.org

BIBLIOGRAPHY

[16] Appel, A. W. Compiling with continuations. Cambridge University Press, 2007.

[17] ARM. DSTREAM. http://ds.arm.com/ds-5/debug/dstream/.

[18] Asset Intertech. Processor-Controlled Test. http://www.asset-intertech.com/
Products/Processor-Controlled-Test.

[19] Aumaitre, D., and Devine, C. Subverting windows 7 x64 kernel with dma attacks.
HITBSecConf 2010 Amsterdam 29 (2010).

[20] Auty, M., Case, A., Cohen, M., Dolan-Gavitt, B., Ligh, M. H., Levy, J.,
and Walters, A. Volatility framework - volatile memory extraction utility frame-
work.

[21] Azab, A. M., Ning, P., Wang, Z., Jiang, X., Zhang, X., and Skalsky, N. C.
Hypersentry: enabling stealthy in-context measurement of hypervisor integrity. In
Proceedings of the 17th ACM conference on Computer and communications security
(2010), ACM, pp. 38–49.

[22] Azab, A. M., Ning, P., Wang, Z., Jiang, X., Zhang, X., and Skalsky, N. C.
HyperSentry: Enabling Stealthy In-Context Measurement of Hypervisor Integrity. In
Proceedings of the 17th ACM Conference on Computer and Communications Security
(CCS’10) (2010).

[23] Azab, A. M., Ning, P., and Zhang, X. SICE: A Hardware-level Strongly Isolated
Computing Environment for x86 Multi-core Platforms. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS’11) (2011).

[24] Bachaalany, E. Detect if your program is running inside a
Virtual Machine. http://www.codeproject.com/Articles/9823/
Detect-if-your-program-is-running-inside-a-Virtual.

[25] Baecher, P., and Koetter, M. Libemu-x86 shellcode emulation library. See
http://libemu. carnivore. it (2007).

[26] Baig, M. B., Fitzsimons, C., Balasubramanian, S., Sion, R., and Porter,
D. E. Cloudflow: Cloud-wide policy enforcement using fast vm introspection. In Cloud
Engineering (IC2E), 2014 IEEE International Conference on (2014), IEEE, pp. 159–
164.

[27] Baliga, A., Ganapathy, V., and Iftode, L. Automatic inference and enforcement
of kernel data structure invariants. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual (2008), IEEE, pp. 77–86.

[28] Baliga, A., Ganapathy, V., and Iftode, L. Detecting kernel-level rootkits using
data structure invariants. IEEE Transactions on Dependable and Secure Computing
8, 5 (2011), 670–684.

[29] Bat-Erdene, M., Park, H., Li, H., Lee, H., and Choi, M.-S. Entropy analysis
to classify unknown packing algorithms for malware detection. International Journal
of Information Security (2016), 1–22.

130

http://ds.arm.com/ds-5/debug/dstream/
http://www.asset-intertech.com/Products/Processor-Controlled-Test
http://www.asset-intertech.com/Products/Processor-Controlled-Test
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual

BIBLIOGRAPHY

[30] Bauer, J. M., van Eeten, M. J. G., and Chattopadhyay,
T. Itu study on the financial aspects of network security: Mal-
ware and spam. http://www.itu.int/ITU-D/cyb/cybersecurity/docs/
itu-study-financial-aspects-of-malware-and-spam.pdf, July 2008.

[31] Bayer, U., Moser, A., Kruegel, C., and Kirda, E. Dynamic analysis of mali-
cious code. Journal in Computer Virology 2, 1 (2006), 67–77.

[32] Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the
USENIX Annual Technical Conference, FREENIX Track (2005), pp. 41–46.

[33] Bergroth, L., Hakonen, H., and Raita, T. A survey of longest common sub-
sequence algorithms. In String Processing and Information Retrieval, 2000. SPIRE
2000. Proceedings. Seventh International Symposium on (2000), IEEE, pp. 39–48.

[34] Bhunia, S., Hsiao, M. S., Banga, M., and Narasimhan, S. Hardware trojan
attacks: threat analysis and countermeasures. Proceedings of the IEEE 102, 8 (2014),
1229–1247.

[35] Bianchi, A., Shoshitaishvili, Y., Kruegel, C., and Vigna, G. Blacksheep:
Detecting compromised hosts in homogeneous crowds. In Proceedings of the 2012 ACM
conference on Computer and communications security (2012), ACM, pp. 341–352.

[36] Bianchi, A., Shoshitaishvili, Y., Kruegel, C., and Vigna, G. Blacksheep:
Detecting compromised hosts in homogeneous crowds. In Proceedings of the 2012
ACM Conference on Computer and Communications Security (New York, NY, USA,
2012), CCS ’12, ACM, pp. 341–352.

[37] Biedermann, S., and Szefer, J. Systemwall: An isolated firewall using hardware-
based memory introspection. In Information Security. Springer, 2014, pp. 273–290.

[38] bitsum. PECompact—Windows (PE) Executable Compressor. https://bitsum.
com/pecompact/. Retrieved November 2016.

[39] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-oriented program-
ming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security (2011), ACM, pp. 30–40.

[40] Blunden, B. The Rootkit Arsenal, 2 ed. Jones and Barlett Learning, 2013.

[41] Bowling, J. Clonezilla: build, clone, repeat. Linux journal 2011, 201 (2011), 6.

[42] Branco, R., Barbosa, G., and Neto, P. Scientific but Not Academical Overview
of Malware Anti-Debugging, Anti-Disassembly and Anti-VM Technologies. In Black
Hat (2012).

[43] Bruening, D., Kiriansky, V., Garnett, T., and Amarasinghe, S. Dynamorio:
An infrastructure for runtime code manipulation.

[44] Bruening, D., Zhao, Q., and Amarasinghe, S. Transparent dynamic instru-
mentation. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE’12) (2012).

131

http://www.itu.int/ITU-D/cyb/cybersecurity/docs/itu-study-financial-aspects-of-malware-and-spam.pdf
http://www.itu.int/ITU-D/cyb/cybersecurity/docs/itu-study-financial-aspects-of-malware-and-spam.pdf
https://bitsum.com/pecompact/
https://bitsum.com/pecompact/

BIBLIOGRAPHY

[45] BSDaemon, coideloko, and D0nAnd0n. System Management Mode Hack: Using
SMM for ‘Other Purposes’. Phrack Magazine (2008).

[46] Bulygin, Y., and Samyde, D. Chipset based approach to detect virtualization
malware a.k.a. DeepWatch. Blackhat USA (2008).

[47] Burdach, M. Digital forensics of the physical memory. http://forensic.seccure.
net/pdf/mburdach_digital_forensics_of_physical_memory.pdf, 2005.

[48] Buse, R. P., and Weimer, W. R. A metric for software readability. In Proceedings
of the 2008 international symposium on Software testing and analysis (2008), ACM,
pp. 121–130.

[49] Butterworth, J., Kallenberg, C., and Kovah, X. BIOS Chronomancy: Fixing
the Core Root of Trust for Measurement. In Proceedings of the 20th ACM Conference
on Computer and Communications Security (CCS’13) (2013).

[50] Carrier, B. The Sleuth Kit. http://www.sleuthkit.org/sleuthkit/desc.php.

[51] Carrier, B. D., and Grand, J. A hardware-based memory acquisition procedure
for digital investigations. Digital Investigation 1, 1 (2004), 50–60.

[52] Case, A., Cristina, A., Marziale, L., Richard, G. G., and Roussev, V. Face:
Automated digital evidence discovery and correlation. digital investigation 5 (2008),
S65–S75.

[53] Case, A., Marziale, L., and Richard, G. G. Dynamic recreation of kernel data
structures for live forensics. Digital Investigation 7 (2010), S32–S40.

[54] CGSoftLabs. eXpressor. http://www.cgsoftlabs.ro/. Retrieved November 2016.

[55] checkvm: Scoopy doo. http://www.trapkit.de/research/vmm/scoopydoo/
scoopy_doo.htm.

[56] Chen, T. M., and Robert, J.-M. The evolution of viruses and worms. Statistical
methods in computer security 1 (2004).

[57] Chen, X., Andersen, J., Mao, Z., Bailey, M., and Nazario, J. Towards an un-
derstanding of anti-virtualization and anti-debugging behavior in modern malware. In
Proceedings of the 38th Annual IEEE International Conference on Dependable Systems
and Networks (DSN ’08) (2008).

[58] Chen, X., Garfinkel, T., Lewis, E., Subrahmanyam, P., Waldspurger, C.,
Boneh, D., Dwoskin, J., and Ports, D. Overshadow: a virtualization-based
approach to retrofitting protection in commodity operating systems. In Proceedings of
the 13th international conference on Architectural support for programming languages
and operating systems (2008), ACM, pp. 2–13.

[59] Chen, Y., Wang, Y., Ha, Y., Felipe, M. R., Ren, S., and Aung, K. M. M.
saes: A high throughput and low latency secure cloud storage with pipelined dma
based pcie interface. In Field-Programmable Technology (FPT), 2013 International
Conference on (2013), IEEE, pp. 374–377.

132

http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://www.cgsoftlabs.ro/
http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm
http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm

BIBLIOGRAPHY

[60] Chiang, J.-H., Li, H.-L., and Chiueh, T.-c. Introspection-based memory de-
duplication and migration. In ACM SIGPLAN Notices (2013), vol. 48, ACM, pp. 51–
62.

[61] Chisnall, D. The definitive guide to the Xen hypervisor. Prentice Hall Press Upper
Saddle River, NJ, USA, 2007.

[62] CLOC. Count lines of code. http://cloc.sourceforge.net/.

[63] CMU Software Engineering Institute. Michelangelo pc virus warning. http:
//www.cert.org/historical/advisories/CA-1992-02.cfm, September 1997.

[64] CMU Software Engineering Institute. Nimda worm. http://www.cert.org/
historical/advisories/CA-2001-26.cfm, September 2001.

[65] CMU Software Engineering Institute. “code red” worm exploiting buffer over-
flow in iis indexing service dll, January 2002.

[66] Contagio. An overview of exploit packs. http://contagiodump.blogspot.com/
2010/06/overview-of-exploit-packs-update.html, May 2015.

[67] Coreboot. Open-Source BIOS. http://www.coreboot.org/.

[68] Courbon, F., Loubet-Moundi, P., Fournier, J. J., and Tria, A. Semba: A
sem based acquisition technique for fast invasive hardware trojan detection. In Circuit
Theory and Design (ECCTD), 2015 European Conference on (2015), IEEE, pp. 1–4.

[69] Dees, B. Native command queuing-advanced performance in desktop storage. IEEE
Potentials 24, 4 (2005), 4–7.

[70] Deng, Z., Zhang, X., and Xu, D. Spider: Stealthy binary program instrumentation
and debugging via hardware virtualization. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC’13) (2013).

[71] Dinaburg, A., Royal, P., Sharif, M., and Lee, W. Ether: Malware analysis
via hardware virtualization extensions. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS ’08) (2008).

[72] Dinaburg, A., Royal, P., Sharif, M., and Lee, W. Ether: malware analysis
via hardware virtualization extensions. In Proceedings of the 15th ACM conference on
Computer and communications security (2008), ACM, pp. 51–62.

[73] Distler, D. Malware Analysis: An Introduction. SANS Institute, De-
cember 2007. Available via https://www.sans.org/reading-room/whitepapers/
malicious/malware-analysis-introduction-2103.

[74] Dolan-Gavitt, B., Leek, T., Hodosh, J., and Lee, W. Tappan zee (north)
bridge: mining memory accesses for introspection. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (2013), ACM, pp. 839–
850.

133

http://cloc.sourceforge.net/
http://www.cert.org/historical/advisories/CA-1992-02.cfm
http://www.cert.org/historical/advisories/CA-1992-02.cfm
http://www.cert.org/historical/advisories/CA-2001-26.cfm
http://www.cert.org/historical/advisories/CA-2001-26.cfm
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.com/2010/06/overview-of-exploit-packs-update.html
http://www.coreboot.org/
https://www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103
https://www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103

BIBLIOGRAPHY

[75] Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., and Lee, W. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In Security and Privacy
(SP), 2011 IEEE Symposium on (2011), IEEE, pp. 297–312.

[76] Dolan-Gavitt, B., Payne, B., and Lee, W. Leveraging forensic tools for virtual
machine introspection.

[77] Dornseif, M. 0wned by an ipod. Presentation, PacSec (2004).

[78] Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I.,
Warfield, A., Barham, P., and Neugebauer, R. Xen and the art of virtu-
alization. In In Proceedings of the ACM Symposium on Operating Systems Principles
(2003).

[79] Duflot, L., Etiemble, D., and Grumelard, O. Using CPU system management
mode to circumvent operating system security functions. In Proceedings of the 7th
CanSecWest Conference (CanSecWest’04) (2004).

[80] Duflot, L., Levillain, O., Morin, B., and Grumelard, O. Getting into
the SMRAM: SMM Reloaded. In Proceedings of the 12th CanSecWest Conference
(CanSecWest’09) (2009).

[81] Duflot, L., Levillain, O., Morin, B., and Grumelard, O. System Man-
agement Mode Design and Security Issues. http://www.ssi.gouv.fr/IMG/pdf/IT_
Defense_2010_final.pdf, 2010.

[82] Duflot, L., Perez, Y.-A., Valadon, G., and Levillain, O. Can you still trust
your network card. CanSecWest/core10 (2010), 24–26.

[83] Dykstra, J., and Sherman, A. T. Acquiring forensic evidence from infrastructure-
as-a-service cloud computing: Exploring and evaluating tools, trust, and techniques.
Digital Investigation 9 (2012), S90–S98.

[84] DynamoRIO. Dynamic Instrumentation Tool Platform. http://dynamorio.org/.

[85] Egele, M., Scholte, T., Kirda, E., and Kruegel, C. A survey on automated
dynamic malware-analysis techniques and tools. ACM Computing Surveys (CSUR)
44, 2 (2012), 6.

[86] Embleton, S., Sparks, S., and Zou, C. SMM rootkits: A New Breed of OS
Independent Malware. In Proceedings of the 4th International Conference on Security
and Privacy in Communication Networks (SecureComm’08) (2008).

[87] Facebook Security. Facebook whitehat. https://www.facebook.com/whitehat,
March 2014.

[88] Falliere, N. Windows anti-debug reference. http://www.symantec.com/connect/
articles/windows-anti-debug-reference, 2010.

[89] Farmer, D., and Venema, W. Forensic Discover. Addison-Wesley, 2005.

134

http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
https://www.facebook.com/whitehat
http://www.symantec.com/connect/articles/windows-anti-debug-reference
http://www.symantec.com/connect/articles/windows-anti-debug-reference

BIBLIOGRAPHY

[90] Fattori, A., Paleari, R., Martignoni, L., and Monga, M. Dynamic and Trans-
parent Analysis of Commodity Production Systems. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE’10) (2010).

[91] Ferrie, P. Attacks on more virtual machine emulators. Symantec Technology Ex-
change (2007).

[92] FitzPatrick, J., and Crabill, M. NSA Playset: PCIE. In DEFCON 22 (2014).

[93] Flashrom. Firmware flash utility. http://www.flashrom.org/.

[94] Forte, D., Bao, C., and Srivastava, A. Temperature tracking: An innovative
run-time approach for hardware trojan detection. In Proceedings of the International
Conference on Computer-Aided Design (2013), IEEE Press, pp. 532–539.

[95] Fox, S. 51% of u.s. adults bank online. http://www.pewinternet.org/2013/08/07/
51-of-u-s-adults-bank-online/, 2013.

[96] Fry, Z. P., Landau, B., and Weimer, W. A human study of patch maintainability.
In Proceedings of the 2012 International Symposium on Software Testing and Analysis
(2012), ACM, pp. 177–187.

[97] Fu, Y., and Lin, Z. Space Traveling across VM: Automatically Bridging the Se-
mantic Gap in Virtual Machine Introspection via Online Kernel Data Redirection. In
Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P’12) (2012).

[98] Fu, Y., and Lin, Z. Space traveling across vm: Automatically bridging the semantic
gap in virtual machine introspection via online kernel data redirection. In Security and
Privacy (SP), 2012 IEEE Symposium on (2012), IEEE, pp. 586–600.

[99] Garber, L. The challenges of securing the virtualized environment. Computer 45, 1
(2012), 17–20.

[100] Garfinkel, T. Traps and pitfalls: Practical problems in system call interposition
based security tools. In NDSS (2003), vol. 3, pp. 163–176.

[101] Garfinkel, T., Adams, K., Warfield, A., and Franklin, J. Compatibility is
not transparency: Vmm detection myths and realities. In HotOS (2007).

[102] Garfinkel, T., Adams, K., Warfield, A., and Franklin, J. Compatibility
is not transparency: VMM detection myths and realities. In Proceedings of the 11th
USENIX Workshop on Hot Topics in Operating Systems (HotOS’07) (2007).

[103] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D. Terra:
A virtual machine-based platform for trusted computing. In ACM SIGOPS Operating
Systems Review (2003), vol. 37, ACM, pp. 193–206.

[104] Garfinkel, T., and Rosenblum, M. A Virtual Machine Introspection Based Ar-
chitecture for Intrusion Detection. In Proceedings of the 10th Annual Network and
Distributed Systems Security Symposium (NDSS’03) (2003).

135

http://www.flashrom.org/
http://www.pewinternet.org/2013/08/07/51-of-u-s-adults-bank-online/
http://www.pewinternet.org/2013/08/07/51-of-u-s-adults-bank-online/

BIBLIOGRAPHY

[105] Garfinkel, T., Rosenblum, M., et al. A virtual machine introspection based
architecture for intrusion detection. In Proc. Network and Distributed Systems Security
Symposium (2003).

[106] Gates, G., Ewing, J., Russell, K., and Watkins, D. Explaining volkswa-
gen’s emissions scandal. http://www.nytimes.com/interactive/2015/business/
international/vw-diesel-emissions-scandal-explained.html, September 2016.

[107] Girault, E. Volatilitux—memory forensics framework to help analyzing linux phys-
ical memory dumps. http://code.google.com/p/volatilitux.

[108] GNU. GDB: GNU Project Debugger. www.gnu.org/software/gdb.

[109] Google. Vulnerability assessment reward program. www.google.com/about/
appsecurity/reward-program, 2014.

[110] Gross, D. Millions of accounts compromised in snapchat hack. http://www.cnn.
com/2014/01/01/tech/social-media/snapchat-hack, January 2014.

[111] Guarnieri, C., Tanasi, A., Bremer, J., and Schloesser, M. The cuckoo
sandbox, 2012.

[112] Habib, I. Virtualization with kvm. Linux Journal 2008, 166 (2008), 8.

[113] HackerOne. Yahoo bug bounty program rules. https://hackerone.com/yahoo,
2014.

[114] Happ, C., Melzer, A., and Steffgen, G. Trick with treat–reciprocity increases
the willingness to communicate personal data. Computers in Human Behavior 61
(2016), 372–377.

[115] Hasan, S. R., Mossa, S. F., Elkeelany, O. S. A., and Awwad, F. Tenacious
hardware trojans due to high temperature in middle tiers of 3-d ics. In 2015 IEEE
58th International Midwest Symposium on Circuits and Systems (MWSCAS) (2015),
IEEE, pp. 1–4.

[116] Hay, B., and Nance, K. Forensics examination of volatile system data using virtual
introspection. ACM SIGOPS Operating Systems Review 42, 3 (2008), 74–82.

[117] Heasman, J. Implementing and detecting a pci rootkit. Retrieved February 20, 2007
(2006), 3.

[118] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative
Approach, 3 ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[119] Hizver, J., and Chiueh, T.-c. Automated discovery of credit card data flow for pci
dss compliance. In Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium
on (2011), IEEE, pp. 51–58.

[120] Hizver, J., and Chiueh, T.-c. Real-time deep virtual machine introspection and
its applications. In ACM SIGPLAN Notices (2014), vol. 49, ACM, pp. 3–14.

136

http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissions-scandal-explained.html
http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissions-scandal-explained.html
http://code.google.com/p/volatilitux
www.gnu.org/software/gdb
www.google.com/about/appsecurity/reward-program
www.google.com/about/appsecurity/reward-program
http://www.cnn.com/2014/01/01/tech/social-media/snapchat-hack
http://www.cnn.com/2014/01/01/tech/social-media/snapchat-hack
https://hackerone.com/yahoo

BIBLIOGRAPHY

[121] Hofmann, O. S., Dunn, A. M., Kim, S., Roy, I., and Witchel, E. Ensuring
operating system kernel integrity with osck. In ACM SIGARCH Computer Architecture
News (2011), vol. 39, ACM, pp. 279–290.

[122] Hofmeyr, S. A., Forrest, S., and Somayaji, A. Intrusion detection using se-
quences of system calls. Journal of computer security 6, 3 (1998), 151–180.

[123] Holllander, R., and Bolotoff, P. RAMSpeed, a cache and memory benchmark-
ing tool. http://alasir.com/software/ramspeed, 2011.

[124] Hotten, R. Volkswagen: The scandal explained. http://www.bbc.com/news/
business-34324772, 2015.

[125] Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J., and Almorsy, M. CloudSec:
A security monitoring appliance for Virtual Machines in the IaaS cloud model.

[126] IDA Pro. www.hex-rays.com/products/ida/.

[127] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.

[128] Intel. Intel hall of fame. http://www.intel.com/content/www/us/en/
company-overview/intel-museum.html, July 2007. See the July 7, 2006
archive via https://web.archive.org/web/20070706032836/http://www.intel.
com/museum/online/hist_micro/hof/.

[129] Jain, B., Baig, M. B., Zhang, D., Porter, D. E., and Sion, R. Sok: Intro-
spections on trust and the semantic gap. In Security and Privacy (SP), 2014 IEEE
Symposium on (2014), IEEE, pp. 605–620.

[130] Jiang, X., Wang, X., and Xu, D. Stealthy malware detection through vmm-
based out-of-the-box semantic view reconstruction. In Proceedings of the 14th ACM
conference on Computer and communications security (2007), ACM, pp. 128–138.

[131] Jiang, X., Wang, X., and Xu, D. Stealthy malware detection through VMM-
based out-of-the-box semantic view reconstruction. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07) (2007).

[132] Kancherla, K., Donahue, J., and Mukkamala, S. Packer identification using
byte plot and markov plot. Journal of Computer Virology and Hacking Techniques 12,
2 (2016), 101–111.

[133] Kaspersky Lab. Kaspersky Security Bulletin 2014. http:
//securelist.com/analysis/kaspersky-security-bulletin/68010/
kaspersky-security-bulletin-2014-overall-statistics-for-2014/.

[134] Kaspersky Lab. Kaspersky Security Bulletin 2015. https://securelist.com/
files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf.

[135] Kaspersky Lab. Financial Cyberthreats. http://cdn.securelist.com/files/
2015/02/KSN_Financial_Threats_Report_2014_eng.pdf, 2014.

137

http://alasir.com/software/ramspeed
http://www.bbc.com/news/business-34324772
http://www.bbc.com/news/business-34324772
www.hex-rays.com/products/ida/
http://www.intel.com/content/www/us/en/company-overview/intel-museum.html
http://www.intel.com/content/www/us/en/company-overview/intel-museum.html
https://web.archive.org/web/20070706032836/http://www.intel.com/museum/online/hist_micro/hof/
https://web.archive.org/web/20070706032836/http://www.intel.com/museum/online/hist_micro/hof/
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
http://securelist.com/analysis/kaspersky-security-bulletin/68010/kaspersky-security-bulletin-2014-overall-statistics-for-2014/
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
http://cdn.securelist.com/files/2015/02/KSN_Financial_Threats_Report_2014_eng.pdf
http://cdn.securelist.com/files/2015/02/KSN_Financial_Threats_Report_2014_eng.pdf

BIBLIOGRAPHY

[136] Kaspersky Lab. Kaspersky Lab Uncovers “The Mask”: One of the Most Advanced
Global Cyber-espionage Operations to Date Due to the Complexity of the Toolset Used
by the Attackers. http://kaspersky.com/, 2014.

[137] Kemmerer, R., and Vigna, G. Intrusion detection: a brief history and overview.
Computer 35, 4 (2002), 27–30.

[138] King, S., and Chen, P. SubVirt: Implementing malware with Virtual Machines.
In Proceedings of the 27th IEEE Symposium on Security and Privacy (S&P’06) (May
2006).

[139] Kirat, D., Vigna, G., and Kruegel, C. BareBox: Efficient malware analysis
on bare-metal. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC’11) (2011).

[140] Kirat, D., Vigna, G., and Kruegel, C. Barecloud: bare-metal analysis-based
evasive malware detection. In Proceedings of the 23rd USENIX conference on Security
Symposium (SEC’14). USENIX Association, Berkeley, CA, USA (2014), pp. 287–301.

[141] Kollar, I. Forensic RAM dump image analyser. Charles University in Prague,
2010. Master’s Thesis available via https://is.cuni.cz/webapps/zzp/download/
120124298.

[142] Kopytov, A. Draugr—live memory forensics on linux. http://code.google.com/
p/draugr.

[143] Kortchinsky, K. CLOUDBURST: A VMware Guest to Host Escape Story. In Black
Hat USA (2009).

[144] Krebs, B. Hackers break into virginia health professions database, demand
ransom. http://voices.washingtonpost.com/securityfix/2009/05/hackers_
break_into_virginia_he.html, September 2009.

[145] Krishnan, S., Snow, K. Z., and Monrose, F. Trail of bytes: efficient support
for forensic analysis. In Proceedings of the 17th ACM conference on Computer and
communications security (2010), ACM, pp. 50–60.

[146] Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., and Ioan-
nidis, S. You can type, but you can’t hide: A stealthy gpu-based keylogger. In
Proceedings of the 6th European Workshop on System Security (EuroSec) (2013).

[147] Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. Genprog: A generic
method for automatic software repair. Software Engineering, IEEE Transactions on
38, 1 (2012), 54–72.

[148] Leach, K., Spensky, C., Weimer, W., and Zhang, F. Hops: Towards transpar-
ent introspection. In Proceedings of the 23rd IEEE International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER 2016) (Osaka, Japan, March
2016). Acceptance rate: 37%.

138

http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-Uncovers-The-Mask-One-of-the-Most-Advanced-Global-Cyber-espionage-Operations-to-Date-Due-to-the-Complexity-of-the-Toolset-Used-by-the-Attackers/
https://is.cuni.cz/webapps/zzp/download/120124298
https://is.cuni.cz/webapps/zzp/download/120124298
http://code.google.com/p/draugr
http://code.google.com/p/draugr
http://voices.washingtonpost.com/securityfix/2009/05/hackers_break_into_virginia_he.html
http://voices.washingtonpost.com/securityfix/2009/05/hackers_break_into_virginia_he.html

BIBLIOGRAPHY

[149] Lee, W., and Stolfo, S. J. Data mining approaches for intrusion detection. In
Usenix security (1998).

[150] Leek, T., Zhivich, M., Giffin, J., and Lee, W. Virtuoso: Narrowing the Semantic
Gap in Virtual Machine Introspection. In Proceedings of the 32nd IEEE Symposium
on Security and Privacy (S&P’11) (2011).

[151] Lengyel, T. K., Neumann, J., Maresca, S., Payne, B. D., and Kiayias, A.
Virtual machine introspection in a hybrid honeypot architecture. In CSET (2012).

[152] Lin, Z., Rhee, J., Wu, C., Zhang, X., and Xu, D. Dimsum: Discovering semantic
data of interest from un-mappable memory with confidence. In Proc. ISOC Network
and Distributed System Security Symposium (2012).

[153] Lobosco, K. Michaels hack hit 3 million. http://money.cnn.com/2014/04/17/
news/companies/michaels-security-breach/, April 2014.

[154] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wal-
lace, S., Reddi, V. J., and Hazelwood, K. Pin: building customized program
analysis tools with dynamic instrumentation. In Acm Sigplan Notices (2005), vol. 40,
ACM, pp. 190–200.

[155] Madden, M. More online americans say they have experienced a per-
sonal data breach. http://www.pewresearch.org/fact-tank/2014/04/14/
more-online-americans-say-theyve-experienced-a-personal-data-breach/,
2014.

[156] Mankin, J., and Kaeli, D. Dione: a flexible disk monitoring and analysis frame-
work. In Research in Attacks, Intrusions, and Defenses. Springer, 2012, pp. 127–146.

[157] Martin, A. Firewire memory dump of a windows xp computer: a forensic approach.
Black Hat DC (2007), 1–13.

[158] McAfee. Threats Report: Fourth Quarter 2014. http://www.mcafee.com/us/
resources/reports/rp-quarterly-threat-q4-2014.pdf.

[159] McAfee. Threats Report: March 2016. http://www.mcafee.com/us/resources/
reports/rp-quarterly-threats-mar-2016.pdf.

[160] Microsoft. Dr. watson overview. https://www.microsoft.com/resources/
documentation/windows/xp/all/proddocs/en-us/drwatson_overview.mspx?mfr=
true. Retrieved November 2016.

[161] Molina, J., and Arbaugh, W. Using independent auditors as intrusion detection
systems. In Information and Communications Security. Springer, 2002, pp. 291–302.

[162] MongoDB Inc. Mongodb. https://mongodb.com. Retrieved November 2016.

[163] Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., and Kang, B. B. Vigilare: to-
ward snoop-based kernel integrity monitor. In Proceedings of the 2012 ACM conference
on Computer and communications security (2012), ACM, pp. 28–37.

139

http://money.cnn.com/2014/04/17/news/companies/michaels-security-breach/
http://money.cnn.com/2014/04/17/news/companies/michaels-security-breach/
http://www.pewresearch.org/fact-tank/2014/04/14/more-online-americans-say-theyve-experienced-a-personal-data-breach/
http://www.pewresearch.org/fact-tank/2014/04/14/more-online-americans-say-theyve-experienced-a-personal-data-breach/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2014.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2014.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/drwatson_overview.mspx?mfr=true
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/drwatson_overview.mspx?mfr=true
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/drwatson_overview.mspx?mfr=true
https://mongodb.com

BIBLIOGRAPHY

[164] Navarro, G. A guided tour to approximate string matching. ACM computing surveys
(CSUR) 33, 1 (2001), 31–88.

[165] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. Cil: Intermedi-
ate language and tools for analysis and transformation of c programs. In Compiler
Construction (2002), Springer, pp. 213–228.

[166] of Homeland Security, D. National cyber security awareness month. https:
//www.dhs.gov/national-cyber-security-awareness-month, 2016.

[167] Olmstead, K., Lampe, C., and Ellison, N. B.

[168] Oracle. VirtualBox. http://www.virtualbox.com, 2007.

[169] Oreans Technologies. Themida. http://www.oreans.com/themida.php. Re-
trieved November 2016.

[170] Ortega, A. Paranoid fish.

[171] Pagliery, J. Adobe has an epically abysmal security record. http://money.cnn.com/
2013/10/08/technology/security/adobe-security/index.html, October 2014.

[172] Pagliery, J. Aol hack causes zombie spam. http://money.cnn.com/2014/01/23/
news/companies/neiman-marcus-hack/, April 2014.

[173] Pagliery, J. Ebay customers must reset passwords after major hack. http://
money.cnn.com/2014/05/21/technology/security/ebay-passwords/index.html,
May 2014.

[174] Pagliery, J. Target hack is a wake-up call on privacy. http://money.cnn.com/2014/
01/11/technology/security/target-hack-privacy/index.html, January 2014.

[175] Payne, B. D. Libvmi: Simplified virtual machine introspection.

[176] Payne, B. D., Carbone, M., Sharif, M., and Lee, W. Lares: An architecture
for secure active monitoring using virtualization. IEEE Symposium on Security and
Privacy (2008), 233–247.

[177] Perez, S. 66% of employees use 2 or more devices at
work, 12% use tables. https://techcrunch.com/2012/10/10/
forrester-66-of-employees-use-2-or-more-devices-at-work-12-use-tablets/,
2012.

[178] Perlroth, N., and Sanger, D. E. Nations buying as hackers sell
flaws in computer code. http://www.nytimes.com/2013/07/14/world/europe/
nations-buying-as-hackers-sell-computer-flaws.html, July 2013.

[179] Perrin, A. Social media usage: 2005–2015. http://www.pewinternet.org/2015/
10/08/social-networking-usage-2005-2015/, 2015.

[180] Petroni, N. L., Aaron, J., Timothy, W., William, F., and Arbaugh, A.
Fatkit: A framework for the extraction and analysis of digital forensic data from
volatile system memory. Digital Investigation 3 (2006).

140

https://www.dhs.gov/national-cyber-security-awareness-month
https://www.dhs.gov/national-cyber-security-awareness-month
http://www.virtualbox.com
http://www.oreans.com/themida.php
http://money.cnn.com/2013/10/08/technology/security/adobe-security/index.html
http://money.cnn.com/2013/10/08/technology/security/adobe-security/index.html
http://money.cnn.com/2014/01/23/news/companies/neiman-marcus-hack/
http://money.cnn.com/2014/01/23/news/companies/neiman-marcus-hack/
http://money.cnn.com/2014/05/21/technology/security/ebay-passwords/index.html
http://money.cnn.com/2014/05/21/technology/security/ebay-passwords/index.html
http://money.cnn.com/2014/01/11/technology/security/target-hack-privacy/index.html
http://money.cnn.com/2014/01/11/technology/security/target-hack-privacy/index.html
https://techcrunch.com/2012/10/10/forrester-66-of-employees-use-2-or-more-devices-at-work-12-use-tablets/
https://techcrunch.com/2012/10/10/forrester-66-of-employees-use-2-or-more-devices-at-work-12-use-tablets/
http://www.nytimes.com/2013/07/14/world/europe/nations-buying-as-hackers-sell-computer-flaws.html
http://www.nytimes.com/2013/07/14/world/europe/nations-buying-as-hackers-sell-computer-flaws.html
http://www.pewinternet.org/2015/10/08/social-networking-usage-2005-2015/
http://www.pewinternet.org/2015/10/08/social-networking-usage-2005-2015/

BIBLIOGRAPHY

[181] Petroni Jr, N. L., Fraser, T., Molina, J., and Arbaugh, W. A. Copilot-a
coprocessor-based kernel runtime integrity monitor. In USENIX Security Symposium
(2004), San Diego, USA, pp. 179–194.

[182] Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., and
Ioannidis, S. Rage against the virtual machine: hindering dynamic analysis of an-
droid malware. In Proceedings of the Seventh European Workshop on System Security
(2014), ACM, p. 5.

[183] Prandini, M., and Ramilli, M. Return-oriented programming. Security & Privacy,
IEEE 10, 6 (2012), 84–87.

[184] Puri, R. Bots & botnet: An overview. http://www.sans.org/reading-room/
whitepapers/malicious/bots-botnet-overview-1299, August 2003.

[185] Quist, D., Smith, V., and Computing, O. Detecting the presence of virtual
machines using the local data table. Offensive Computing (2006).

[186] Quist, D., and Val Smith, V. Detecting the Presence of Virtual Machines Using
the Local Data Table. http://www.offensivecomputing.net/.

[187] Quynh, N., and Suzaki, K. Virt-ICE: Next-generation Debugger for Malware Anal-
ysis. In In Black Hat USA (2010).

[188] Raffetseder, T., Kruegel, C., and Kirda, E. Detecting system emulators. In
Information Security. Springer Berlin Heidelberg, 2007.

[189] Rajendran, J., Kanuparthi, A. K., Karri, R., Zahran, M., Addepalli, S. K.,
and Ormazabal, G. Securing processors against insider attacks. IEEE Design and
Test 30, 2 (2013), 35–44.

[190] Ranadive, A., Gavrilovska, A., and Schwan, K. Ibmon: monitoring vmm-
bypass capable infiniband devices using memory introspection. In Proceedings of the
3rd ACM Workshop on System-level Virtualization for High Performance Computing
(2009), ACM, pp. 25–32.

[191] Reuben, J. S. A survey on virtual machine security. Helsinki University of Technology
2 (2007), 36.

[192] Reversing Labs. RLPack. https://reversinglabs.com. Retrieved November
2016.

[193] Rutkowska, J. Red Pill. http://www.ouah.org/Red_Pill.html.

[194] Rutkowska, J. Blue Pill. http://theinvisiblethings.blogspot.com/2006/06/
introducing-blue-pill.html, 2006.

[195] Rutkowska, J. Beyond the cpu: Defeating hardware based ram acquisition. Pro-
ceedings of BlackHat DC 2007 (2007).

[196] Rutkowska, J., and Wojtczuk, R. Preventing and detecting Xen hypervisor
subversions. Black Hat Briefings USA (2008).

141

http://www.sans.org/reading-room/whitepapers/malicious/bots-botnet-overview-1299
http://www.sans.org/reading-room/whitepapers/malicious/bots-botnet-overview-1299
http://www.offensivecomputing.net/
https://reversinglabs.com
http://www.ouah.org/Red_Pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html

BIBLIOGRAPHY

[197] Schuster, A. Searching for processes and threads in microsoft windows memory
dumps. digital investigation 3 (2006), 10–16.

[198] Seltzer, L. The morris worm: Internet malware turns 25. http://www.zdnet.com/
article/the-morris-worm-internet-malware-turns-25/, November 2013.

[199] Silberschatz, A., Galvin, P. B., and Gagne, G. Operating System Concepts,
8th ed. Wiley Publishing, 2008.

[200] Sillito, J., Murphy, G. C., and De Volder, K. Questions programmers ask dur-
ing software evolution tasks. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering (2006), ACM, pp. 23–34.

[201] Smith, M. New malware threat hides from researchers in ‘cat-
and-mouse game’. http://business-reporter.co.uk/2016/05/25/
new-malware-threat-hides-researchers-cat-mouse-game/, May 2016.

[202] Snow, K. Z., Krishnan, S., Monrose, F., and Provos, N. Shellos: Enabling
fast detection and forensic analysis of code injection attacks. In USENIX Security
Symposium (2011).

[203] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang,
Z., Newsome, J., Poosankam, P., and Saxena, P. Bitblaze: A new approach to
computer security via binary analysis. In Proceedings of the 4th International Confer-
ence on Information Systems Security (ICISS’08) (2008).

[204] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G.,
Liang, Z., Newsome, J., Poosankam, P., and Saxena, P. Bitblaze: A new
approach to computer security via binary analysis. In Information systems security.
Springer, 2008, pp. 1–25.

[205] Spensky, C. Analysis Time for Malware Samples. Email correspondence with author,
2015.

[206] Spensky, C., Hu, H., and Leach, K. LO-PHI: Low observable physical host in-
strumentation. In Networks and Distributed Systems Security Symposium 2016 (NDSS
2016) (San Diego, CA, February 2016). Acceptance rate: 15.8%.

[207] Srinivasan, D., Wang, Z., Jiang, X., and Xu, D. Process out-grafting: an effi-
cient out-of-vm approach for fine-grained process execution monitoring. In Proceedings
of the 18th ACM conference on Computer and communications security (2011), ACM,
pp. 363–374.

[208] Srivastava, A., and Giffin, J. Tamper-resistant, application-aware blocking of
malicious network connections. In International Workshop on Recent Advances in
Intrusion Detection (2008), Springer, pp. 39–58.

[209] Stewin, P. A primitive for revealing stealthy peripheral-based attacks on the com-
puting platform’s main memory. In Research in Attacks, Intrusions, and Defenses.
Springer, 2013, pp. 1–20.

142

http://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/
http://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/
http://business-reporter.co.uk/2016/05/25/new-malware-threat-hides-researchers-cat-mouse-game/
http://business-reporter.co.uk/2016/05/25/new-malware-threat-hides-researchers-cat-mouse-game/

BIBLIOGRAPHY

[210] Stewin, P., and Bystrov, I. Understanding dma malware. In Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2013, pp. 21–41.

[211] Stüttgen, J., and Cohen, M. Anti-forensic resilient memory acquisition. Digital
Investigation 10 (2013), S105–S115.

[212] Suneja, S., Isci, C., Bala, V., De Lara, E., and Mummert, T. Non-intrusive,
out-of-band and out-of-the-box systems monitoring in the cloud. In ACM SIGMET-
RICS Performance Evaluation Review (2014), vol. 42, ACM, pp. 249–261.

[213] SuperPI. http://www.superpi.net/.

[214] Swanson, D. The cat-and-mouse game: The story of malware-
bytes chameleon. https://blog.malwarebytes.com/cybercrime/2012/04/
the-cat-and-mouse-game-the-story-of-malwarebytes-chameleon/, April 2012.

[215] Systems, C. RPC Interface Vulnerabilities. https://tools.cisco.com/security/
center/viewAlert.x?alertId=6638, September 2003.

[216] Tang, A., Sethumadhavan, S., and Stolfo, S. Unsupervised anomaly-based
malware detection using hardware features. In Research in Attacks, Intrusions and
Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds., vol. 8688 of Lecture Notes in
Computer Science. Springer International Publishing, 2014, pp. 109–129.

[217] Tehranipoor, M., and Koushanfar, F. A survey of hardware trojan taxonomy
and detection. IEEE Design and Test of Computers 27, 1 (2010), 10–25.

[218] The Linux Information Project. Ms-dos: A brief introduction. http://www.
linfo.org/ms-dos.html, September 2006.

[219] Vasudevan, A., and Yerraballi, R. Stealth breakpoints. In Proceedings of the
21st Annual Computer Security Applications Conference (ACSAC’05) (2005).

[220] VIA Technologies, Inc. VT8237R South Bridge, Revision 2.06, December 2005.

[221] VMware, Inc. VMWare Fusion. https://www.vmware.com/products/fusion. Ac-
cess time: July 2015.

[222] VMWare, Inc. Vmware server. http://www.vmware.com/products/server, 2008.

[223] Vogl, S., and Eckert, C. Using hardware performance events for instruction-level
monitoring on the x86 architecture. In Proceedings of the 2012 European Workshop on
System Security EuroSec (2012), vol. 12.

[224] Waddell, K. The computer virus that haunted early aids re-
searchers. http://www.theatlantic.com/technology/archive/2016/05/
the-computer-virus-that-haunted-early-aids-researchers/481965/, March
2016.

[225] Walker, J. Animal source code. http://www.fourmilab.ch/documents/univac/
animalsrc.html, August 1996.

143

http://www.superpi.net/
https://blog.malwarebytes.com/cybercrime/2012/04/the-cat-and-mouse-game-the-story-of-malwarebytes-chameleon/
https://blog.malwarebytes.com/cybercrime/2012/04/the-cat-and-mouse-game-the-story-of-malwarebytes-chameleon/
https://tools.cisco.com/security/center/viewAlert.x?alertId=6638
https://tools.cisco.com/security/center/viewAlert.x?alertId=6638
http://www.linfo.org/ms-dos.html
http://www.linfo.org/ms-dos.html
https://www.vmware.com/products/fusion
http://www.vmware.com/products/server
http://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
http://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
http://www.fourmilab.ch/documents/univac/animalsrc.html
http://www.fourmilab.ch/documents/univac/animalsrc.html

BIBLIOGRAPHY

[226] Wallace, G. Neiman marcus hack hit 1.1 million customers. http://money.cnn.
com/2014/01/23/news/companies/neiman-marcus-hack/, January 2014.

[227] Wang, J., Stavrou, A., and Ghosh, A. Hypercheck: A hardware-assisted integrity
monitor. In Recent Advances in Intrusion Detection (2010), Springer, pp. 158–177.

[228] Wang, J., Zhang, F., Sun, K., and Stavrou, A. Firmware-assisted memory
acquisition and analysis tools for digital forensics. In Systematic Approaches to Digital
Forensic Engineering (SADFE), 2011 IEEE Sixth International Workshop on (2011),
IEEE, pp. 1–5.

[229] Wang, Y., Chen, P., Hu, J., and Rajendran, J. J. The cat and mouse in split
manufacturing. In Proceedings of the 53rd Annual Design Automation Conference
(2016), ACM, p. 165.

[230] Wedum, P. L. Malware Analysis: A Systematic Approach. Norwegian University of
Science and Technology, 2008. Master’s Thesis: Available via https://brage.bibsys.
no/xmlui//bitstream/handle/11250/261770/-1/347719_FULLTEXT01.pdf.

[231] Wei, S., Li, K., Koushanfar, F., and Potkonjak, M. Provably complete hard-
ware trojan detection using test point insertion. In 2012 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (2012), IEEE, pp. 569–576.

[232] Whelan, R., Leek, T., and Kaeli, D. Architecture-independent dynamic infor-
mation flow tracking. In Compiler Construction (2013), Springer, pp. 144–163.

[233] Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T., and Vasudevan,
A. Down to the bare metal: Using processor features for binary analysis. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC’12) (2012).

[234] Wojtczuk, R., and Kallenberg, C. Attacking UEFI Boot Script. 31st
Chaos Communication Congress (31C3), http://events.ccc.de/congress/2014/
Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf, 2014.

[235] Wojtczuk, R., and Rutkowska, J. Attacking Intel Trust Execution Technologies.
http://invisiblethingslab.com/resources/bh09dc/Attacking2009.

[236] Wojtczuk, R., and Rutkowska, J. Attacking SMM Memory via Intel CPU Cache
Poisoning, 2009.

[237] Wojtczuk, R., Rutkowska, J., and Tereshkin, A. Xen 0wning Trilogy. In
Black Hat USA (2008).

[238] Wood, T., Shenoy, P. J., Venkataramani, A., and Yousif, M. S. Black-
box and gray-box strategies for virtual machine migration. In NSDI (2007), vol. 7,
pp. 17–17.

[239] WoodMann. Packers and Unpackers. http://www.woodmann.com/crackz/Packers.
htm. Retrieved November 2016.

144

http://money.cnn.com/2014/01/23/news/companies/neiman-marcus-hack/
http://money.cnn.com/2014/01/23/news/companies/neiman-marcus-hack/
https://brage.bibsys.no/xmlui//bitstream/handle/11250/261770/-1/347719_FULLTEXT01.pdf
https://brage.bibsys.no/xmlui//bitstream/handle/11250/261770/-1/347719_FULLTEXT01.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://www.woodmann.com/crackz/Packers.htm
http://www.woodmann.com/crackz/Packers.htm

BIBLIOGRAPHY

[240] Xiao, J., Xu, Z., Huang, H., and Wang, H. Security implications of memory dedu-
plication in a virtualized environment. In Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’13) (2013).

[241] Yan, L.-K., Jayachandra, M., Zhang, M., and Yin, H. V2E: Combining hard-
ware virtualization and software emulation for transparent and extensible malware
analysis. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE’12) (2012).

[242] Yason, M. The art of unpacking. Black Hat Briefings USA, Aug 2007 (2007).

[243] Yu, P., Bo, L., Datong, L., and Xiyuan, P. A high speed dma transaction
method for pci express devices. In Testing and Diagnosis, 2009. ICTD 2009. IEEE
Circuits and Systems International Conference on (2009), IEEE, pp. 1–4.

[244] Yuschuk, O. OllyDbg. www.ollydbg.de.

[245] Zelster, L. Mastering 4 stages of malware analysis. https://zeltser.com/
mastering-4-stages-of-malware-analysis/, February 2015.

[246] Zetter, K. An unprecedented look at stuxnet, the world’s first digital
weapon. https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/,
November 2014.

[247] Zhang, F., Leach, K., Stavrou, A., and Wang, H. Using hardware features
for increased debugging transparency, July 2015. Provisional Patent Application
62/170,155.

[248] Zhang, F., Leach, K., Stavrou, A., and Wang, H. Towards transparent de-
bugging. IEEE Transactions on Dependable and Secure Computing (January 2016).
Impact factor: 1.592.

[249] Zhang, F., Leach, K., Sun, K., and Stavrou, A. SPECTRE: A Dependable
Introspection Framework via System Management Mode. In Proceedings of the 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’13) (2013).

[250] Zhang, F., Leach, K., Wang, H., Stavrou, A., and Sun, K. Using Hardware
Features to Increase Debugging Transparency. In Proceedings of the 36th IEEE Sym-
posium on Security and Privacy (2015).

[251] Zhang, X., van Doorn, L., Jaeger, T., Perez, R., and Sailer, R. Secure
coprocessor-based intrusion detection. In Proceedings of the 10th workshop on ACM
SIGOPS European workshop (2002), ACM, pp. 239–242.

[252] Zhou, B., Zhang, W., Thambipillai, S., and Teo, J. K. J. A low cost ac-
celeration method for hardware trojan detection based on fan-out cone analysis. In
Proceedings of the 2014 International Conference on Hardware/Software Codesign and
System Synthesis (New York, NY, USA, 2014), CODES ’14, ACM, pp. 28:1–28:10.

145

www.ollydbg.de
https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

	Abstract
	Dedication
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	History of Attacks Against Computer Systems
	Problems with Malware Analysis
	Transparent System Introspection as a Solution
	Organization of This Dissertation
	Malware Analysis Challenges
	Threat Model
	Thesis Statement
	System Overview

	Background and Related Work
	Computer Architecture and Operating Systems
	Intel CPU Basics
	Interrupts
	Virtualization

	System Management Mode
	Stealthy Malware
	Artifacts
	Malware Analysis
	Debugging
	Memory Introspection

	Hardware Assisted System Introspection via Custom FPGA
	Introspection Using PCI Express and SATA
	Implementation Details
	Addressing Artifacts Exposed via FPGA-Based Introspection
	Addressing Memory Bandwidth Artifacts
	Addressing Disk Throughput Artifacts
	Summary: Addressing Disk and Memory Artifacts

	Malware Experimental Framework
	Bridging the Semantic Gap in LO-PHI
	Memory
	Disk
	Filtering Background Noise

	Experimental Evaluation of LO-PHI
	LO-PHI Experiment 1: Custom Rootkit
	LO-PHI Experiment 2: Labeled Malware
	LO-PHI Experiment 3: Unlabeled Malware
	LO-PHI Experiment 4: Paranoid Fish
	LO-PHI Experiment 5: Coarsely-Labeled Malware
	Evaluation Conclusions

	Concluding Remarks for LO-PHI

	Hardware Assisted System Introspection via System Management Mode
	System Architecture
	Remote System in MalT
	System Under Test in MalT
	Communication between SUT and RS in MalT

	Design and Implementation
	Debugging Client on the RS
	System Under Test in MalT
	Bridging the Semantic Gap in MalT
	Triggering an SMI
	Breakpoints
	Step-by-Step Execution Debugging
	System Restoration

	Experimental Evaluation of MalT
	Testbed Specification and Code Size
	Breakdown of Operations in MalT For Timing Analysis
	Step-by-Step Debugging Overhead
	System Restoration Overhead

	Discussion and Limitations
	Evaluating Transparency Against Packing Malware

	Transparency Analysis
	Artifacts Introduced by MalT
	Analysis of Anti-debugging, -VM, and -emulation Techniques
	Concluding Remarks on the Transparency of MalT

	Concluding Remarks for MalT

	Tradeoffs Between Transparency and Fidelity
	Approach
	Approach
	Input Assumptions
	Architecture
	Physical Memory Snapshots
	Reporting Variables
	Reporting Stack Traces
	Output

	Use Cases and Protocols
	Security Analysis of Malicious Binaries
	Maintenance and Security Analysis of Benign Binaries
	Human Study Protocol

	Experimental Evaluation of Hops
	Experimental Setup and Benchmarks
	RQ1 — Variable Value Introspection
	RQ2 — Stack Trace Introspection and Sampling Rate
	RQ3 — Human Study
	RQ4 — pafish Case Study
	Evaluation Conclusions

	Concluding Remarks for Hops

	Conclusion

