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Abstract
Web-based applications are one of the most widely used types of software and have become the

backbone of the e-commerce and communications businesses. These applications are often mission-

critical for many organizations, but generally suffer from low customer loyalty and approval. Al-

though such concerns would normally motivate the need for highly-reliable and well-tested systems,

web-based applications are subject to constraints in their development lifecycles that often preclude

complete testing.

To address these constraints, this research explores user-visible web-based application errors

in the context of web-based application error detection and classification. The main thesis of this

work is that user-visible web-based application errors have special properties that can be exploited

to improve the current state of web application error detection, testing, and development. This the-

sis is evaluated using seven specific falsifiable hypotheses. This research presents highly-precise,

automated approaches to the testing of web-based applications that reduce the cost of such testing,

making its adoption more feasible for developers. Additionally, a model of user-visible web ap-

plication error severity is constructed, backed by a human study, to refute the current underlying

assumption of error severity uniformity in defect seeding for this domain, as well as to propose

software engineering guidelines to avoid high severity errors, and facilitate testing techniques in

finding high-severity defects.

Studying error severities from the consumer perspective is a novel contribution to the web ap-

plication testing field. This research approaches testing web-based applications by recognizing that

errors in web applications can be successfully modeled using the tree-structured nature of XM-

L/HTML output, that unrelated web applications fail in similar ways, and that these failures can be

modeled according to their consumer-perceived severities, with the ultimate goal of improving the

current state of web application testing and development.

The strategies presented in this dissertation have the potential to (1) increase the perceived

return-on-investment for testing web-based applications, thereby improving their reliability, and (2)
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decrease consumer loss due to errors and their perceived severity.
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Chapter 1 Introduction
In the United States, 73% of the population used the Internet in 2008 [9], which contributed to the

over $204 billion dollars in Internet retail sales in the same year [7]. While the global average for

Internet usage was only 24% of the population by comparison [9], online business-to-business e-

commerce1 transactions total several trillions of dollars annually [5]. Therefore, there is a powerful

economic incentive to produce and maintain high quality web-based applications.2

Although other types of software, such as operating systems, are also widely used and highly

distributed, web-based applications face additional challenges in ensuring acceptability and main-

taining a consumer base. Customer loyalty towards any particular website is notoriously low, and is

primarily determined by the usability of the application [76]; unlike customers purchasing software

such as Microsoft Windows, web consumers can easily switch providers without buying another

product or installing another application. This challenge of customer allegiance is compounded by

high availability and quality requirements: for example, one hour of downtime at Amazon.com has

been estimated to cost the company $1.5 million dollars [81]. User-visible failures are endemic to

top-performing web applications: several surveys have reported that about 70% of such sites are

subject to user-visible failures, a majority of which could have been prevented through earlier detec-

tion [98]. For example, Figure 1.1 shows the correct representation of a webpage, while Figure 1.2

shows the same page with an example of a user-visible error: the website is missing some format-

ting components, making navigation difficult. One solution to maintaining a faithful consumer base

and avoiding preventable monetary losses is to design web-based applications to meet high reliabil-

ity, usability, security, and availability requirements [76], which translates into well-designed and

well-tested software that is as free from error as possible.

Delivering high quality web-based applications has additional, domain-specific challenges be-

1The definition of business-to-business e-commerce includes all transactions of goods and services for which the
order-taking process is completed via the Internet.

2see Section 2.1 for a formal definition of web applications and Section A.5 (in the Appendix) for a formal definition
of web-based applications.

1
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Figure 1.1: A correct, expected rending of an example webpage.
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Figure 1.2: An incorrect, unexpected rending of the example webpage. Note in particular that the
formatting of the webpage is missing, making navigation difficult and likely confusing or upsetting
users.
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yond those of consumer retention. Most web applications are developed without a formal process

model [82]. Despite having strong quality requirements that would normally dictate the need for

testing and stability, web applications have short delivery times, high developer turnover rates, and

quickly evolving user needs that translate into an enormous pressure to change [86]. Web appli-

cation developers often deliver the system without testing it [86]. The construction of web-based

applications is subject to strenuous economic constraints revolving around time-to-market concerns

in the face of rapid change.

Web-based applications are not fundamentally different from other software in terms of tech-

nologies used, however they deserve further attention due to three main characteristics:

• Web applications have become an integral part of the global economy, with Internet-based

e-commerce projected to reach over one trillion dollars by 2010 [100], and therefore they are

subject to unique and powerful economic considerations,

• Web-based applications provide a variety of services, but are commonly built as three-tiered

architectures that output browser-readable code (see Figure 1.3), and consequently unrelated

web-based applications often fail in similar ways, and

• Web-based applications are human-centric, implying not only a “consumer” use-case, but

also defining the perceived acceptability of results through the eyes of the user.

While the economic urgency of delivering high-quality web-based applications is compounded

by the lack of investment in formal processes and testing for this type of software, two insights

offer hope of targeting development and testing strategies towards producing high-quality appli-

cations. First, as Figure 1.3 illustrates, although web applications are frequently complex, with

opaque, loosely-coupled components, are composed in multiple programming languages, and main-

tain persistent session requirements, as this research demonstrates, they tend to fail in similar and

predictable ways. This similarity is due to the fact that web-based applications render output in XM-

L/HTML, where lower-level faults manifest themselves as user-visible output [81, 104]. Although

web applications are often complicated amalgamations of various heterogeneous components, the
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requirement that they produce HTML output corrals failures, even those from lower levels of the

system, to the browser. This insight allows developers to centralize their testing strategies to this

top level of the application.

Second, web applications are meant to be viewed by humans. While this implies that faults in

the system will manifest themselves at the user level and drive away consumers, this human-centric

quality of web applications can actually be viewed as an advantage. The acceptability of output

becomes dependent on whether or not users were able to complete their tasks satisfactorily — a

definition that encompasses a natural amount of leeway. Rather than viewing verification in absolute

terms, developers that are subject to the extreme resource constraints web-based projects often

entail may focus on reducing the number of high severity faults that will drive away consumers, as

opposed to giving the same priority to all faults, regardless of their severity.

This research focuses on exploring user-visible errors in web-based applications to improve

web-based application error detection, as well as studying the consumer-perceived severity of errors

to guide web-based application design and testing. Before discussing various approaches towards

more effective fault detection in Chapter 2, and in this domain in particular in Chapter 3, a general

background of web-based application testing challenges is presented below.

1.1 Challenges for Testing Web-based Applications

Testing is a major component of any software engineering process meant to produce high quality

applications. Maintenance activities consume 70% [31] to 90% [97] of the total life cycle cost of

software, summing to over $70 billion per year in the United States [109], with regression testing

accounting for as much as half of this cost [55, 90]. Despite the drive to retain consumers, testing

of web-based applications is limited in current industrial practice due to a number of challenges:

• Rate of Change. The usage profile for any particular web-based application can quickly

change, potentially undermining test suites written with certain use cases in mind [39]. Simi-

larly, websites undergo maintenance faster than other applications [39]. Unlike other types of

software, web-based applications are frequently patched in real-time in response to consumer
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suggestions or complaints. Regression testing of web-based applications must be flexible

enough to handle such small, incremental changes.

• Resource Constraints. Testing of web applications is often perceived as lacking a significant

payoff [52]. This mindset is a consequence of short delivery times, the pressure to change,

developer turnover, and evolving user needs [86, 119]. Given this human misconception

of the value of testing, every effort to reduce the burden of testing for applications with

such resource constraints must be made: applying automation to web testing methodologies

increases their viability.

• Dynamic Content Generation. Unlike traditional client-server systems, client side func-

tionality and content may be generated dynamically in web applications [119]. Figure 1.4

shows an example setup with server-side scripting, where the page source is tailored to in-

dividual users. User input, in the form of parameters passed in the URL, can change the

control flow of the application — for example, pressing the back button may have unex-

pected consequences [61]. In a dynamically generated environment, the content of a page

may be customized according to data in a persistent store, the server state, or session vari-

ables. Dynamic content may also be generated on the client side through actions within a

webpage, such as mouse clicks. Validating dynamically-generated webpages is challenging

because it often requires testing every possible execution path, and static analyses often have

difficulty capturing the behavior of code generated on-the-fly by dynamic languages [26].

Hidden interfaces that are not exposed through static or dynamically generated pages cannot

be tested by traditional testing techniques [48].

• Persistent State and Concurrency. Web-based applications frequently persist user informa-

tion, and can be concurrently accessed by global clientele around the clock [36,106]. Testing

concurrent applications is known to be difficult [111]. A successful testing approach must

account for the concurrent and continuous nature of user accesses as well as successfully

model user interactions that update persistent state.
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Figure 1.3: Three-tiered web application



Chapter 1. Introduction 8

Figure 1.4: Server-side dynamic content generation. Adapted from
http://blog.search3w.com/dynamic-to-static/hello-world/
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Web-based applications are subject to unique challenges because of their development circum-

stances and the complexities of dynamic content generation. Although web applications have espe-

cially high reliability, usability, security, and availability requirements [76], time-to-market, other

resource constraints, and the pressure-to-change often prevent these system from being tested [86].

In order for testing of web-based applications to be widely and successfully adopted, testing

methodologies must be flexible, automatic, and able to handle their dynamic nature.

This research explores user-visible errors in web-based applications in the context of web-based

application error detection. In doing so, the goal is to develop new techniques to reduce the cost of

testing web-based applications as well as provide recommendations to make current testing tech-

niques more cost-effective. The overall thesis of this work is that:

Web-based applications have special properties that can be harnessed to

build tools and models that improve the current state of web application

user-visible error detection, testing, and development.

(Thesis)

This main thesis is evaluated in terms of seven specific falsifiable hypotheses (H1) through (H7)

that are detailed and experimentally tested in subsequent chapters.

This dissertation approaches the problem of error detection in web-based applications by recog-

nizing that errors in web-based applications can be successfully modeled due to the tree-structured

nature of XML/HTML output, and that unrelated web-based applications fail in similar ways. Addi-

tionally, by analyzing errors in web applications, this work defines a model of consumer-perceived

severity. This model targets error detection and classification methodologies and evaluation tech-

niques toward flagging and preventing high-severity errors to retain users in the face of low cus-

tomer loyalty.

This work focuses on errors in web-based applications, in the context of web-based application

testing. Although the term testing refers to both test case generation and test case execution, the

research in this document will focus only on the latter, under the assumption that a test suite has

already been generated. Because Chapter 5 and Chapter 6 also assume multiple versions of the same

software, with the possibility for benign program evolutions, those chapters additionally focus on
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regression testing in particular; the remainder of the dissertation speaks to testing in general.

The main contributions of this research are:

1. Reducing the cost of regression testing through improved error detection by capitalizing on

the special structure of web-based application output to precisely identify user-visible errors.

2. Automating error detection during web-based application regression testing by relying on the

discovery that unrelated web-based applications tend to fail in similar ways.

3. Formally grounding the current state of industrial practice by refuting fault injection as a

standard for measuring web application test suite quality. This research assesses whether or

not the assumption that all injected faults have the same non-trivial severity, and thus, the

same benefit to developers, holds.

4. Understanding consumer-perceived severities of user-visible web application errors to build

a model of consumer-perceived error severity.

5. Understanding how to avoid high-severity errors during web application design and develop-

ment.

6. Reducing the cost of testing web applications by exposing high-severity errors through test

case design, selection, and prioritization (test suite reduction).

The remainder of this dissertation is structured in the following manner. The next chapter in-

troduces web-based applications and software testing in general, while Chapter 3 provides a back-

ground for the state-of-the-art in web application testing. Chapter 4 introduces and summarizes the

contributions of this research. Chapter 5 discusses how to improve error detection during regres-

sion testing, and Chapter 6 expands upon the previous chapter by investigating automated ways to

approach the same goal. Chapter 7 explores a model of consumer-perceived error severity to be

used in testing, which Chapter 8 extends into concrete ways to address high severity errors in web

application design and testing. Chapter 9 simultaneously explores automated error detection and

error severity in the context of popular, real-world web-based applications. Chapter 10 summarizes

the research presented in this document.



Chapter 2 Background
This chapter provides an overview of web applications (Section 2.1) as well as general software

testing as related to this work (Section 2.2). Readers already familiar with the web domain and

generic testing may proceed to Chapter 3 for a more detailed survey of testing as it relates of web-

based applications in particular.

2.1 Web Applications

A web application is a type of software that is hosted on a server and can be accessed remotely

through an Internet browser, usually by a human. The server is responsible for receiving requests

from users, processing these requests, and then returning information to the user. Interaction with a

web application is usually a three step process: 1) the user makes a request to the server through the

browser, 2) the server processes the user request, and 3) the browser renders the response. These

steps are detailed below.

2.1.1 The user makes a request to the server through the browser

In this first step, a user specifies the server as well as the information being re-

quested by typing in a URL (Universal Resource Locator) into a browser such as

Mozilla Firefox or Microsoft Internet Explorer. The browser is responsible for pass-

ing the request to the server through Hypertext Transfer Protocol (HTTP). A request,

such as http://www.mysite.com/register.php?id=John&age=32, specifies the server name

(www.mysite.com), the location of the requested information on the server (i.e., a file name —

register.php), and other information such as the type of request (GET or POST). The browser

may also collect information from the user through a web form, in the format of name-value pairs

which it also passes to the server in the HTTP request. For example, the request above passes a

variable named id with value John and a variable named age with value 32 to the server.

11
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2.1.2 The server processes the user request

A new user session is started the first time a new user makes a request of a server. The server

is responsible for managing the session data, such as identification information, associated with

multiple and possibly simultaneous users. In the simplest interaction, the server locates a static

request such as a file or image, to be sent back as a response to the user. These static pages are

simply copied verbatim from an underlying filesystem or data store and do not depend on any

information from the user or session state.

A user may also request a dynamic page, which is customized based on user provided data,

session state, or other variables. During such a dynamic page request, the server is responsible for

executing code that adjusts the output of the request based on whatever information was provided.

For example, a user interacting with an online bookstore may request to see their purchase history

over the past year. In this case the server will receive a request from the user which contains an

account number or other information. The server can then use this account number to retrieve all

purchases by that customer from a database, and generate a customized output page based on the

user’s purchase history. The response generated by the server is usually in the form of browser-

renderable output in the Hyper Text Markup Language (HTML). The server then parcels the static

or dynamic response into an HTTP response which it sends back to the browser.

Server-side application code may be written in various languages such as Java or PHP, using

technologies such as JavaServer Pages (JSP) or Application Server Pages (ASP), and servers fre-

quently have accesses to databases or other remote components. Sometimes the server encounters

an error during the processing of the user request. For example, the server may be unable to find the

requested resource, and respond with a “Page Not Found” or 404 error. Alternatively, the server-

side application code may encounter an unexpected state, such as an empty object, and raise a

NullPointerException. Components that the server interacts with, such as databases, may also

be unable to provide desired information and can lead to additional errors. This work primarily

focuses on studying such exceptions and error cases. This dissertation uses the terms error, fault,

failure, defect, and bug interchangeably: Section 3.1 provides a formal definition of a failure in a

web-based application. Although the source of the error may be in the web server level (responsible
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for finding files), the application server level (responsible for generating dynamic content), or in ex-

ternal components (such as a database), the techniques discussed in this dissertation are applicable

to all three locales as such errors generally manifest in user-visible output. Formally, this work

examines user-visible errors in web-based applications. Other errors, such as an email not being

sent by the server, are beyond the scope of this research.

2.1.3 The browser renders the response

Browsers are equipped to interpret HTML responses and render them visible to users. Various

HTML tags and features can specify the format of text, multimedia, and functional components,

although each browser may display equivalent HTML pages differently. Consequently, browser

compatibility is a common concern when HTML does not render the same across different applica-

tions.

Browsers primarily render HTML code, although such responses frequently contain other in-

formation. Beyond images and multimedia objects, HTML files often embed client-side scripting

components such as Javascript. Client-side scripting is used for simple tasks such as validating

form inputs to save time, but cannot be used in all cases. For example, a user entering an email

and password can be validated on the client side by checking whether either of these fields are non-

empty — a requirement that is generic to all users, without having to pass a request to the server

to do so. Authenticating the user, that is, ensuring the email and password match the expected val-

ues, however, cannot be accomplished on the client side because it is impossible for the browser to

know what the correct email-password pair is without consulting the server (among other issues).

A recent development in the web application domain is that of Asynchronous Javascript (AJAX),

which is a client-side scripting language that allows for the retrieval of information from the server

without reloading the web page. Testing the client-side functionality of web applications, as well as

browser comparability concerns, are active research areas that are only explored in the consumer-

perceived severities of potential errors of such a nature, and not in their detection or prevention, in

this work.
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2.2 Software Testing

Software testing is a broad term that classifies various techniques aimed at gaining confidence that

the software implementation meets its specification. A software specification is a set of descriptions

that indicates how the software implementation will meet the software requirements, which are the

user-specified functional and non-functional objectives of the system to be designed. Examples of

software testing activities include source code inspection, formal verification [113], and running test

cases. The latter is referred to as execution-based testing [95], and is the focus of testing techniques

in this work. Execution-based testing involves the generation, execution, and inspection of a group

of individual test cases that are collectively referred to as a test suite. A test suite is a collection of

test cases, where a test case verifies some desired property of the implementation.

2.2.1 Types of Testing

This section provides an overview of various types of testing approaches that are related to the re-

search in this dissertation. For a thorough discussion of software testing, see for example Ammann

and Offutt [22] or Mathur [70].

Functional and Non-Functional Testing

Both functional and non-functional testing goals are traceable to software requirements. Functional

testing refers to verifying the implementation of requirements that specify the actions that a user

or code can take. For example, demonstrating that pressing a button logs a user into a website, or

that ordering a product from a vendor results in an email being sent to the consumer, are functional

testing activities. By contrast, non-functional testing includes verifying issues such as scalability,

availability, and security requirements. For example, guaranteeing that a server will be able to

simultaneously process a predetermined number of user requests, or that adequate authentication

policies exist, fall under non-functional testing. This work focuses on functional testing when

proposing new approaches towards regression testing web-based applications.
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Testing During the Software Lifecycle

Ideally, testing activities are an ongoing effort at the beginning of (or even before) source code

implementation, and many fall into the following chronologically-ordered categories:

• Unit Testing and Integration Testing. Unit testing occurs before, during, or immediately

after sections of code (such as classes or functions) have been written. Developers generate

various tests that exercise the expected functionality of the code, corner cases, and individ-

ual components. By contrast, integration testing verifies that software components interface

properly.

• Regression Testing. Regression testing is a supplementary approach to unit and integration

testing that serves to ensure that changes to the code do not (re-)introduce defects. Regres-

sion tests are frequently executed after major changes to previously-working code have been

dispatched, or as part of a nightly build or prerequisite to source code check-in in repositories.

• Alpha and Beta Testing. Alpha and Beta testing involve simulated or actual consumers

exercising the source code in a realistic operational manner. This type of testing is generally

applied when the software reaches a reasonable level of maturity with relatively few defects.

This research primarily focuses on regression testing of web-based applications under the as-

sumption of a pre-existing test suite. Test suites can be run using all test cases they contain, which

is known as a retest-all strategy. Re-running all test cases in a test suite may be an expensive task,

consuming resources outside the range of what is available, especially in the web domain. In such

cases, running a subset of the original test suite is referred to as a test suite reduction strategy; this

issue is returned to in Section 8.5.

2.2.2 Oracles and Oracle Comparators

Inherent to almost all types of testing is the need for oracles, which are responsible for providing

the correct, expected output of a test case. Formally, an oracle is a mechanism that produces an ex-

pected result and a comparator checks the actual result against the expected result [28]. Figure 2.1
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Figure 2.1: An oracle-comparator. A human (or in some cases software) provides test input to
the system. The application is run on the test inputs and produces output. These test outputs are
compared against oracle outputs (which must be specified in advance by a human or other software)
using a comparator. The comparator may either be a developer manually examining output pairs,
or it can be software. The comparator determines if the test case passed or failed.

diagrams the process of using an oracle comparator in testing. In the case of unit testing the oracle

output may be manually specified. For other types of testing, and regression testing in particular,

the oracle is commonly a previous, trusted version of the code.

Testing is often limited by the effort required to compare results between the oracle and test

case outputs. The oracle problem [39] defines the need for comparison between obtained results

and expected results. For many types of software, comparing the output of two versions of the

application using textual differencing utilities such as the standard UNIX command diff is an

effective means by which to identify defects in the code. Using diff-like tools for web-based

applications, however, may return a large number of non-errors as requiring human inspection; this

concern is further explored in the following chapter.
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2.2.3 Test Suite Evaluation

Testing usually involves an oracle comparator that is responsible for correctly identifying passed

test cases and test cases that reveal defects. For many types of software, and web applications in

particular, however, determining whether or not a test case uncovers an actual fault may be difficult

with an automated oracle comparator. Consequently, the performance of an oracle comparator can

be described by the following four metrics:

• True Positives refer to actual defects in the source code uncovered by a test case, when the

oracle comparator also flags the test case as requiring inspection.

• False negatives occur when a test case uncovers a fault in the code, but the oracle comparator

labels the test case as passed. False negatives leave the potential to inadvertently ignore actual

bugs.

• True Negatives are test cases that do not reveal any defects and that the oracle comparator

also labels as not requiring human inspection. True negatives represent savings in terms of

developer time by obviating the need to examine test case output manually.

• False Positives exist when a test case does not exhibit a fault, but the oracle comparator flags

the output as requiring human inspection. False positives represent wasted developer effort,

because a human examines such cases manually even though no actual defects exist.

The precision of a comparator is the number of true positives divided by the sum of true posi-

tives and false positives. The recall of a comparator is the number of true positives divided by the

sum of true positives and false negatives. Ideally, an oracle comparator would be perfectly precise

with a precision of 1.0, implying that there are no false positives. Ideally, an oracle comparator

would also have perfect recall, with a recall of 1.0, implying that there are no false negatives.

Precision can be trivially maximized by returning a single test case, while recall can similarly be

maximized by returning all test cases. Combining the two measures by taking their harmonic mean

results in the F1-score. This metric gives equal weight to precision and recall. In practice recall,

which penalizes missing real bugs, may be more important.
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A relatively-precise or reasonably-precise oracle comparator seeks to minimize both the num-

ber of false positives and false negatives to below an acceptable threshold. In this work a highly-

precise oracle comparator is defined as one where the ratio of the cost of examining true positive

and false positive bug reports, compared to the cost of missing true negative bugs, is less than or

equal to a previously published value of 0.023 [54], when comparing test case outputs between two

program versions; for a formal definition of this notion of high precision see Section 5.5.2.

Although different oracle comparators may vary in their ability to correctly classify faults and

non-faults, the burden of effective fault detection still lies with the test suite itself. Consequently,

researchers and developers are frequently interested not only in measuring oracle comparator per-

formance, but also in investigating the related domain of test suite efficacy. Unfortunately, defects

in source code cannot be known a priori, which makes determining the effectiveness of a test suite’s

ability to reveal actual bugs challenging. Two widely-adopted complementary criteria are used to

identify the efficacy of various test suites:

• Code coverage is a standard software engineering technique used to measure test suite effi-

cacy. Each test case is mapped to some part of the code it exercises; coverage is often broken

down into function, statement, branch, and other categories depending on the desired granu-

larity. The goal is usually to maximize code coverage; for example, a test suite that exercises

every statement in the code at least once is said to have full statement coverage. High code

coverage is a desirable property due to the underlying assumption that executing code as part

of a test suite will reveal defects.

• Fault detection. An orthogonal approach to code coverage is to directly measure the number

of faults found through the use of a specific test suite. Because real-world faults are not

known in advance (except when looking at older versions of a program), fault-based testing

is used to introduce faults into the code meant to be uncovered by the test suite [28, 106].

A common approach for this is referred to as fault seeding or fault injection: faults can be

manually inserted by individuals with programming expertise, or mutation operators can be

used to automatically produce faulty versions of code, as in [24]. Examples of mutation
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operators are deleting a line of code, replacing a logical AND with an OR in a line of code, and

switching a + with a - operation.

Previous work has demonstrated that automatically-seeded faults using source code mutation

are at least as difficult to find as naturally occurring ones for software in general [24, 56].

Whether or not manually seeded faults are equivalent to naturally occurring faults in the

specific domain of web applications remains an open question.

Cost is also an important factor in determining test suite efficacy. This work presents a cost

model where the quality of a testing methodology is defined as the product of the cost of an error

and the number of such errors exposed by the test suite, divided by the cost of designing and running

the test suite.

(cost of an error in terms of dollars lost)× (number of errors exposed)

cost of running the test suite

Under this cost model a more effective test suite may ultimately discover fewer faults then a com-

petitor. In reality, all testing is subject to this constraint, as an optimal test suite could theoretically

uncover all faults by running the application on all possible inputs, an infeasible approach in prac-

tice. Given the large size of the input space, test suite reduction is one technique that aims to select

test cases that are most likely to find bugs, or alternatively, to filter out test cases that are unlikely

to find new bugs (such as duplicate tests).

2.3 Summary

This chapter provided a general background on web applications and software testing. Web applica-

tions involve passing information between a server and a client that may or may not be customized

according to user data. Software testing is a means by which defects in the source code are un-

covered. The following chapter explains the current state-of-the-art of applying general software

testing techniques to web applications in particular.



Chapter 3 Testing Web-based Applications
This chapter presents an overview of the current state-of-the-art in web-based application testing

technologies, as well as the criteria researchers use to evaluate competing approaches. Many stan-

dard software testing techniques have been adopted and adapted to this domain. Testing of web-

based applications remains an open research area, however, due to their combination of high quality

requirements and resource constraints. Most web-based application testing approaches either tackle

the challenge of cost reduction through automation, or aim to provide guidelines or techniques to

increase fault coverage in testing this type of software, where HTML code is often dynamically

generated.

3.1 Defining Errors in Web-based Applications

Web-based applications present additional challenges in testing because the term “error” may have

different meanings to different people. As an example, usability issues, such as the incapability of

a customer to locate a Login link, may not be considered as errors in testing. Ma and Tian define a

web failure as “the inability to obtain and deliver information, such as documents or computational

results, requested by web users.” [66]. It remains unclear whether usability (as opposed to correct-

ness) issues are adequately considered in the automated testing processes of web applications.

Faults uncovered in testing can also be classified into different types, and some techniques are

better at exposing certain types of faults [106]. Ostrand and Weyuker initially classified faults in

terms of their fix-priorities [79], but later rejected that approach, concluding that using such severity

measures was subjective and inaccurate [80,106]. These developer-perceived fault severities are in

contrast to consumer-perceived fault severities, which are presumably free of such biased and mis-

leading judgments that are often due to internal politics within the development organization [80].

Fault taxonomies for web applications are in their infancy, in that only a few preliminary models

exist. For web applications in particular, Guo and Sampath identify seven types of faults as an

20
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initial step towards web fault classification [47]. Marchetto et al. validate a web fault taxonomy to

be used towards fault seeding in [69]. Their fault categories are summarized in Figure 3.1, and are

organized by characteristics of the fault that generally have to do with what level in the three-tiered

architecture the fault occurred on or some of the underlying, specific web-based technologies (such

as sessions). Faults are broken down into several categories and subcategories to aid developers

when considering what types of defects to inject into their code. Despite their comprehensive

nature, in these fault classifications [47, 69] there is no explicit concept or analysis of severity —

while some categories of faults may, in general, produce more errors that would turn customers

away (such as Authentication problems in Figure 3.1), this consideration is not explored. One of

the main goals of the research presented in this document is to explicitly investigate the consumer-

perceived severity of faults, which includes a breakdown of fault severity according to the source

of the defect.

3.2 Existing Approaches

Several tools and techniques exist for testing web applications, but most of them focus on protocol

conformance, load testing, broken link detection, HTML validation, and static analyses that do not

address functional validation [39,106]. These are low-cost approaches with a relatively high return

on investment, in the sense that they can easily detect, without manual effort, some errors that are

likely to drive away users. Static components of websites, such as links, HTML conformance, and

spelling can be easily checked by automated spider-like tools that recursively follow all static links

of the application, inspecting for errors [27].

3.2.1 Capture-Replay

Testing dynamic, functional components automatically is an active research area [26]. Validating

the functionality of a web-based application can be challenging due in part to the manual effort

required to generate, run, or verify test cases. For example, unit testing of web applications, using

tools such as CACTUS [6], requires the developer to manually create test cases and oracles of ex-
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pected output. Similarly, structural testing techniques require the construction of a model of UML

or structural and behavioral test artifacts [58, 64, 85], which is usually carried out manually [106].

Other approaches towards functional validation are usually of a capture-replay nature [88], where

interactions with the browser are recorded and then replayed during testing. In these cases, a devel-

oper manually records a set of test scenarios, possibly by interacting directly with the application,

which can then be automatically rerun through the browser.

Although capture-replay is a highly portable testing approach [106], these types of tests can

easily fail for trivial reasons. In what is known as the fragile test problem, replayed scenarios are

subject to behavior, interface, data, and context sensitivities [73]. It is especially important to avoid

these types of failures by maintaining flexibility of the test suite and verification strategies. Such

sensitivities become apparent during an attempt to use an automated oracle comparator to compare

test output of web-based applications (see Section 3.2.2).

User Session Based Testing

In user session based testing, user accesses are recorded by the server and replayed during test-

ing [39, 101]. A user session is composed of a list of such URL requests, in order, starting when a

request from a new IP address reaches the server and ending when the user leaves the website (or

the session times out) [101]. Because URLs can contain form data as name-value pairs passed to the

server, an important advantage of user-session based testing is the possibility of testing the dynamic

(form) elements of the application without relying on the developer to provide inputs manually.

This specific type of capture-replay has the advantage that a small modification to the server can

provide a large set of easily-collected data. Additionally, such input may be more representative of

how users would interface with the website than interactions fabricated by in-house test creators.

Elbaum et al. pioneered the study of leveraging user sessions as test cases to detect a high number

of faults [39, 41]. The effectiveness of their approach increases as the number of recorded sessions

grows. Replaying many user sessions may exceed the resource constraints typically placed on web

application development. Consequently, optimizing the playback of recorded user sessions [102],

reducing the size of these test suites [41, 93, 105], and statistically modeling user sessions to derive
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test cases [94] are important steps to reduce the cost of replaying user sessions.

Although user session data is easy to capture and replay, one drawback of this approach is that

it is meant to be applied during beta-testing phases or to supplement an existing test suite [39].

Like any testing methodology, a test suite composed of user sessions must still have a predefined

set of correct outputs to be compared against. This oracle is often taken to be a test suite run on a

previous, trusted version of the code, although without manual verification of all such test outputs,

guaranteeing that no defects exist in these oracle files is impossible.

3.2.2 Oracles

Recent work [41,64,101,103,104] uses HTML output as oracles, because such data is easily visible

and because lower-level faults typically manifest themselves as user-visible output [81,104]. Oracle

comparators are frequently used for testing web applications, and in practice discrepancies are

examined through human intervention [39,64,86,104]. For many types of software, using a textual

diff is an effective method for differentiating between passed and failed test cases. Unfortunately,

a diff-based comparator for web-based applications produces frequent false positives [104] which

must be manually interpreted, and manual inspection is an expensive process. False positives are

generated through the use of diff when the incremental nature of website updates (described in

Section 1.1) may not change the appearance or functionality experienced by the user. That is,

natural web-based application development may cause an imprecise comparator, such as diff, to

flag an output pair for manual inspection when such inspection is not actually needed.

Consider the diff output from two TXT2HTML test case versions [3] (TXT2HTML is a tool that

converts textual documents into HTML):

1 < <P>The same table could be indented.

2 < <TABLE border="1">

3 ---

4 > <p>The same table could be indented.</p>

5 > <table border="1" summary="">

A new attribute (summary) and tag (</p>) have been added, but these two pieces of code are
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displayed the same way in most browsers. Assuming the first version is the oracle output and the

second version is the corresponding test case output, a naı̈ve diff-like comparator would return a

false positive for the example above, unnecessarily requiring manual inspection.

Change Detection

Detecting changes between domain-specific documents is a frequent challenge is many applica-

tions. Change detection in web pages has been explored in the context of plagiarism detection [96]

and web page update monitoring [25, 43, 62]. For example, users may want to monitor changes

in stock prices, updates to a class webpage, or other pre-specified data through one of these ap-

proaches [1, 8, 25]. Such monitor and change detection tools are often faced with long runtimes,

and recent work has focused on optimizing such algorithms to run faster [25]. Flesca and Masciari

use three likeness measures to detect the percentage of similar words, measures of tree element po-

sitions, and similar attributes between two XML-based documents [43]. Such structure-aware anal-

yses may be useful in designing highly-precise oracle-comparators, as long as the focus is shifted

towards error detection. An ideal oracle comparator for web-based applications would be able to

handle both the structural evolutions (as in DIFFX — see below) as well as updates to content (as

in natural language tools) in order to specifically differentiate between defects and correct output,

as opposed to pinpointing or summarizing updates. This dissertation presents such a highly-precise

oracle comparator (see Section 2.2.3) that uses structural and semantic judgments to classify faults

and non-faults.

In other types of software, differencing in tree-based documents (such as XML and abstract

syntax trees) can be accomplished by a tool such as DIFFX [20], which characterizes the number

of insertions, moves, and deletes required to convert one tree to the other as a minimum-cost edit

script [20,116]. Change detection for natural language text can be achieved through a bag-of-words

model [60], standard diff, and other natural language approaches. Detecting changes between

different source code versions is often accomplished through diff as well. Although recent work

has explored using semantic graph differencing [83] and abstract syntax tree matching [75] for

analyzing source code evolution, such approaches are not helpful in comparing XML and HTML
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text outputs. Not only do they depend on the presence of source code constructs such as functions

and variables, which are not present in generic HTML or XML, to make distinctions, but they are

meant to summarize changes, rather than to decide whether or not an update signals an error.

Oracle Comparators for the Web

Traditional testing for programs with tree-structured output is particularly challenging [101] due to

the number of false positives returned by a diff-like comparator [104]. Additionally, if such naı̈ve

comparators are employed, oracle output quickly becomes invalidated as the software evolves, as

test cases are unable to pass the comparator due to minor updates. Instead, web-based applica-

tions would benefit from a highly-precise oracle comparator that is able to differentiate between

unimportant syntactic differences and meaningful semantic ones. One approach is for developers

to customize diff-like comparators for their specific applications (for example, filtering out mis-

matching timestamps), but these one-off tools must be manually configured for each project and

potentially each test case — a human-intensive process that may not be amenable to the frequent

nature of updates in the web domain.

Providing a reasonably-precise oracle comparator for web-based applications is an active area

of research. Sprenkle et al. have focused on oracle comparators for testing web applications [101,

103,104]. They use features derived from diff, web page content, and HTML structure, and refine

these features into oracle comparators [104] based on HTML tags, unordered links, tag names,

attributes, forms, the document, and content. Applying decision tree learning allowed them to

target combinations of oracle comparators for a specific application, however this approach requires

manual annotation [103].

3.2.3 Automation

Given the extraordinary resource constraints in web development environments (see Section 1.1),

the automation of testing techniques has been a main focus of research in this domain. Automation

can occur at any level of the testing life cycle, including test case generation, replay, and error de-

tection. This dissertation focuses on automated error detection in web application testing though the
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use of highly-precise oracle comparators (as described in Section 2.2.3) to verify the functionality

of the website.

Automation of Test Case Generation

Two main approaches have been adopted for automatically generating test cases for web applica-

tions: harnessing user session data (as described in Section 3.2.1), and determining a list of valid

URLs in the style of a normal user access through other analyses. One example of the latter is VERI-

WEB [27], where links on a website are visited and dynamic URLs are generated by exercising the

forms present with pre-defined form inputs. Other methods are able to automatically generate test

cases [86, 87] or repair session data [21] once a model of the system has been built. For scripting

languages such as PHP, constraint-solving can be used to automatically generate form inputs that

will crash the system [26, 117]. This dissertation explores the orthogonal area of automated test

case comparison, which can be combined with any type of test case generation approach, including

the automated ones discussed above.

Automated Test Case Replay

One advantage of testing web applications, as opposed to other types of software, is that the au-

tomation of test case replay is relatively straightforward if the test cases consist of URLs, as such

tests can easily be replayed in a browser. For applications that persist data, care must be taken to

ensure each run of the test suite is conducted on an appropriate version of the items in the database.

With the exception of restoring database state between test suites, test case replay is otherwise easily

accomplished in this domain without added infrastructure beyond the ability to make requests to the

server. Experiments in this dissertation frequently use UNIX transfer utilities such as wget [12] and

curl [13] to make such server requests as an effective way of replaying test cases automatically.

Automated Failure Detection

Relying on a human to manually verify all test case outputs places an unreasonably high burden

on developers in the web application field. Instead, approaches such as diff and more sophis-
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ticated oracle comparators seek to reduce the amount of test case output humans must manually

examine. Automated failure detection in web application testing can be achieved though the use of

reasonably-precise oracle comparators [101] (as described in Section 2.2.3) to verify the function-

ality of the website. Application-level failures in component-based services can also be detected

automatically [34], although this approach is directed more at monitoring activities than testing.

Validating large amounts of output or state remains a difficult problem and is the subject of ongoing

research [53,106]. One primary focus of this dissertation is such automated error detection through

the use of a highly-precise oracle comparator. In contrast to other work that employs a partially-

automated oracle comparator [106], Chapter 6 explores a fully-automated oracle comparator that

does not depend upon manual annotations or configurations.

3.2.4 Test Suite Efficacy in Web-based Applications

Similar to the testing of other types of software, web-based application testing methodologies are

frequently evaluated on some metric other than their ability to detect real-world faults in the current

version of the application, as real-world faults cannot always be known in advance. Code coverage

metrics are frequently used in web application testing [26, 39, 48, 64, 94, 101, 102, 103, 104, 105],

although the average percentage of statement coverage falls well short of 100% (and is often closer

to 60%) in many studies [26, 48, 94, 101, 102, 103, 104, 105]. As a complementary approach, fault

injection through source code mutation (see Section 2.2.3) has also been used extensively in the

web application testing community [26, 37, 39, 77, 101, 103, 104, 105].

The cost of developing and running a test suite is also an important consideration in the web-

based application domain due to the frequent nature of updates and the rate at which this type of

software is typically developed. Under the cost model of test suite efficacy, a smaller test suite is

preferable to a larger one when its ability to detect defects is comparable. Traditional test suite

reduction techniques such as Harrold, Gupta, and Soffa’s reduction methodology [51] have been

successfully applied to user-session based testing [41]. Other approaches focus on web applica-

tions characteristics in particular, such as data-flow [63] and finite state machine [23] analyses,

and use case [35] and URL-based coverage [92]. Being able to reduce the size of the test suite
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is an important consideration given the resource constraints which web applications are subject to.

As Chapter 7 explores, however, it is important to perform both a quantitative and qualitative assess-

ment of error detection preservation with such reduction approaches, in that not only the quantity,

but also the severity, of faults be considered when comparing reduced test suites to their original

counterparts.

3.3 Graphical User Interface Testing

Many similarities exist between Graphical User Interfaces (GUIs) and web applications — a

browser-displayed webpage is a kind of GUI. Like a webpage, a GUI can be characterized in terms

of its widgets1 and their respective values. Xie and Memon define a GUI as a “hierarchical, graphi-

cal front-end to a software system that accepts input as user-generated and system-generated events,

from a fixed set of events, and produces deterministic graphical output.” [122]. Notably, they ex-

clude web-user interfaces that have “synchronization and timing constraints among objects” and

“GUIs that are tightly coupled with the back-end code, e.g., ones whose content is created dy-

namically...” [122]. Therefore, this definition of GUIs excludes many web applications, and as a

consequence, some GUI testing research is not applicable to testing web applications and vice-

versa.

Like web applications, GUIs are difficult to test due to the exponential number of states the

software can be in [121], as well as the manual effort required to develop test scripts and detect

failures [32]. Similarly, they are often not tested at all, or are tested using capture-replay tools that

capture either GUI widgets or mouse coordinates [72]. While advances in GUI testing technology

may apply to the web application testing domain, the latter has its own additional challenges. Pri-

marily, most GUIs lack a dynamically-generated HTML description. The availability of HTML as a

standard description language for both content and presentation control implies that further analyses

are possible on this output, and some GUI testing methodologies are not directly applicable. Web

application content is very likely to by dynamically generated, while GUIs are relatively static by

1A widget is a visual element of a GUI that is used by a human to manipulate data. Windows, text boxes, and buttons
are examples of widgets.
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comparison. Additionally, customers using the web frequently have the option of easily switching

providers, while GUI-based systems are often purchased and installed, making a direct comparison

of consumer-perceived fault severity between the two types of software difficult. Faults are likely

to manifest themselves in different ways; for example, web applications frequently fail and display

stack traces in experiments in this work, while GUIs may be less likely to do so in the middle of

normal GUI content. This dissertation focuses on web-based application user interfaces only. In

future work, faults in GUI applications can be analyzed and some of the guidelines and techniques

in the current work can potentially be extend to that domain.

3.4 Improving the Current State of the Art

Research in web-based application testing often focuses on reducing costs through (1) the automa-

tion of activities, and (2) more effective error exposure. By studying user-visible errors in web-

based applications in the context of web-based application testing, one main goal of this disserta-

tion is to further cut the costs of testing by modeling errors in web-based applications to identify

them more accurately, as well as further automating the oracle comparator process. Specifically,

this dissertation focuses on user-visible error detection, with the assumption of a provided test-suite

with a retest-all strategy.

Additionally, this dissertation aims to make web testing more cost-effective by devising a model

of user-visible error severity that will guide test case design, selection, and prioritization. This

model of error severity has the additional benefits of refuting the underlying assumption that all

faults are equally severe in fault-based testing [40, 108] for web applications, and offering soft-

ware engineering techniques for high-severity fault avoidance to developers who do not have the

resources to invest in testing. Unlike the severities explored by Ostrand and Weyuker [79, 80],

these severities are not the developer-assigned severities to faults (such as found in bug reporting

databases), but are instead based on human studies of consumer-perceived severities of real-world

faults. Such human-driven results can be more indicative of true monetary losses and especially

relevant in the web domain.



Chapter 4 Research Outline
This chapter provides an outline of the main contributions of this dissertation, focusing on user-

visible errors in web-based applications in the context of web-based application error detection.

Each main contribution is detailed in a subsequent chapter. Recall the overall thesis of this disser-

tation:

Web-based applications have special properties that can be harnessed to

build tools and models that improve the current state of web application

user-visible error detection, testing, and development.

(Thesis)

In this work, error detection is addressed in two main contexts: during regression testing of

web-based applications, and through a focus on identifying severe errors. The main contributions

are summarized below:

• This dissertation aims to reduce the cost of regression testing web-based applications by cap-

italizing on the special structure of web-based application output to precisely identify errors.

A highly-precise oracle comparator is constructed for XML/HTML to model errors and

non-errors in this domain. This oracle comparator is successful if it can significantly reduce

the false positives associated with diff while having few or no false negatives. An additional

success metric related to the cost of inspecting a bug report versus the cost of missing a bug

is used to evaluate the cost effectiveness of this approach. Both human-assisted and fully-

automated oracle comparators are proposed and evaluated.

• This research grounds the current state of industrial practice by refuting fault injection as

a standard for measuring web application test suite quality. A large scale human study

demonstrates that the assumption that all injected faults have the same non-trivial

severity, and thus, the same benefit to developers, is false in this domain. The hypothesis

that injected faults in web applications do not have the same consumer-perceived error sever-

31
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ity is tested by verifying that these error severities do indeed vary on a statistically significant

sample size of humans and injected faults.

• This dissertation also presents techniques to reduce the cost of testing web applications by

exposing high-severity errors through test case design, selection, and prioritization (including

test suite reduction). Specifically, both human-assisted and fully automated models of

consumer-perceived error severity for web application faults are constructed. These

models aid developers in test case prioritization. Such models are judged successful if they

agree with human judgments of severity at least as often as humans agree with each other.

• This work provides insight on how to avoid high-severity errors during web application de-

sign and development. Specifically, software engineering guidelines, based on the results

of a large-scale human study, are provided to developers under the assumption that lit-

tle or no resources are available to test web applications. Such guidelines are considered

useful if they correlate, in a statistically significant manner, with reduced error severities in

real-world errors.

The remainder of this summary chapter presents seven specific falsifiable hypotheses used to

evaluate this thesis (to be introduced in the following section).

4.1 Improving Error Detection During Regression Testing

The first main context of this work is regression testing of web-based applications. This dissertation

details automated methods that reduce the number of false positives during regression testing web-

based applications. False positives are a common problem when comparing expected HTML output

to the actual output because differentiating between innocuous program changes and actual errors

is difficult. For example, using a diff-like tool to compare HTML documents may incorrectly

flag as suspicious a change to the height of an <img> tag, or variances in session cookie identifiers

within a URL, because neither of these differences are faults. Reducing the number of test cases

that are incorrectly labeled as requiring human attention saves developers time and effort, which
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is especially important in the dynamic development environment of these types of applications (as

detailed in Chapter 1). Similarly, these aggressive development conditions suggest that automation

in this approach is necessary in this domain for any approach that is expected to be viable.

Chapter 5 details how the special structure of web-based applications can be used to provide

a partially-automated, highly-precise oracle comparator for this domain that reduces the number

of false positives associated with more naı̈ve comparators, while missing few or no actual bugs.

Because web-based applications mostly output in XML/HTML form, this user-visible layer of the

application often corrals errors from lower levels not directly palpable to the user [81, 104]. This

claim is formalized in Hypothesis (H1):

A highly-precise oracle comparator for web-based application testing can be

constructed, based on specific knowledge of which structural and semantic fea-

tures of output discrepancies are likely to be associated with errors, that re-

duces the number of non-errors flagged as requiring human inspection (i.e., the

number of false positives) compared to off-the-shelf techniques such as diff

and xmldiff while maintaining the ratio of the cost of examining a potential

bug to the cost of missing an actual bug at or below a current state-of-the-art

value of 0.023 [54].

(H1)

Chapter 6 expands upon such a partially-automated, highly-precise oracle comparator by pro-

viding full automation through a key insight about similarities between the special structure of

web-based application output for unrelated applications. Not only do individual web-based appli-

cations lend their output to an analysis of structure and content that can yield more effective error

labeling in regression testing, but, as this work demonstrates, unrelated web-based applications tend

to both fail and evolve in predictable ways. This claim is formalized in Hypothesis (H2):
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A highly-precise, fully-automatic oracle comparator for web-based application

testing can be constructed, based on pre-existing information from unrelated

applications, that has fewer false positives than off-the-shelf techniques such

as diff and xmldiff while maintaining the ratio of the cost of examining a

potential bug to the cost of missing an actual bug at or below a current state-

of-the-art value of 0.023 [54].

(H2)

This work shows that training a highly-precise oracle comparator with unrelated application

data maintains gains in effective false positive reduction when compared with a human-assisted

model. Consequently, both the partially- and fully-automated models significantly outperform more

naı̈ve approaches.

4.2 Focusing on Severe Errors to Improve Error Detection

The remainder of this work focuses on consumer-perceived error severity in web applications.

Chapter 7 describes the results of a large-scale human study that forms the basis for a predictive

model of consumer-perceived error severity in web applications. The current state of research in

web application testing implicitly assumes that all injected faults are equally severe, and thus that

raw fault detection counts can be used directly to evaluate test suite efficacy. The research presented

in this work and human study data is used to refute this claim, formalized as Hypothesis (H3):

Faults injected into web applications, using an automated seeding process us-

ing mutation operators described in Section 2.2.3, or using manual fault seed-

ing as in [106], vary in their underlying consumer-perceived severities.

(H3)

This research also increases the utility of testing in this domain by allowing developers to focus

on severe errors. Because testing may be perceived as having a low return on investment for web

applications (as detailed in Chapter 1), a model of error severity is provided, based on human

judgments, that allows developers to prioritize errors according to their likelihood of impacting

consumer retention, thus encouraging web application developers to test more effectively. This
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claim is formalized in Hypothesis (H4):

An automated model of consumer-perceived error severity can be constructed

that agrees with human severity judgments at least as often as humans agree

with each other, evaluated using the Spearman’s Ranking Correlation Coeffi-

cient (SRCC) [44, 107].

(H4)

This model is more accurate than an average human at correctly labeling error severity. Both

an annotation-based model, that relies on human input, as well as a fully automated model are

presented. Such models can be used directly to prioritize errors for fixes, as well as in the following

applications:

1. The error severity models provide insight on how to avoid high-severity errors during web

application design and development, which are detailed in Chapter 8. As a concrete ex-

ample, the severity of a user-visible error can be reduced by opting to present the defect

in the form on a popup when possible, as opposed to presenting it on an unexpected error

page. Therefore, this dissertation will explicitly explore the following Hypothesis (H5):

There exists a statistically significant correlation (SRCC > 0.60 [44, 107]) be-

tween severe errors in web applications and various software engineering as-

pects of web application development.

(H5)

Such an analysis is orthogonal to other work in this dissertation which seeks to reduce the

cost of testing web-based applications directly.

2. The error severity models can be used to reduce the cost of testing web applications by

exposing high-severity errors through test case design, selection, and prioritization (see

test suite reduction, also in Chapter 8). This notion is formalized as Hypothesis (H6):

There exist test suite reduction strategies that expose at least 90% of the severe

errors found via corresponding retest-all approaches for web applications.
(H6)

One goal of this work is to apply the consumer-perceived error severity model to various
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test suite reduction techniques to explore the cost-to-error severity trade offs with different

approaches.

Chapter 5 through Chapter 8 explore automated ways to reduce the cost of testing web-based ap-

plications, as well as provide a model of and guidelines for reducing the consumer-perceived sever-

ity of web application errors. Chapter 9 concludes the research contributions of this dissertation

by combining these two approaches and investigating the severity distributions of errors detected

using the automated oracle comparator presented in Chapter 6 on a set of popular web applications.

Formally, Hypothesis (H7) is introduced:

At most 1% of the false negatives produced by the proposed highly-precise,

fully-automated oracle comparator correspond to severe errors.
(H7)

The goal of such a study is to measure the automated oracle-comparator’s performance on a

dataset that makes heavy use of non-determinism, thereby potentially increasing the relative number

of false positives associated with an oracle comparator. In addition, the consumer-perceived severity

of those errors missed by the automated oracle comparator presented in Chapter 6 is evaluated.

4.3 Summary

The main thesis of this dissertation is that user-visible web-based application errors have special

properties that can be exploited to improve the current state of web application error detection,

testing and development. This conjecture can be broken down into seven main sub-hypotheses:

• that recognizing errors in web-based applications can be successfully modeled due to the

tree-structured nature of XML/HTML output (see (H1)),

• that unrelated web-based applications fail in similar ways (see (H2)),

• that not all failures are equally severe from a consumer perspective (see (H3)),

• that these failures can be modeled according to their consumer-perceived severities (see

(H4)),
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• that severe errors correspond to specific software engineering aspects during web application

development (see (H5)),

• that test suites can be reduced in size while preserving severe error exposure (see (H6)),

• and that automated tools to detect failures rarely miss severe errors (see (H7)).

By improving upon error detection, this research provides efficient, automated approaches to

the testing of web-based applications that reduce the cost of this activity, making its adoption more

feasible for developers. Additionally, constructing a model of web application error severity invali-

dates the current underlying assumption of error severity uniformity in fault seeding, helps develop-

ers focus their effort through error prioritization, guides software engineering to avoid high severity

errors, and assists testing techniques in finding high-severity errors. Studying error severities from

the consumer perspective is a novel contribution to the web application testing field.



Chapter 5 Improving Error Detection During

Regression Testing
This chapter explores ways to improve error detection during regression testing web-based applica-

tions. Specifically, a highly-precise oracle comparator, called SMART, is presented, that makes use

of the special structure of web-based application output to reduce the number of non-errors labeled

for inspection by more naı̈ve comparator approaches, while minimizing the number of missed true

errors. This contribution will be used to evaluate Hypothesis (H1) from the previous chapter, that:

a highly precise oracle comparator for web-based application testing can be

constructed, based on specific knowledge of which structural and semantic fea-

tures of output discrepancies are likely to be associated with errors, that re-

duces the number of non-errors flagged as requiring human inspection (i.e., the

number of false positives) compared to off-the-shelf techniques such as diff

and xmldiff while maintaining the ratio of the cost of examining a potential

bug to the cost of missing an actual bug at or below a current state-of-the-art

value of 0.023 [54].

(H1)

By recognizing that user-visible errors in web-based applications can be successfully modeled

in this way, such an oracle comparator can be constructed that provides significant savings to de-

velopers over diff-like approaches.

5.1 Challenges in Regression Testing Web-based Applications

Regression testing is frequently limited by the effort required to compare results between two ver-

sions of program output. Formally, testing involves an oracle mechanism (as described earlier in

Section 2.2.2), that produces an expected result and a comparator that checks the actual result

against the expected result [28]. In practice, the oracle is commonly taken to be the output of a pre-

38
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vious, trusted version of the code on the same input and the comparator is a simple diff of the two

outputs. Any difference implies that the test case should be inspected by developers; this commonly

suggests an error in the new version, but may also indicate a discrepancy in the oracle output (e.g.,

the correct output may legitimately change as the program gains new functionality). Unfortunately,

traditional regression testing is particularly burdensome for web-based applications (e.g., [101])

because using diff as the oracle comparator produces too many false positives (see Section 3.2.2).

Consider the following example from a GCC-XML test case; GCC-XML is an output extension

to the GCC compiler [2]:

1 <?xml version="1.0"?>

2 <GCC_XML>

3 <Namespace id="_1" name="::" members="_3 _4 "/>

4 <Namespace id="_2" name="std" context="_1" members=""/>

5 <Function id="_3" name="bad" returns="_5" context="_1" location="f0:9">

6 <Argument name="src" type="_5"/>

7 <Argument name="o5" type="_5"/>

8 <Argument name="w5" type="_5"/>

9 </Function>

10 <Function id="_4" name="good" returns="_5" context="_1" location="f0:3"

>

11 <Argument name="src" type="_5"/>

12 <Argument name="o5" type="_5"/>

13 <Argument name="w5" type="_5"/>

14 </Function>

15 <FundamentalType id="_5" name="unsigned int"/>

16 <File id="f0" name="/home/eas2h/gcc-4.3.1/gcc/testsuite/gcc.c-torture/

unsorted/bx.c"/>

17 </GCC_XML>

A newer version of the program is run on this same test case with the following output:

1 <?xml version="1.0"?>

2 <GCC_XML>

3 <Namespace id="_1" name="::" members="_3 _4 " mangled="_Z2::"/>
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4 <Namespace id="_2" name="std" context="_1" members="" mangled="_Z3std"

/>

5 <Function id="_3" name="bad" returns="_5" context="_1" mangled="

_Z3badjjj" location="f0:9" file="f0" line="9" endline="11">

6 <Argument name="src" type="_5"/>

7 <Argument name="o5" type="_5"/>

8 <Argument name="w5" type="_5"/>

9 </Function>

10 <Function id="_4" name="good" returns="_5" context="_1" mangled="

_Z4goodjjj" location="f0:3" file="f0" line="3" endline="5">

11 <Argument name="src" type="_5"/>

12 <Argument name="o5" type="_5"/>

13 <Argument name="w5" type="_5"/>

14 </Function>

15 <FundamentalType id="_5" name="unsigned int"/>

16 <File id="f0" name="/home/eas2h/gcc-4.3.1/gcc/testsuite/gcc.c-torture/

unsorted/bx.c"/>

17 </GCC_XML>

Some elements, such as the <File> element (on line 16), are exactly the same in both outputs.

Other elements, however, have different attribute values: when these two test cases outputs are

compared using diff, the following differences are returned (the text above the dashed line was

generated by the older application, while the rest is output from the newer version):

1 > <Namespace id="_1" name="::" members="_3 _4 "/>

2 > <Namespace id="_2" name="std" context="_1" members=""/>

3 > <Function id="_3" name="bad" returns="_5" context="_1" location="f0:9

">

4 ---

5 < <Namespace id="_1" name="::" members="_3 _4 " mangled="_Z2::"/>

6 < <Namespace id="_2" name="std" context="_1" members="" mangled="_Z3std

"/>

7 < <Function id="_3" name="bad" returns="_5" context="_1" mangled="

_Z3badjjj" location="f0:9" file="f0" line="9" endline="11">

8 10c10
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9 > <Function id="_4" name="good" returns="_5" context="_1" location="f0

:3">

10 ---

11 < <Function id="_4" name="good" returns="_5" context="_1" mangled="

_Z4goodjjj" location="f0:3" file="f0" line="3" endline="5">

Notice that in the older version, the <Function> element on line 3 of the diff output contains the

same XML attributes and attribute values as the matching <Function> element of the newer version

on line 7. However, the newer version also contains four additional attributes: mangled, file, line,

and endline. These additional attributes are new functionality added in the later version of GCC-

XML, and should be unit tested (see Section 2.2). In terms of regression testing, on the other hand,

using standard diff to compare the two results would flag each of the matching <Namespace>

and <Function> pairs between the two versions above, even though all of the old functionality

remains the same (i.e., each element in the new version contains the same attributes and attribute

values as in the old). In this case such added functionality would be flagged as a false positive by a

naı̈ve comparator like diff. By contrast, SMART, the oracle comparator presented in this chapter,

avoids labeling this test case as a potential bug by modeling errors and non-errors in a web-based

application.

The above example, as well as the example in Section 3.2.2, demonstrate that using diff to

compare outputs for regression testing is often not appropriate for XML or HTML applications

because of the potential for frequent false positives. Similarly, small formatting changes in HTML

files, changes to boilerplate natural language text, or rearrangement of elements may be flagged

by a diff comparison, even though the higher-level human interpretation of the output remains

unaffected. An oracle comparator specialized for web-based applications should avoid returning

such benign differences, while maintaining the ability to detect actual faults. Hard-coding any such

rules, however, not only requires manual effort, but leaves such a comparator vulnerable to future

program evolutions that impact such policies. SMART operates by learning features of faulty and

correct test case output, rather than relying on approaches that involve manual implementation of a

static set of rules.
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Although HTML-specific comparison tools, such as HTMLMATCH [14] (which displays only

textual changes between two files), and generic GUI-based tools that compare source code files for

changes (such as WINMERGE [19] and EXAMDIFF [11]) can ignore more changes between pairs

of files than diff, such approaches are meant to provide a visual summary of differences, and are

unable to classify changes as errors or non-errors. For example, HTMLMATCH would highlight a

change to a timestamp in the text of an HTML file as a meaningful change, when in most cases

such a difference would be ignored by developers. Similarly, although EXAMDIFF is able to ignore

whitespace and case when comparing program source code, it is unable to decide whether or not

changes to the file merit human inspection or not. By contrast, SMART is able to distinguish between

changes that are likely to indicate an error and those that are normal program evolutions.

5.2 Reducing the Cost of Regression Testing Web-based Applications

SMART reduces the cost of testing web-based applications by modeling differences in pairs of XM-

L/HTML output, saving developers effort over more naı̈ve approaches. In particular, insights from

structural differencing algorithms (e.g., [20]) as well as semantic features are combined (e.g., [101])

into a semantic distance model for test case output. This distance metric then forms the heart of

SMART, a highly-precise oracle comparator, where a regression test should be inspected if the new

output’s distance from the oracle output exceeds a certain cutoff.

SMART classifies test case output based on structural and semantic features of tree-structured

documents. Although some are complicated, most features are quite simple, such as counting the

number of inserted elements when converting one tree into the other. As a concrete example, con-

sider the HTML, <b><u>text</u></b>, renders identically to <u><b>text</b></u>, even though

the order of the bold and underline tags has been reversed.

5.2.1 Tree Alignment

Web-based applications produce HTML and XML output with tree-like properties. To recognize

such features, SMART first aligns such output trees by matching up nodes with similar elements.
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Figure 5.1: An example alignment between two HTML trees.

An alignment is a partial mapping between the nodes of one tree and the nodes of the other. For

example, Figure 5.1 shows two HTML trees that, when aligned, only differ by the added <P> tag

(circled in Figure 5.1). The shaded elements in both trees represent equivalent subtrees in both files,

with arrows showing the mapping from a subtree in one tree to the subtree in the other. To see why

this alignment is necessary, consider these two HTML fragments:

1 <u><b>textA</u></b> <i><u><b>textB</b></u></i>

2 <i><b><u>textB</u></b></i>

Fragment alignment is determined before features can be counted: if the textB subtree of #2 is

aligned with the textA subtree of #1, an inversion between the <u> and <b> tags can be counted.
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However, if the textB subtree of #2 is aligned with the textB subtree of #1, inversions can be

counted between the <u>, <b> and <i> tags. Consequently, the desired alignment is one that mini-

mizes the number of changes that describe the difference between two documents. The DIFF-X [20]

algorithm, with a quadratic runtime for calculating structural differences between XML documents,

is adapted to compute alignments on general tree-structured data (including HTML files). By con-

trast, subgraph isomorphism, the problem where one must determine whether one given graph is a

subgraph of another, is known to be NP-complete. Rather than using such a general and expensive

approach for aligning XML/HTML trees, the DIFF-X algorithm was selected due to its quadratic

runtime. DIFF-X generates a minimal edit script that describes the changes to transform one tree

into another; the primitives for the edit script comprise both the node and subtree edit operations

that are natural in this domain. Matching pairs of elements between the newer and older trees allows

SMART to identify local features derived from element pairs, as well as global features, such as the

addition of natural language text across elements in the document.

5.2.2 Modeling Structural Differences Between Pairs of Web Output

Once XML/HTML trees have been aligned, SMART can calculate feature values, based on the

differences between aligned nodes. This section describes features based on the tree structure of

the test case output that signal interesting changes that merit human inspection. Taken together,

these tree-based features are meant to flag a wide assortment of differences identified between two

XML or HTML files, based on the tree structure itself.

The DIFF-X Algorithm. Three of these features are taken from a variant of the DIFF-X [20]

algorithm that was adapted to work on arbitrary tree-structured inputs rather than just XML. The

algorithm computes the number of moves, inserts and deletes required to transform the first input

tree into the second. It does this via bottom-up exact tree matching combined with top-down iso-

lated tree fragment mapping; this amalgamated approach provides a high quality characterization

of the relationship between the two input trees.

It is likely that moves, inserts, and especially deletes frequently correlate with bugs, and that the

size of the change indicates the severity of the error. For example, a failure that results in a stack
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trace being printed will involve a deletion of a large amount of data and an insertion of the trace

itself. Considering moves instead of delete-insert pairs reduces the size of the changes between two

trees.

Inversions. Similarly, it is likely that inverted elements in XML or HTML do not indicate

high-level semantic errors. Two related types of inversions are considered. In both cases, a pre-

order traversal of all nodes in both of the document trees is performed. All text nodes are removed

to consider only structural inversions. The two traversals are then sorted, and the longest com-

mon subsequence [68] between them is calculated. The longest common subsequence provides a

specialized mapping between the two documents. All nodes not in the common subsequence are

removed, and the lists are unsorted, returning the remaining nodes to their original relative orders.

Finally, lists are compared element-wise and each difference, a structural inversion, is counted.

Grouped Changes. In addition to detecting changes to individual tree elements, a separate

feature is considered when a set of elements that form a contiguous subtree are changed, as a group.

The size of the grouped change in terms of the number of elements involved is measured, under

the hypothesis that larger changes are more likely to indicate an error such as a stack trace, as

opposed to smaller changes to natural language text on a single line, which are unlikely to warrant

attention. Such clustered edits are more likely to deserve inspection, often because they contain

missing components or lengthy exception reports. Grouped changes are also reported both as a

boolean feature and as a weighted value corresponding to the size of the changes in the document.

The boolean feature is meant to capture the presence or absence of any grouped change, while the

weighted version provides a finer-grained analysis when necessary.

Depth of Changes. The relative depth of any edit operation within a tree is noted, under the

assumption that changes closer to the root may be more likely to signal large semantic differences

and thus more likely to merit human inspection.

Changes to Only Text Nodes. In many changes the differences between two outputs will

be limited to text nodes while the tree structure remains unchanged. Documents with such text-

only differences are less likely to contain semantic errors and thus likely to not be inspected as

commonly. This feature is an important distinction from diff, which will flag all textual changes
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as potential errors.

Order of Children. Two aligned nodes that are otherwise similar but have the order of their

children changed are noted. Changes in the order of children (as opposed to changes in the order of

attributes) may not indicate high-level semantic errors and thus could not be inspected. This feature

is complementary to moves being associated with errors in test case output.

5.2.3 Modeling Human-Judgment Differences Between Pairs of Web Output

In addition to tree-based features, SMART also attempts to detect changes a human would discern

between two rendered versions of output files. These features are specific to HTML and attempt to

identify differences that a human observer would notice on a web browser; the goal is to approxi-

mate human judgments about differences in HTML outputs.

Text and Multimedia Ratios. Natural language and images play an important role in the human

interpretation of a webpage [84]. The ratio of displayed text between two versions is measured.

Similarly, the ratio of text to multimedia objects is calculated for each individual version, and then

compared across both versions for a final ratio. Replacing a small amount of text with an image,

such as replacing a textual link with a button, is not a large semantic difference. On the other hand,

changing many words in a small document may merit inspection. Similarly, the ratio of new words

to the number of old words in the file is recorded, under the hypothesis that large changes in natural

language text are more likely to signal errors.

Error Keywords. Web-based applications often exhibit similar failure modes. Beyond the

standard error messages displayed by web servers (such as 404 errors described in Section 2.1.2),

many other violations are tied to the underlying languages, and can be reasonably predicted by a

textual search of the document for error keywords, such as “exception” (see Chapter 7 and Chap-

ter 8). Searching for natural language text to signal page errors has been previously explored in [27].

Output pairs containing error keywords in the newer version, but not in the older, are likely to merit

human inspection.

Changes to Input Elements. Input elements, such as buttons and forms, represent the primary

interface between consumers and the application. Changes to these input elements are noted under
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the hypothesis that a missing button or form indicates a significant loss of functionality and likely

requires examination.

Changed or Missing Attribute Values. When two aligned elements contain the same attribute

but have different attribute values, an error may exist, potentially signaling the need for human

inspection. Consider this example:

1 < <Type id="_8" name="int"/>

2 ---

3 > <Type id="_8" name="unsigned int"/>

If the two <Type> elements on lines 1 and 3 are aligned then the change from "int" to

"unsigned int" represents a meaningful change. Note that this is different from an instance where

the second <Type> has a new attribute that the original does not. Changed attributes may or may

not be significant; consider the semantic difference between an update to a height attribute of an

image as opposed to the mistyping of an action attribute of a form element. Removing attributes,

however, is generally likely to merit human inspection.

5.3 Validating the Assumptions of the Model

The previous section presented structural and semantic features hypothesized to correlate with faults

or non-faults in test case output. The goal of this section is to determine whether it is reasonable

to use these tree-structured features to detect test case outputs that merit human inspection. In

doing so, such an oracle comparator should at least out-perform other, more naı̈ve approaches. As

a baseline, the use of diff as an oracle comparator is verified to generate many false positives.

Similarly, trends in feature values for faults versus non-faults are a prerequisite for the success of

this approach.

5.3.1 Validation Setup

Ten open-source benchmarks that produced either XML or HTML output, totaling 473,000 lines of

code, were used to evaluate oracle comparators in this section. Benchmarks were selected from an
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Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
LIBXML2 v2.3.5 v2.3.10 84K XML parser 441 0
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
CODE2WEB v1.0 v1.1 23K pretty printer 3 3
DOCBOOK v1.72 v1.74 182K document creation 7 5
FREEMARKER v2.3.11 v2.3.13 69K template engine 42 1
JSPPP v0.5a v0.5.1a 10K pretty printer 25 0
TEXT2HTML v2.23 v2.51 6K text converter 23 6
TXT2TAGS v2.3 v2.4 26K text converter 94 4
UMT v0.8 v0.98 15K UML transformations 6 0
Total 473K 7154 919

Figure 5.2: The benchmarks used in the experiments. The “Test cases” column gives the number of
regression tests used for that project; the “Test cases to Inspect” column gives the number of those
tests for which manual inspection indicated a possible bug.

assortment of domains, considering only benchmarks for which multiple versions were available

and for which a set of test cases was available. Including multiple versions of the same project tests

SMART’s ability to ignore natural program evolutions. Figure 5.2 summarizes the programs used.

For each benchmark, the test case output generated by the two versions of the benchmark in-

dicated was manually inspected. This inspection marked the output as “definitely not a bug” or

“possibly a bug, merits human inspection”, conservatively erring on the side of requiring human in-

spection. This initial experiment involved 7154 pairs of test case output, of which 919 were labeled

as requiring inspection.

5.3.2 Validation Results

Of the 7154 test cases considered, diff flagged 4969, compared to the 919 flagged as potential

errors by manual annotation; using diff as a comparator yielded four times as much wasted effort

as potentially-required effort.

Features generally take on different values for differences computed by diff that merit human

inspection and for differences that do not. Figure 5.3 shows the average normalized features’ values

for those two cases; the spread of values suggest that it should be possible to distinguish those cases
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Feature Average – No Inspect Average – Inspect
Text Ratio 0.7996 0.9636
Grouped Boolean 0.0007 0.9767
Text Only 0.9946 0.0179
Grouped Change 0.0002 0.1301
Children Order 0.0010 0.1769
Inversions 0.0010 0.0016
Depth 0.0007 0.0172
DIFF-X-delete 0.0007 0.1203
DIFF-X-insert 0.0041 0.0109
Error Keywords 0.0000 0.0096
New Text 0.6197 0.9624
New Functionality 0.0000 0.0038
Missing Attribute 0.0047 0.1580
DIFF-X-move 0.0004 0.0507
Seen Elements 0.0000 0.0014
Changed Attribute 0.5244 0.9546

Figure 5.3: The average values of features for test cases flagged by diff that (1) do not merit
manual inspection and (2) do merit manual inspection, as determined by human annotators. Each
feature is individually normalized to 1.0.

using features outlined in Section 5.2.2. For example, the normalized feature value of text only

changes is 0.9946 for test case output that need not be inspected and 0.0179 for test case output

that should be inspected. Thus, the use of feature values to distinguish faulty from non-faulty

XML/HTML test case output is demonstrated as a reasonable basis upon which to build an oracle

comparator model.

5.4 Selecting a Model for Differences in Web-based Applications

Having shown features take on significantly different values for potentially erroneous versus correct

output, it is possible to phrase the feasibility of using a highly-precise oracle comparator using these

features as an information retrieval task. SMART creates a linear regression model based on those

features and selects an optimal cutoff to form a binary classifier. Linear regression was chosen as

a classifier due to its simplicity and the ease of which analyses can be performed. Although more

sophisticated classification algorithms may have been able to more accurately classify faults and
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non-faults, this linear regression approach yielded close to optimal results in the benchmarks used.

The performance of such a classifier can then be measured in terms of the number of false positives

and negatives returned for the benchmarks in Section 5.3.1.

5.4.1 Cross Validation

Linear regression is a type of supervised learning1 algorithm; a potential threat to the validity of the

results in this section is over-fitting by testing and training on the same data. To circumvent this,

10-fold cross validation [57] was employed. Test cases were randomly assigned from the data set

into ten equally-sized groups. Each group was reserved once for testing, and the remaining nine

groups were used to train the model; thereby never training and testing on the same data. Next the

cross validation results were averaged and compared to the results of the same model when trained

and tested on the entire data set. If the two outcomes were not significantly different, it can be

reasoned that testing and training on the same data did not introduce a bias.

5.4.2 Model Selection

Although Section 5.3.1 demonstrated that features take on different values for test cases that contain

faults and those that do not, such observations should not be hard-coded into an oracle comparator

that is meant to be robust. Instead, SMART, the highly-precise oracle comparator proposed in this

work, uses machine learning to classify pairs of tree-structured outputs based on whether a human

should inspect them or not. To test the validity and feasibility of such an approach, the following

experiment was conducted on the dataset from Figure 5.2:

1. The cross-validation steps (Section 5.4.1) are first performed. On each fold, a linear model

is trained as if the response variable (i.e., the boolean human annotation of whether a human

should inspect that output or not) were continuous in the range [0,1].

2. The real-valued model outputs are turned into a binary classifier by comparing against a

cutoff. A linear search is utilized to find a model cutoff. Depending on how the result

1The term learning is used in this dissertation to refer to a technique for using training data to set the parameters of a
model [49].
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Comparator F1-score Precision Recall
SMART 0.9931 0.9972 0.9890
SMART w/
cross-validation 0.9935 0.9951 0.9920
diff 0.3004 0.1767 1.0000
xmldiff 0.2406 0.1368 1.0000
fair coin toss 0.2045 0.1286 0.4984
biased coin toss 0.2268 0.1300 0.8868

Figure 5.4: The F1-score, precision, and recall values for SMART on the entire dataset. Results for
diff, xmldiff, and random approaches are given as baselines; diff represents current industrial
practice.

of applying the linear model compares to the cutoff, the oracle comparator reports that the

outputs need be or need not be inspected. Those cutoff values are chosen that yield the highest

F1-score for each validation step (see Section 2.2.3).

3. After cross-validation, the model is trained on the entire data set. The best model cutoff, to

maximize the F1-score, is once again selected.

Figure 5.4 shows the precision, recall, and F1-score values for the dataset from Section 5.3.1.

As a point of comparison, the predictive power of diff, xmldiff [4], coin toss, and biased coin

toss were computed as baseline values. The fair coin returns “no” with even probability. The

biased coin returns “no” with probability equal to the actual underlying distribution for this dataset:

(7154− 919)/7154. Note that the biased coin toss cannot generally be implemented in the field

since it relies on knowing the distribution of right answers in advance. Despite this, SMART has

clear advantages in predictive power over diff, xmldiff, and random or biased chance; yielding

three times diff’s F1-score. xmldiff is an off-the-shelf diff-like tool for XML and HTML [4],

and is able to ignore features such as whitespace, namespaces, and case in text elements when

comparing two XML/HTML files. xmldiff was, however, a worse comparator than basic diff

because it was unable to parse several files due to natural language text (usually warnings such

as those generated by HTMLTIDY) at the top or elsewhere in the file, producing even more false

positives. diff and xmldiff were chosen instead of the Struct oracle comparator of Sprenkle et
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Feature Coefficient F p

Text Only - 0.288 168970 < 0.001
DIFF-X-move + 0.002 150840 < 0.001
DIFF-X-delete + 0.029 46062 < 0.001
Grouped Boolean + 0.714 7804 < 0.001
DIFF-X-insert + 0.029 4761 < 0.001
Grouped Change - 0.012 465 < 0.001
Children Order - 0.002 317 < 0.001
Inversions + 0.001 246 0.020
Missing Attribute - 0.048 121 < 0.001
Error Keywords + 0.174 115 < 0.001
Depth - 0.000 21 < 0.001
Text Ratios - 0.007 18 < 0.001
Input Elements - 0.019 5 0.03

Figure 5.5: Analysis of variance of the oracle comparator model. A + in the ‘Coefficient’ column
means high values of that feature correlate with test cases outputs that should be inspected. The
higher the value in the ‘F’ column, the more the feature affects the model. The ‘p’ column gives
the significance level of F ; features with no significant main effect (p > 0.05) are not shown.

al. [101] to avoid false negatives.

Little to no bias was revealed by cross-validation. The absolute difference in F1-score between

the model and its corresponding averaged cross validation steps was 0.0004. This shows that results

obtained using the corresponding model trained on the entire data set were never significantly dif-

ferent from the averaged results from each set of cross validation steps. Consequently, it seems as

though web-based applications tend to fail and evolve in predictable ways; cross-validation is able to

demonstrate that regardless of the training and testing data subsets, SMART was able to accurately

classify potential faults and non-faults. In the following section, this observation is investigated

more deeply by an analysis of the contribution of various features to SMART’s performance.

In this section, relative feature importance is evaluated, including which features correlate with

output that should be inspected. Figure 5.5 shows the results of a per-feature analysis of vari-

ance [74] on the model using the entire dataset. F denotes the F-ratio, which is close to 1 if the

feature does not affect the model; conceptually F represents the square root of variance explained

by that feature over variance not explained. The p column denotes the significance level of F (i.e.,

the probability that the feature does not affect the model). The table lists only those features with
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a significant main effect: the standard association of statistical significance when p ≤ 0.05 [42]

is adopted. The Coefficient column indicates the how strongly each feature correlated with either

faults (a positive value) or non-faults (a negative value).

The most significant feature was whether or not the change involved only low-level text. This is

the key distinction between the feature-based oracle comparator in this chapter for tree-structured

output and the state-of-the-art for normal textual output: in normal practice, changes to the text of

the output indicate regression errors. However, text-only changes have a strong negative effect: test

case outputs that differ only in small amounts of non-structural text do not merit human inspection.

This is one of the key reasons SMART is able to outperform diff.

The DIFF-X-move feature was frequently correlated with test case errors. It may seem counter-

intuitive that moves, as opposed to insertions or deletions, would indicate a need for human inspec-

tion. In practice, however, tree-structured moves show up as a side-effect of other large changes; the

introduction or deletion of one element often involves a move of its neighbors. Rather than relying

on only insertions or deletions, moves are able to capture both of these types of changes as a move

almost always occurs in conjunction with any of the other two edits. Despite the high F-ratio of the

DIFF-X-move feature, its model coefficient was an order of magnitude smaller than those of insert

or delete. Although moves were most frequently associated with errors, SMART requires that other

features also had to be present in order for the test case output to merit inspection.

The boolean feature that indicates the presence or absence of clustered changes was also highly

correlated with errors. Variations in the sizes of the grouped changes are not as salient as their exis-

tence. Grouped changes were more important than DIFF-X-inserts, which may have been scattered

across the output.

Some features were less powerful than originally hypothesized. For example, the presence of

error keywords did not effect the model as much as the features listed above. This issue is further

explored in Chapter 9.
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Benchmark Comparator F1 Precision Recall
HTMLTIDY SMART 1.000 1.000 1.000

diff 0.048 0.025 1.000
xmldiff 0.021 0.010 1.000

GCC-XML SMART 0.999 1.000 0.999
diff 0.352 0.213 1.000
xmldiff 0.352 0.213 1.000

All ten SMART 0.993 0.997 0.989
(global) diff 0.300 0.177 1.000

xmldiff 0.241 0.138 1.000

Figure 5.6: F1-score, precision, and recall when trained and tested on individual projects, as well
as all ten benchmarks. Results for diff and xmldiff are presented as baselines.

5.5 Evaluating the Oracle Comparator

As the previous section demonstrated, a highly-precise oracle comparator can be constructed

through a linear regression approach that uses surface features of XML/HTML output to determine

whether or not an output pair should be examined. Such features are useful in distinguishing correct

from erroneous output because their values vary for these two classes of results, as shown in Sec-

tion 5.3.1. Such an oracle comparator provides near-perfect precision and recall for the dataset in

the previous section, and significantly outperforms diff and other baselines. In this section, this

highly-precise oracle comparator, SMART, is further evaluated, on a per-project basis, as well as in

a effort saving scenario.

5.5.1 Per-Project Oracle Comparators

Section 5.4.2 presented an oracle comparator that was tested and trained on XML/HTML output

from ten benchmarks. In this section, the same oracle comparator is evaluated when testing and

training on data from a single project; training data from each benchmark application is used to

tailor multiple oracle comparators corresponding to each individual project. The performance of

these per-project models is compared to the global model (the oracle comparator built from the

entire dataset) in Figure 5.6.
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Experimental Procedure

The same experimental setup was used for the per-project classifiers as that described in Sec-

tion 5.3.1. In total 6513 test case output pairs for GCC-XML and HTMLTIDY were employed,

because those two benchmarks were large enough to feasibly admit for individual study. Figure 5.6

shows the average F1-score, precision and recall values when individual oracle comparators were

trained and tested on each program separately. As in Section 5.4.1, cross validation revealed little

to no bias for the per-project classifiers.

Results

For HTMLTIDY, SMART obtained perfect performance, with no false positives or false negatives.

The precision score for this project is thus an order of magnitude better than that of diff: SMART

presents only 25 test case outputs to developers compared to the 960 flagged by diff.

For GCC-XML near-perfect recall (0.999) and perfect precision were achieved; 874 test cases

were flagged by SMART for human inspection, compared to diff’s 4100, with the exception of one

test case that did merit human inspection that the oracle comparator failed to flag.

Project-specific feature weights contributed to strong per-project performance. For example,

the DIFF-X-delete and DIFF-X-insert features were equally important for the HTMLTIDY project,

but not across all benchmarks. As another example, DIFF-X-insert and error keywords were sig-

nificantly associated with errors in HTMLTIDY but not at all in GCC-XML. Although an effective

model can be trained using the data from a single project, a more effective model can be achieved

by using per-project information. However, the effects of various features across projects remained

relatively constant; this observation will be explored further in the next chapter.

5.5.2 Measuring Effort Saved

Intuitively, using SMART for either of the projects alone would seem advantageous. When the same

global model is applied to all ten benchmarks, however, recall suffers: some actual regression test

errors are not flagged for human inspection. In such cases the oracle comparator is a net win if it
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Test Should True Positive False Positives False Negatives
Benchmark Release Cases Inspect SMART diff SMART diff SMART diff Ratio
HTMLTIDY 2nd 2402 12 5 12 78 781 7 0 0.0099

3rd 2402 48 48 48 0 782 0 0 0
4th 2402 254 109 254 1 574 145 0 0.2019
5th 2402 48 48 48 0 775 0 0 0
6th 2402 20 19 20 1 774 1 0 0.0013

GCC-XML 2nd 4111 662 658 662 16 2258 4 0 0.0018
3rd 4111 544 544 544 0 2577 0 0 0

total 20232 1588 1431 1588 96 8521 157 0 0.0183

Figure 5.7: Simulated performance of SMART on 20232 test cases from multiple releases of two
projects. The ‘Test Cases’ column gives the total number of regression tests per release. The
‘Should Inspect’ column counts the number of those tests that manual annotation indicated should
be inspected (i.e., might indicate a bug). The ‘Inspected’ column gives the number of tests that
SMART and diff flag for inspection. The ‘False Positives’ and ‘False Negatives’ columns measure
accuracy, and the ‘Ratio’ column indicates the value of LookCost/MissCost above which SMART

becomes profitable (lower values are better).

costs more to triage, inspect and resolve the smaller number of test outputs than it does to miss a

few test cases that merit human inspection.

Although SMART has near-perfect precision and recall in the experiments presented so far, the

model will generally not be tested and trained on the same data, nor will humans be willing to

annotate 90% of their test case output as in the cross validation steps. In this section, a more

realistic scenario is explored, where developers are responsible for training SMART on 20% of the

output from each run of the test suite, which they manually annotate, and testing on the remaining

80% percent. Therefore, the hypothetical benefit of SMART is evaluated in terms of developer

effort saved, when used to determine if humans should inspect regression test output over multiple

revisions to software projects. A situation in which a development organization uses this technique

on all regression tests between successive releases of the same project is considered. It is assumed

that humans manually inspect a small percentage of the test case output flagged by diff — 20%

in this experiment — and then train the oracle comparator on that information (as in Section 5.3.1),

using it to guide the inspection of the remaining test cases. Subsequent releases of the same project

retain training information from previous releases, as well as incorporate the false positive or true
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positive results of any test case that the tool deemed to require manual inspection.

Experimental Procedure

Two benchmarks, GCC-XML and HTMLTIDY, had three or more released versions available. For

each successive version considered, test case differences were manually annotated to determine if a

human should inspect them (see Section 5.3.1). The dataset for this simulation thus includes 20232

regression test output pairs spanning seven software releases for two projects. Note that this is a

slightly different setup than that of Figure 5.2 — for example, while there were 25 test cases to

inspect for the version of HTMLTIDY used in Figure 5.4, here five different releases of HTMLTIDY

are used that have correspondingly different numbers of test outputs that should be inspected (12–

254).

The number of test cases flagged for manual inspection is measured (i.e., the 20% used for

initial training as well as the true positives and false positives produced by the oracle comparator)

as well as the number of false negative test cases that should have been flagged for inspection (i.e.,

that indicated potential bugs found via regression testing) but were not. Each of these carries an

associated software engineering cost.

The amount of effort saved by developers can be estimated when using this oracle comparator,

by defining a cost of looking (LookCost) at a test case and a cost of missing (MissCost) for each

test case that should have been flagged but was not. A useful investment occurs when the cost of

using the oracle comparator:

(TruePos+FalsePos)×LookCost +FalseNeg×MissCost

is less than the cost of |diff| × LookCost. That is, this approach saves effort when the cost of

looking at the test cases flagged by diff but not by this technique exceeds the cost of missing any

relevant test cases not reported. The condition under which this technique is profitable is then:

LookCost

MissCost
>

−FalseNeg

TruePos+FalsePos−|diff|
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It is assumed LookCost � MissCost [118], so the goal is for this ratio to be as small as possible.

Results

Figure 5.7 shows the results of this experiment. For example, when applying the oracle comparator

to the last release of HTMLTIDY, the ratio above which it becomes profitable is about 1/1000; if

the cost of missing a potentially useful regression test report is less than or equal to 1000 times

the cost of triaging and inspecting a test case, developer effort is saved. A ratio of 0 indicates that

there are no false negatives, and in such cases this approach always outperforms diff, regardless

of LookCost or MissCost. Figure 5.7 also shows the number of test cases that a developer would

need to examine when using diff.

SMART’s performance generally improves on subsequent releases, and it totally avoids false

negatives in one instance for both benchmarks. It is at its worst when there is a large relative

number of regression test errors (e.g., for a rushed release that fails to retain required functionality).

For the fourth release of HTMLTIDY, the number of test cases that should be inspected is an order-

of-magnitude higher than usual. A cautious development organization might use this tool only

when the manual annotation of 20% of the test case outputs shows a historically reasonable number

of regression test errors.

Previous work on bug report triage has used a LookCost to MissCost ratio of 0.023 as a metric

for success for an analysis that required 30 days to operate [54], and that ratio is adopted as a

baseline here. The typical performance of the oracle comparator, which includes the cost of the

20% manual annotation burden and would take 1.3 hours on average per release, is 0.0183 — a

20% improvement over that figure. If the HTMLTIDY outlier mentioned above is excluded, the

ratio is 0.0015; the utility of previous tools is exceeded by an order of magnitude and this approach

requires an order of magnitude less time.

In general, LookCost, the time to compare the results of a test suite to the oracle, is typically a

few minutes for each test case [78]. MissCost varies by application domain: it can be low for appli-

cations where servers can easily update deployed software, but is often high for web applications

with high quality-of-service requirements [120]. An IBM publication provides concrete examples
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of industrial values for these costs: based on a 2008 report [118], LookCost is $25 and MissCost is

$450 (the cost of a defect “during the QA/testing phase”). With those cost figures, using SMART

reduces the costs associated with regression testing over all releases shown in Figure 5.7 by 48%

($131730 vs. $252725). Even if MissCost doubles to $1000, this technique still reduces the costs

by 22% ($195175 vs. $252725).

5.6 Threats to Validity

Although SMART outperforms diff by over a factor of three, it is possible that these results do

not generalize to industry practice for various reasons. For example, the benchmarks used in these

experiments may not be representative of other projects. To mitigate this threat, the two large

benchmarks (HTMLTIDY and GCC-XML) were selected from different domains, and the global

dataset was supplemented with other, smaller benchmarks to increase the diversity of the data used

for testing. It is possible that some results are more indicative for the two larger benchmarks than the

smaller ones, however; Chapter 6 and Chapter 9 evaluate SMART on more test applications. Even

if the benchmarks are representative, it is possible to overfit the model to the data; cross-validation

steps in Section 5.4.1 suggests that is not the case.

Similarly, the results may not generalize if the oracle comparators are not used as developers

would in practice: the regression test output of versions of HTMLTIDY and GCC-XML that were

several months apart were examined, but in practice some organizations may perform these tests

more frequently, such as during a nightly build. Because the model’s performance depends on

the relative frequency of bugs between release versions, and not the number of bugs in general,

this approach should still be able to save developer effort, even if regression tests are run more

frequently.

Finally, human annotations may not have accurately flagged potential errors in regression test

output. To avoid missing actual bugs, these annotations were conservative: only test outputs as not

meriting inspection were annotated if humans were highly certain they did not indicate an error.

Thus non-errors may have been annotated as errors, which translates into less of an opportunity
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to outperform diff, but does not impact the correctness of the approach. In addition, because

annotators were also responsible for suggesting some features for the model, it is possible that bias

exists in the annotations themselves, although care was taken to avoid this situation and baseline

annotations were computed at least twice on each output pair to guarantee a minimum level of

consistency. Section 9.3 presents an experiment where SMART is tested on a set of manually-

injected known faults, as opposed to the potential faults used in this chapter, which avoids such a

complication of humans mis-labeling non-faults as faults.

5.7 Experimental Summary

In this chapter syntactic and structural features have been used to build a model that classifies which

regression test case outputs merit human inspection based on a machine learning approach. On 7154

test cases from 10 projects, this highly-precise oracle comparator obtains a precision of 0.9972, a

recall of 0.9890, and an F1-score of 0.9931, more than three times better than diff’s F1-score of

0.3004. Although these are very strong machine learning results, the technique was further tested

in a simulated deployment involving 20232 test cases and multiple releases of two projects. In that

scenario there were 8425 fewer false positives than diff, and development effort is saved when

the ratio of the cost of inspecting a test case to the cost of missing a relevant report is over 0.0183;

numbers in that range correspond to savings for typical industrial practice.

5.8 Related Work to Error Detection in Web-based Applications

There is currently no industry standard for comparing pairs of XML/HTML documents beyond

that of diff used in capture-replay contexts and user-session based testing [41]. Developers have

the option of customizing diff-like comparators for their target applications, such as using regular

expressions to filter out conflicting dates, but these tools must be manually configured for each

application and potentially each test case, and may not be robust as the website evolves.

Sprenkle et al. focus on reasonably-precise oracle comparators for testing web applica-

tions [101, 103, 104] with HTML output. Building on a capture-replay testing framework for user
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session data [101], they investigate features based on diff, content, and structure. They refine these

features into oracle comparators [104] based on HTML tags, unordered links, tag names, attributes,

forms, the document, and content. They then investigate applying decision tree learning to identify

the best combination of oracle comparators for specific applications [103]. SMART also combines

machine learning and oracle comparators, but additionally includes features and experiments that

are not HTML-specific and can be applied to any tree-structured data. Finally, they validate their

approach by measuring their oracle comparators’ abilities to reveal seeded defects in a single ver-

sion of an application (i.e., measuring differences between the clean application and a fault-seeded

one). By contrast, the experiments in this chapter train and test on data between different versions

of the same application. The approach detailed in this work aims to not flag common and benign

program evolutions, in contrast to the setting of Sprenkle et al. [103], where a application with

deterministic output would yield no false positives with a diff comparator.

Many testing methodologies use oracle comparators that require manual intervention in the

presence of discrepancies [39, 64, 86, 104]. For example, user session data can be used as both

input and also test cases [39, 101], but there must be a way to compare obtained results with ex-

pected results. Lucca et al. address web application testing with an object-oriented web application

model [64]. They outline a comparator which automatically compares the actual results against the

expected values of the test execution. SMART can be thought of as a working instantiation of such

a design, extending the notion to structural differences.

Sneed explores a case study on testing a web application system for the Austrian Chamber of

Commerce [99]. A capture-replay tool was used to record the dialog tests, and XML documents

produced by the server were compared at the element level: if the elements did not match, the test

failed. The feature-based comparator in this chapter also compares XML documents, but does not

necessarily rely on exact element matching, and thus reports fewer false positives.

Meszaros describes experiences using capture-replay scripts for agile regression testing [73].

The focus is on “fragile” test cases where a “robot user” fails for seemingly trivial reasons. Two

parts of the fragile test problem are interface sensitivity, where “seemingly minor changes to the

interface can cause tests to fail even though a human user would say the test should still pass”, and
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context sensitivity, such as the changing of the date and time of the test. The oracle comparator in

this chapter solves the fragile test problem for many test cases, allowing such tests to be used in

later versions.

Binkley [29, 30] as well as Vokolos and Frankl [114] approach regression testing by character-

izing the semantic differences between two versions of program source code using program slicing.

By doing so, only program differences between two versions needed to be tested and the total num-

ber of test cases that need to be executed between versions were reduced. The approach in this

chapter focuses on the semantic differences between two versions of the program output; the tech-

nique is orthogonal to theirs, and the oracle comparator described in this work can be used in a

retest-all framework, or in conjunction with their approach, in a setting in which some regression

tests have been skipped due to source code similarity.

5.9 Summary

This chapter presented SMART, a highly-precise oracle comparator, for reducing the cost of re-

gression testing by using syntactic and structural features to decide whether or not test case output

merits human inspection. In domains with tree-structured output, such as HTML, XML or abstract

syntax trees, traditional diff-based comparisons yield too many false alarms. A number of fea-

tures were suggested that can be used to distinguish potential errors from harmless functionality

additions or rendering changes. For example, changes to the text of HTML output are negatively

correlated with the presence of potential errors, while tree-structured differences, such as moving a

subtree from one part of the output to another, are positively correlated with potential errors.

SMART was evaluated both as a model and as a cost-saving technique. As a model evaluated

on 7154 test case pairs from 10 projects, a precision of 0.9972, a recall of 0.9890 and an F1-score

of 0.9931 was obtained, over three times as good as the standard diff F1-score of 0.3004. These

strong machine learning results were complemented with a simulated deployment involving 20232

test cases. SMART had only 96 false positives — 8425 fewer than diff — and saved development

effort when the ratio of the cost of inspecting a test case to the cost of missing a relevant report
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was over 0.0183, a range both corresponding to a savings for typical industrial practice and also

20% better than previously-published results. Web applications and XML-processing middleware

applications are becoming increasingly important; SMART presents a first step toward an oracle

comparator that makes regression testing for them attractive.

The main thesis of this dissertation is that user-visible web-based application errors have special

properties that can be exploited to improve the current state of web application error detection,

testing and development. This chapter demonstrated that errors in web-based applications can be

modeled using the tree-structure nature of XML/HTML output, and that such a model reduces

the costs associated with regression testing in this domain. Highly-precise oracle comparators were

trained on manually-annotated data from the application being tested. The next chapter will explore

using training data for such oracle comparators from unrelated web-based applications.



Chapter 6 Automating Error Detection During

Regression Testing
The previous chapter introduced a partially-automated highly-precise oracle comparator that

showed significant savings over more naı̈ve diff-like approaches when comparing test case output

for error detection, but required training the oracle comparator on a set of manually-annotated out-

put from the application being tested. This chapter will focus on expanding the concepts from the

previous chapter, by outlining techniques for fully automating1 such an oracle comparator. Specifi-

cally, Hypothesis (H2), that

a highly-precise, fully-automatic oracle comparator for web-based application

testing can be constructed, based on pre-existing information from unrelated

applications, that has fewer false positives than off-the-shelf techniques such

as diff and xmldiff while maintaining the ratio of the cost of examining a

potential bug to the cost of missing an actual bug at or below a current state-

of-the-art value of 0.023 [54],

(H2)

is tested. The main thesis of this dissertation is that user-visible web-based application er-

rors have special properties that can be used to improve the current state of web application error

detection, testing and development. Under such an observation, this chapter shows how exploit-

ing similarities across seemingly unrelated web-based applications obviates the need to provide

manually-annotated training data to an oracle comparator that relies on machine learning.

1Although a human will still have to inspect test case pairs labeled as errors with the approach in this chapter, the
phrase fully-automatic is used throughout this dissertation to contrast with mechanical processes that involve much more
human activity. Specifically, a fully-automatic oracle comparator in this work is defined as one that has the following
properties: 1) it does not require the user to manually annotate output to serve as training data, 2) it does not require cus-
tomizing the tool by training it on manually seeded faults, 3) it does not require the user to specify parts of HTML output
files to ignore (as when manually customizing a diff-like tool), and 4) it does not require the manual configurations as
in [103]

64
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6.1 Challenges in Automatic Regression Testing of Web-based Appli-

cations

Despite the ubiquitous use of web applications, most are not developed according to a formal pro-

cess model [82]. As Chapter 1 discussed, web applications are subject to high levels of com-

plexity and pressure to change. Regression testing is an established approach for increasing the

reliability of applications in the face of recurring updates. Unfortunately, a general want of re-

sources [51, 71, 115], combined with the additional complexities of web applications [86], makes

automation a necessity if regression testing is to be adopted in the web-based application domain.

Although automated replay of existing web-based application test suites is relatively straightfor-

ward, regression testing is constrained by the effort required to compare test results between two

program versions (see Section 3.2.2).

6.2 Fully Automating Regression Testing of Web-based Applications

This chapter explores the idea that other web-based application output, unrelated to the application-

at-test, can be used to train an oracle comparator to recognize error situations. Though the corpus of

training data is not related to the application-at-test, the types of and manifestations of faults in such

applications are often similar in nature, making it possible to build a general predictive fault model.

By shipping this set of training data to the oracle comparator described in the previous chapter, the

comparator process can be automated by not relying on any additional form of manual annotation

(as in Chapter 5) or manual fault seeding (as in [103]).

Such an approach focuses not only on the similar ways unrelated web applications fail, but also

on the equally important ways in which they tend to benignly evolve. Ignoring harmless program

evolutions is central to reducing the number of false positives associated with any oracle comparator

in this domain. Conversely, correctly modeling truly erroneous output allows an oracle comparator

to minimize false negatives.
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6.3 Evaluating Automated Oracle Comparators

This section experimentally tests the hypothesis that web-based application similarities can be ex-

ploited to aid in the automation of various aspects of testing web-based applications. Specifically,

training a model on one set of data, unrelated to the application-at-test, results in successfully testing

the oracle comparator, SMART, on a separate web-based application. The underlying similarities

between these two sets of training and testing output make this approach feasible.

6.3.1 Experimental Setup

Since the approach for modeling output differences involves supervised learning, SMART is first

trained before testing. Recall from the previous chapter that the model takes a weighted sum of

feature values for a pair of test case outputs and indicates that they should be inspected if the sum

exceeds a certain cutoff; the weights and the cutoff are determined on a per-project basis using

linear regression. In this chapter, training the model requires a set of test case output pairs with

known labels (i.e., annotations indicating whether the pair should be inspected or not). One option

is to annotate a subset of test cases from the application-at-test to be used as training data (as in

the previous chapter), but this practice has the disadvantage of requiring human effort. Instead,

pairs of test case output from unrelated, publicly-available applications are used as training data

for the model. This has the advantage of not requiring new manual annotations of test case output,

with the potential drawback of not being as effective as training data tailored to the application-

at-test. Experimental results in Section 6.3.2 show, however, that very high levels of accuracy can

be achieved using this approach, due to the underlying similarities between web-based applications

and the ways in which they fail.

The corpus of training data for the experiments in this chapter are the same pairs of annotated

test case output from Section 5.3.1, summarized in Figure 5.2. As an option, a developer using

SMART may also add their own test cases from previous projects to the set of training data, as-

suming that they have already annotated those output pairs, but in general any additional developer

annotations are not required.
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Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
VQWIKI 2.8-beta 2.8-RC1 39K wiki web application 135 34
CLICK 1.5-RC2 1.5-RC3 11K JEE web application 80 7
Total 108K 6728 941

Figure 6.1: The benchmarks used as test data for Experiment 1. The “Test cases” column gives
the number of regression tests used; the “Test cases to Inspect” column counts those tests for which
the manual inspection indicated a possible bug. When testing on HTMLTIDY or GCC-XML, it is
removed from the training set.

This automated version of SMART was evaluated by examining its performance in terms of

false positives and false negatives. Four benchmarks, shown in Figure 6.1, were selected to serve as

test data, while the applications from the previous chapter in Figure 5.2 were reserved as training

data. Although ten benchmarks were used as the training corpus, only two of them (HTMLTIDY

and GCC-XML) had enough test case output pairs that were labeled as faults (given by the “Test

Cases to Inspect” column) to serve as testing (as opposed to training) subjects. Two open source

web applications (CLICK and VQWIKI) were also chosen to supplement test benchmarks in a “worst-

case scenario” fashion: none of the training benchmarks are considered typical web applications, so

successful performance on them further supports the hypothesis of inherent web-based application

similarities.

VQWIKI [18] is wiki server software that can be used out-of-the-box as a web application.

CLICK [10] is a Java Enterprise Edition web application framework that ships with a sample web

application demonstrating the framework’s features. The other two testing benchmarks, HTMLTIDY

and GCC-XML, are open-source XML-based applications that are also a part of the training bench-

marks. For these two applications, each benchmark’s respective test case outputs were removed

from the corpus of training data, making it impossible to test and train on the same data. Therefore,

the training data for CLICK and VQWIKI were the test case output pairs from the ten benchmarks

in Figure 5.2, while GCC-XML and HTMLTIDY were trained with the nine remaining benchmarks

from Figure 5.2, when the test cases for each respective application were removed from the training
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data set. In total the model was tested on 6728 test case pairs, 941 of which were labeled as errors

by manual inspection (see Figure 6.1).

6.3.2 Experimental Results

This section presents empirical measurements of SMART’s predictive power at detecting faults be-

tween test case output pairs (analogous to Section 5.5). Figure 6.2 shows the model’s F1-score

values for each test benchmark. A score of 1 indicates perfect performance. Also included are

F1-score values for unbiased and biased coin toss, standard diff, and xmldiff [4], an off-the-shelf

diff-like comparator for XML and HTML (see Section 5.4.2). The unbiased coin toss returns

“inspect” with a probability of 0.5, while the biased coin toss returns “inspect” with the dataset’s

actual underlying ratio: (6728− 941)/6728 (note that it is not possible to know this ratio a priori

in the field).

SMART is anywhere from over 2.5 to almost 50 times as good as diff at correctly labeling

test case outputs, with similar improvements over xmldiff. For the two web applications, the ora-

cle comparator achieves perfect precision and recall — an optimal result. The scores for the large

XML benchmark, HTMLTIDY, are also close to perfect (an F1-score of 0.98). Overall, using test

case output pairs from unrelated web-based applications to train a model to predict errors in the

application-at-test is a successful approach. The underlying similarities between web-based appli-

cations in general make this possible. An analysis of variance [74] revealed that features associated

with text-only changes were strongly negatively associated with errors in most benchmarks. By

employing an available model and training set combination such as this, developers would be able

to significantly reduce the number of false positive test case output pairs they must inspect, without

requiring annotations or additional human effort to train the model.

Figure 6.4 shows SMART’s precision scores for each benchmark, as well as baseline compara-

tors, highlighting the model’s predictive power over diff-like comparators. Figure 6.3 presents the

model’s recall scores, where it is challenged by diff in that the latter will always be able to return

all true positive errors. For the two web applications (VQWIKI and CLICK), the oracle comparator

is equally as good as diff at returning error cases, while for HTMLTIDY its score is competitive.
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0

0.2

0.4

0.6

0.8

1

1.2

unbiased
coin toss

biased
coin toss

diff xmldiff MODEL

Comparator

F
-s

c
o

re HTMLTidy

GccXml

VQWiki

Click

Figure 6.2: F1-score on each test benchmark (HTMLTIDY, GCC-XML, VQWIKI, CLICK) using the
Model, and other baseline comparators. 1.0 is a perfect score: no false positives or false negatives.
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Figure 6.3: Recall on each test benchmark (HTMLTIDY, GCC-XML, VQWIKI, CLICK) using the
Model, and other baseline comparators.
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Figure 6.4: Precision on each test benchmark (HTMLTIDY, GCC-XML, VQWIKI, CLICK) using the
Model, and other baseline comparators.
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The savings using this approach can be estimated by defining the cost of looking at a test case

(LookCost) and the cost of missing a bug (MissCost). Recall from the previous chapter that the

approach is advantageous when its associated cost:

(TruePos+FalsePos)×LookCost +FalseNeg×MissCost

is less than the cost of current industrial practice of |diff|×LookCost. Developers will save effort

when the cost of examining false positives flagged by diff, but not SMART, is greater than the cost

of missing any relevant test cases with the oracle comparator:

LookCost

MissCost
>

−FalseNeg

TruePos+FalsePos−|diff|

It is assumed LookCost � MissCost [118], so the goal is for this ratio to be as small as possible.

For the two web applications, the perfect F1-scores imply savings are always produced with respect

to diff: 75% and 96% of the test case pairs reported as errors by diff were false positives for

CLICK and VQWIKI respectively, and SMART eliminates the need to check any of these, while

simultaneously correctly flagging all potential errors. For HTMLTIDY, savings over diff occur if

the ratio of LookCost to MissCost is at least 0.0004 (in other words, if the cost of missing a bug

is no more than 2500 times the cost of looking at a report). SMART’s performance is significantly

better than the 0.0015 ratio of partially-automated work in the previous chapter, due in part to not

incurring a penalty for the LookCost associated with the manual annotation of the training data in

the previous chapter.

While the F1-score for the other XML benchmark, GCC-XML, was three times better than

that of diff, its recall score of 0.84 implies that the oracle comparator may be missing a significant

number of actual errors. An analysis of variance revealed that GCC-XML relied heavily on deletions

being positively associated with errors, while in GCC-XML’s training data the opposite was the

case. Rather than recommend that developers return to using a diff-like comparator to avoid

missing bugs, or employ other methods where manual annotation is required, they can continue

to apply SMART with one modification: they can extend the training data with test case output
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pairs between unmodified source code executions and fault-injected source code executions. A

cautious development organization might randomly spot-check 10% of the results predicted by the

technique. Such a spot-check would still involve less effort than a standard diff comparator, and

is likely a one-time cost to evaluate the compatibility of SMART’s readily-available training data set

with that of the output in the application-at-test. If the results are insufficiently accurate, the test

suite can be augmented by defect seeding, as described in the next subsection.

6.4 Training Data from Defect Seeding

This section details using defect seeding to generate additional training data for GCC-XML. Defect

seeding offers the benefit of annotation-free training data generation, while still tailoring the training

data to the current application under test, thereby saving developers from manually training an

oracle comparator such as SMART.

The relatively low recall value for GCC-XML in Section 6.3.2 suggests that GCC-XML may

exhibit some errors that are different from the instances of errors in the general training data set

provided to SMART. Given that GCC-XML is an XML transformer for compiled C++ files, and

the rest of the training applications mostly transform text or XML/HTML documents, this is not

surprising. Developers can, however, automatically tailor the training set to their application as

needed using defect seeding.

The basic approach is to automatically seed the source code of the application with defects [56]

and run the resulting mutated program on its existing regression test suite. Any difference in the

output can be attributed to the injected fault, and that output pair can be added to the training data

with the label “should inspect”. The process is repeated until a sufficient number of training in-

stances have been generated. Using defect seeding or mutation to simulate errors in test case output

for web-based applications has previously been explored [59,103]. While automatically generating,

compiling and running mutants can be CPU-intensive, manual intervention is not required.

Defect seeding was implemented for GCC-XML with a subset of mutation operators described

by Ellims et al. [24]. Examples of mutation operators include deleting a line of code, replacing a
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statement with a return, or changing a binary operator, such as swapping AND for OR. To generate

a mutant version of GCC-XML, a single line of source code was randomly chosen from all of the

source code files for that project, and a mutation was applied to it. For each mutant version of the

program, only a single line was mutated. Each mutant version of the source code was compiled

separately, followed by re-running the test suite, recording as erroneous any cases where the output

from the mutant source code differed from that of the original output. The overall process was

quite rapid: using single-line seeded faults obtained 11,000 usable erroneous output pairs within 90

minutes on a 3 GHz Intel Xeon computer.

Figure 6.5 shows the F1-scores, averaged over 1000 trials, when adding between 0 and 5 defect-

seeded output pairs to the set of training data, and then running SMART for GCC-XML. Selecting

0 mutants is provided as a baseline. The large margin of error when adding only one mutant output

pair implies that performance depends on selecting the most useful mutant outputs to include as a

part of the training data set. However, selecting any mutant output is always better than selecting

none. It is possible to dramatically affect the model’s predictive power by adding a single mutant;

for the case of GCC-XML, there were only 44 errors in the training data set, and adding one more

to such a small number can significantly change the results. For training data sets that contain more

errors, it is likely that more mutants will be required, although this chapter demonstrates that it is

quite simple to automatically generate these defects.

In addition, no significant performance gains are witnessed beyond adding 5 mutant output

pairs, at which point the F1-score was an essentially-perfect 0.999. Very little application-specific

training data (5 labeled output pairs) are needed to bring even the worst performing benchmark up

to almost-perfect performance; even this application-specific data can be obtained automatically.

6.5 Summary of Experiments

Inherent web site similarities are a promising way to reduce the burden of human effort in regression

testing for web-based applications. Section 6.3 demonstrated that using test case output pairs from

unrelated web-based applications to train a model to predict errors in output in the application-at-
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Figure 6.5: F1-score for GCC-XML using the model with different numbers of test case output pairs
from original-mutant versions of the source code. The “0” column indicates no mutant test outputs
were used as part of the training data. Each bar represents the average of 1000 random trails; error
bars indicate the standard deviation.

test is a viable strategy, achieving perfect recall and precision for the two web application bench-

marks, and close to perfect (0.98 and 0.99) F1-scores for the two XML-based applications. To

obtain the F1-score of 0.999 for GCC-XML, the training data was augmented with five automati-

cally generated outputs obtained via defect seeding. In all cases the oracle comparator, SMART,

outperforms a diff-like comparator by a factor between 2.5 and 50 times, thereby significantly

reducing the number of false positives, and thus the developer cost, with respect to diff.
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6.6 Threats to Validity

Although significant savings in the amount of effort required to automate parts of the regression

testing process are shown in this chapter, it is possible that the benchmarks selected to test on were

not indicative of other applications. To mitigate this threat, open-source benchmarks were chosen

rather than toy applications, selected from a variety of domains. The combined benchmarks are over

seven times larger than the combined benchmarks of the most closely related previous work [104]

in terms of lines of code, with over twice as many total test cases.

In cases where the technique does not work as well as desired, defect-seeding results suggest

that largely-automatic improvement is possible. Adding mutant test case outputs to the set of train-

ing data for the automated oracle comparator can help to tailor the model to the application-at-test,

and the low number of mutants required implies that it may even be possible to provide a very

small (≤ 5) set of error instances to tailor the tool to a specific application. Because any difference

between the expected output and defect-seeded source code output is considered a fault, however,

developers should take care not to include false positives, such as cases where timestamps are dif-

ferent, in the training data set, unless they label them as non-bugs.

It may also be possible that there are certain web applications for which this approach does

poorly, despite defect seeding, because the specification of the application-at-test has unusual prop-

erties. For example, consider a Wiki application where the formatting and content of displayed

natural language text is important. If fault seeding is unable to provide suitable defects on which

to train the model to recognize small changes in natural language text as errors, this approach is

unlikely to yield savings over diff. Such unusual cases are left for future work.

6.7 Related Work to Automated Error Detection in Web Applications

To the best of my knowledge, using SMART with a pre-existing corpus of training data is the first

fully-automated approach towards providing a highly-precise oracle comparator for this domain.

For a review of partially-automated approaches in this area, as well as other work related to fault

detection in web-based applications, see Section 5.8.
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6.8 Summary

Testing web-based applications is often overlooked due to a lack of time and resources, despite their

high reliability requirements. Although automating test suite replay is relatively simple, comparing

test results with expected output remains a challenge for this domain. This chapter presented a new

technique that takes advantage of inherent similarities between web-based applications to automate

parts of the regression testing process. Using a diff-like comparator for web-based output yields

a significant number of false positives that must be manually inspected: instead, a fully automated

highly-precise oracle comparator is offered that is based on a model trained on data from unrelated

web-based applications. This technique was evaluated on 6728 test case pairs, and was found to

outperform diff anywhere from 2.5 to 50 times, achieving perfect precision and recall half the

time, and very close to perfect precision and recall otherwise.

The main thesis of this dissertation is that user-visible web-based application errors have spe-

cial properties that can be used to improve the current state of web application error detection,

testing and development. This chapter explored one component of such an observation: how ex-

ploiting similarities across seemingly unrelated web-based applications, makes providing manually-

annotated training data unnecessary, thereby yielding a fully-automated highly-precise oracle com-

parator.



Chapter 7 Modeling Consumer-Perceived Web

Application Error Severities for Testing
The previous two chapters provided means for automating parts of the regression testing process

for web-based applications by relying on the structure of XML/HTML output as well as similari-

ties in the way web-based applications fail. The following chapters will focus on further increas-

ing the return on investment for testing in this domain by focusing on severe errors, recognizing

that consumer-perceived severity is an important characteristic of errors in web applications. This

chapter begins by probing the concept of consumer-perceived error severity in web applications.

Specifically, Hypothesis (H3), that

faults injected into web applications, using an automated seeding process using

mutation operators described in Section 2.2.3, or using manual fault seeding

as in [106], vary in their underlying consumer-perceived severities,

(H3)

is established as a baseline. The rest of this chapter then recognizes that web application test-

ing is plagued by a perceived low return on investment (see Chapter 1), and explicitly evaluates

Hypothesis (H4), that

an automated model of consumer-perceived error severity can be constructed

that agrees with human severity judgments at least as often as humans agree

with each other, evaluated using the Spearman’s Ranking Correlation Coeffi-

cient (SRCC) [44, 107].

(H4)

Such a consumer-perceived error severity model could allow developers to prioritize user-

visible errors according to their likelihood of impacting consumer retention, thereby encouraging

testing these applications, by increasing the perceived return on investment of testing activities.

78
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7.1 Challenges with Consumer Retention

Despite the growing usage of web applications, extreme resource constraints during their devel-

opment frequently leave them inadequately tested. Additionally, customer loyalty to any partic-

ular website remains notoriously low, and is primarily determined by the usability of the appli-

cation [76]. Despite this issue, consumer satisfaction and retention are rarely formally addressed

during the development and testing of web applications.

This chapter focuses on targeting development and testing strategies toward consumer reten-

tion, making them more attractive to developers. Two insights suggest that it is possible to do so.

First, although web applications are frequently complex, composed of multiple components, and

written in various programming languages, they tend to fail in similar ways. The previous chapter

demonstrated that such similarities in failures are highly predictable. These similarities stem from

the fact that web applications render output in HTML, where lower-level faults frequently manifest

themselves as user-visible output [81, 104]. This insight allows developers to focus their testing

strategies on this top level of the application to capture a broad class of faults.

Second, web applications are meant to be viewed by a human user. While this implies that

faults will often be user-visible, this human-centric quality of web applications can be exploited

by defining the acceptability of output as whether or not users are able to complete their tasks

satisfactorily. Rather than viewing verification in absolute terms, developers may focus on reducing

high severity faults that may cause consumers to abandon the application.

Consumer-perceived error severities have not been thoroughly studied in the context of web

applications, even though this domain is highly human-interaction centric. Although intuitions

abound (e.g., some may believe that small typographical errors are less likely to upset consumers

than incorrect shopping cart totals, or that missing banner ads are less severe than entirely-blank

pages), because there are no concrete, evidence-based guidelines in making such judgments, de-

velopers may currently be unsure or unaware of how to focus testing methodologies towards fixing

high-severity errors first. In general, the extent to which various sorts of errors will drive away

consumers remains unclear.
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Consider, for example, users of a service who are in the process of updating stored personal

profile data. When they attempt to save their changes through the web application, their changes

are confirmed, although they receive a small warning message at the top of the screen regarding

a seemingly unrelated issue. Some users may not notice the warning, others may ignore it, and

some with a technical background may interpret the warning to be harmless. It is also possible,

however, that users may be left uneasy with respect to the persistence of their profile changes in the

presence of any warning message on such a confirmation screen. This relationship between visible

web application errors and their consumer perception has not been explored in web application

development and testing.

An orthogonal problem to unknown consumer perception of web application error severity is

that of correctly identifying the severity of a particular fault, despite human judgment. In other

words, we often not only fail to consider consumer-perceived severities of web application faults,

but even when we do, it is unclear how to assign a fault an accurate consumer-perceived severity

judgment. Even the concept of fault severity is not always straightforward. Developer-perceived

fault severities are frequently recorded during the testing and maintenance phases of software de-

velopment in bug repositories, but these judgments have been found to not represent true severities

and may instead factor in other variables, such as the politics behind labeling a bug with a certain

severity rating [80]. Instead, this work focuses on consumer-perceived severities, rather than devel-

oper judgments, in an effort to more precisely identify those faults that are likely to drive consumers

away.

7.2 Strategies For Modeling Consumer Perceived Severity

Relying on a single human observer to judge the severity of a particular error, especially if that

person is a developer of the application-at-test, may not necessarily lead to accurate assessments of

the impact of such defects on consumer retention. Consequently, a formal model of fault severity

is desired, that strongly agrees with average human judgments, as opposed to the opinion of any

single individual. Such a formal model of fault severity can then be used to guide developers in fault
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prioritization, or to more effectively evaluate competing testing approaches in the web application

domain. This chapter builds a model of consumer-perceived severities from a large-scale human

study; surface and semantic features related to HTML rendering can be used to model consumer-

perceived fault severities, based on a survey containing 12,600 datapoints from 386 humans. The

formal model agrees with the average human 84% of the time, and more than the humans agree with

each other. In addition, many of the features used in the model can be detected automatically, and

this chapter shows that an automated judgment of consumer-perceived fault severity can be made

with only a 1% drop in accuracy when compared to the non-automated version. Such a model can

increase the return-on-investment for web application testing, since it can help developers to focus

on bugs that consumers care about.

As a baseline, this chapter verifies that faults have varying severity levels, before attempting to

build such a model of consumer-perceived severity. Although this point may seem obvious, much

of the current research in testing web applications uses fault detection as an orthogonal approach to

code coverage in evaluating testing approaches, and assumes that all faults are of the same sever-

ity [26,37,39,77,101,103,104,105]. As a result, competing testing approaches may be incorrectly

evaluated in terms of efficacy if only the number, and not the severity, of uncovered faults is mea-

sured. Fault-based testing is used to introduce faults into the code meant to be uncovered by the test

suite [28,106]. Such fault seeding can be achieved in two ways: faults can be manually inserted by

individuals with programming expertise, or mutation operators can be used to automatically pro-

duce faulty versions of code. While this work does not directly address the difficulty of uncovering

seeded faults, it does show that naı̈vely-injected faults do not have a uniform consumer-perceived

severity, suggesting that standard fault seeding metrics are misleading for web application test suite

evaluation. In other words, the assumption that all seeded faults have the same severity, and thus

that a test suite that finds more faults is necessarily better, is not always true when considering

consumer-rated severity.

Having established that web application faults are not all equally severe, this work models

consumer-perceived fault severity by analyzing surface features of both the browser-displayed GUI

as well as HTML output to arrive at a predictive model. The goal is to provide a model that agrees
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with average consumer-perceived severities more often than consumers agree with each other, as

a single individual human judgment may not be accurate. Access to such a predictive model can

therefore provide developers with an objective assessment of the severity of a web application fault

with higher accuracy than asking an arbitrarily chosen human observer to make the same judgment.

Ultimately, developers could use such a model to focus their development and testing efforts on the

elimination of high severity faults. Prioritizing faults according to their severity can increase the

perception of return-on-investment for testing by saving developer effort and increasing consumer

retention by focusing on severe faults first.

While other approaches have explored fault taxonomies for web application faults, to the best

of my knowledge this work is the first to address these faults in the context of consumer-perceived

severity. In addition, this chapter provides an automated model that, when given a correct version

of HTML output and a faulty version, predicts the severity of the fault with higher accuracy than

that of human judgments.

7.3 Consumer-Perceived Error Severity Study

This section examines the consumer-perceived severity of real-world and seeded faults to show that

they have varying levels of severity, thereby refuting the underlying assumption in fault-based test-

ing of web applications that a test suite that detects more faults than its competitors will necessarily

detect more bugs that may drive away consumers, supporting Hypothesis (H3). Establishing that

faults have varying severities is important to be able to more accurately assess the fault detection

capabilities of competing testing approaches, and is a prerequisite to the consumer-perceived fault

severity model in this chapter.

7.3.1 Setup and Definitions

The hypothesis that web application faults have varying severity levels was tested by designing a

human study where subjects rate their perceived severity of various potential web application faults

as if they were consumers of the web application under examination. Four hundred real-world
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Description Severity
Rating

I did not notice any fault 0
I noticed a fault, but I would return to 1
this website again
I noticed a fault, but I would probably 2
return to this website again
I noticed a fault, and I would not return 3
to this website again
I noticed a fault, and I would file a complaint 4

Figure 7.1: Severity scale for web application faults.

faults were obtained for evaluation by the users in the study. These faults were presented to human

subjects who were asked to rate the severity of each fault on the 5-point scale in Figure 7.1. Severity

was intentionally left formally undefined.

Each potential fault was presented as a scenario triple:

• the current webpage

• a scenario description of the task the user is trying to accomplish in the scenario, and the

action taken

• the next webpage (which may or may not contain a fault)

This before-and-after scenario view is necessary because web application faults depend on context

and the use of web applications is inherently dynamic. For example, a scenario may begin with a

login screen for a website, and include the description that the user has just entered a valid username

and password and is going to click the login button. The human participants are then shown the next

page, as if, according to the scenario narrative, they had clicked the button. Human subjects were

presented screenshots of both the current and next page, and were allowed to toggle freely between

them before deciding on a severity rating.1

The four hundred real-world faults originated from the bug report databases of 17 open-source

benchmarks summarized in Figure 7.2. Faults were randomly but systematically selected from these
1The written survey instructions and an example of the current and next screenshots are available in the Appendix

in Section A.1.
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Name Language Description Faults
Prestashop* PHP e-commerce 30
Dokuwiki* PHP wiki 30
Dokeos PHP e-learning 22
Click* Java JEE webapp 3

framework
VQwiki* Java wiki 6
OpenRealty* PHP real estate listing 30

management
OpenGoo PHP web office 30
Zomplog PHP blog 30
Aef PHP forum 30
Bitweaver PHP content mgmt 30

framework
ASPgallery ASP.NET gallery 30
YetAnother ASP.NET forum 30
Forum
ScrewTurn ASP.NET wiki 30
Mojo ASP.NET content mgmt 30

system
Zen Cart PHP e-commerce 30
Gallery PHP gallery 30
other - - 9

Figure 7.2: Real-world web applications mined for faults. All applications were sources for human-
reported faults taken from defect report repositories, as well as non-faults taken from indicative
usage. An asterisk indicates an application used as a source for manually- and automatically-
injected faults.
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repositories by starting from the newest repository entry and working backwards until 15 faults

had been successfully reproduced, and then repeating this process from the oldest fault moving

forward (four of the benchmarks yielded fewer than 30 viable faults). The goal of selecting faults

in this manner, as opposed to choosing faults randomly, was to replicate faults encountered in both

immature and more established web applications. The description of the fault in the repository

was used to obtain or replicate a screenshot and the HTML code of the current and next pages,

along with a scenario description. Screenshots included in bug repository defect reports were used

unchanged as the next image if applicable (e.g., given sufficient image resolution). To capture as

many classes of faults as possible, written scenario descriptions were relayed to study participants

to provide supplemental bug report detail that may not be obvious simply by examining a current

image. For example, subjects were instructed that they had permissions to access a given item

when such context was necessary for the fault to be recognized. Similarly, when making a purchase

through a shopping cart participants were told to imagine they had successfully completed checkout

steps 1–3 before showing them the fault in step 4 related to information entered on step 1 on the

current screen. In addition to these 400 real-world faults, 100 non-faults (i.e., indicative, fault-free

behavior) were obtained from all of the benchmarks.

Coupled with the 400 real-world faults and 100 non-faults, the study employed 200 manually-

injected faults and 200 automatically-injected faults equally distributed among those benchmarks in

Figure 7.2 denoted by an asterisk, plus one other PHP-based web forum called VANILLA. Manual

injection was accomplished by instructing three graduate students with programming experience

to insert one fault into the source code at a time, and then re-running a test suite according to

the methodology in Sprenkle et al. [101]. Automatic source code mutation was similarly used to

generate mutant versions with one inserted fault per test suite run. Mutants were generated using

the mutation methodology in Section 6.4.

The 400 real-world faults were combined with the 400 injected faults and the 100 non-faults

to yield a corpus of 900 scenarios. These scenarios were then randomly assigned into groups of

50. Each survey participant rated a group of 50 scenarios without knowing whether any particular

scenario was a real-world fault, an injected fault, or a non-fault. Users were instructed to use
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Factor F value p value
Rating 592 < 0.001
Human Rater 5 < 0.001

Figure 7.3: 2-way analysis of variance of fault severity as judged by human subjects.

their real-life experience with web applications to decide on a severity for each potential fault they

viewed. Users were advised to assume that any perceived fault would be fixed upon a subsequent

return to the webpage, but that this fix would occur at an unknown point between the present time

and up to one year in the future; vendors may take over one hundred days to patch even serious

problems [110, p.13].

Over 380 anonymous subjects, a majority from the undergraduate populations at the Universi-

ties of Virginia and Maryland, participated in the study. Approximately half of the subjects were

first year students, with the rest being second year or higher. Subjects were compensated with either

$5 upfront or the chance to participate in prize drawings of up to $150. Completing the survey took

20 minutes on average. To ensure that human voters were not subject to training effects (where sub-

jects may have been influenced in their latter severity ratings by having already rated some number

of faults), the variance of votes on the first 25 faults in each set was compared to the variance of the

rest of the 50 faults subjects viewed. These values differed by 0.02 on a 5-point scale, respectively,

indicating that training effects are unlikely in this experiment and there was no need to repeat the

measurement for the same subjects in a different fault presentation order.

To ensure the number of subjects yielded statistically significant results, a 2-way analysis of

variance [74] was conducted to separate the variance due to differences in true fault severity from

the variance due to differences in human judgments, in the actual votes made by subjects. The

results of this 2-way ANOVA are summarized in Figure 7.3. The F value of the Rating, which

corresponds to the square root of the variance explained by that feature over variance not explained,

was 100 times that of the F value of Human Raters, indicating that the contribution of the ratings

themselves, as opposed to who made the rating (i.e. the Human Rater), was much more significant

with respect to the fault severities recorded. This implies that the number of subjects was enough
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Fault Type Low Medium Medium-High Severe
≤ 1 > 1 and ≤ 2 > 2 and < 2.5 ≥ 2.5

Real-world 23% 30% 19% 28%
Automatic-injected 25% 25% 27% 23%
Manual-injected 23% 28% 27% 22%
Non-fault 92% 7% 0% 1%

Figure 7.4: Average severity ratings from a total of 12,600 human judgments of 900 scenarios.

to generate statistically significant results, as any particular human responsible for making a rating

had little impact on the fault severities. Additionally, inter-annotator agreement was measured using

Pearson’s rho [89], with a value of 0.70 and p value of 0.03 for this dataset, demonstrating relatively

strong inter-annotator agreement and supporting the conclusion that the number of subjects viewing

each fault yielded statistically significant results.

7.3.2 Study Results

Over 12,600 severity scores were recorded from 386 humans, with at least 12 votes per fault. Fig-

ure 7.4 presents the distribution of severities across real-world, manually-injected, automatically-

injected, and non-faults. All faults, whether real or injected, do not have the same severity, refuting

the underlying assumption that each detected fault in fault injection-based testing is equally im-

portant [26, 37, 39, 77, 101, 103, 104, 105]. This implies that a test suite that uncovers more faults

may not necessarily produce an application with higher customer retention, because the underlying

severity of the discovered faults are unknown. Web applications may be more vulnerable to severe

faults than some other types of software, due to their direct contribution to consumer loss as defined

in the severity rating scale in Section 7.3.1. A severe fault is defined to be one with an average

human severity rating of 2.5 or higher, as these are most likely to result in lost consumers, based on

Figure 7.1.

In addition, Figure 7.4 reveals the underlying distribution of fault severities for manually and

automatically-injected faults in the experiment. Seeded faults had almost equal numbers of faults in

each severity category, indicating that fault-injection based techniques, overall, are a reasonable way

of measuring test suite quality in that they do test faults with varying severities, although fault injec-
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tion alone without a severity analysis cannot be used to compare two test suites if one is interested

in characterizing consumer retention. Given that injected faults have varying severities, Section 7.5

details an automated model that can correctly predict consumer-perceived fault severities with high

precision, and could be combined with fault-injection based testing to provide a more accurate

representation of test suite efficacy. Figure 7.5 presents the results of a Kolmogorov-Smirnov

analysis [33] of this dataset, which attempts to determine if two datasets differ significantly. No

statistically significant differences were observed between real-world, automatically-injected, and

manually-injected fault severity distributions, corresponding to the results in Figure 7.4. As ex-

pected, the distributions of real-world, automatically-injected, and manually-injected faults were

significantly different than those of non-faults.

Figure 7.6 compares the severity distributions of real-world faults to these manually- and

automatically-injected defects broken down by each application that had both injected faults and

real-world faults, with the exception of CLICK which only had three real-world faults. In three of

the four benchmarks the automatically and manually seeded faults both failed to generate as many

severe faults as the real-world faults for the same application, although the severity distribution of

the real-world faults in this study is not necessarily that of web applications in general. For exam-

ple, low-severity faults are likely under-represented in the bug reporting databases from which the

scenarios were drawn.

In an attempt to characterize the relative distribution of fault severities in the real world, ten

web application developers were surveyed.2 Figure 7.7 presents the results of the developer survey.

In an effort to secure anonymity, participants were allowed to take the survey without providing the

lines of code (or any other identifying information) of their current project. The largest benchmark

(denoted with an asterisk) was described as similar to Microsoft Hotmail, Yahoo Mail and Windows

Vista’s Weather Gadget, with 250-300 million customers daily. Even in this limited survey, high-

severity faults were a relatively small percentage of faults overall, similar to other studies of fault

severity in industrial settings [79]. Although this survey may suffer from the problems of developer

self-reporting previously mentioned in [80], it is presented as supplemental evidence that real-world

2The written survey instructions are available in the Appendix in Section A.2.
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Group 1 Group 2 D value p value
Real-world Automatically-injected 0.0691 0.524
Real-world Manually-injected 0.0969 0.170
Automatically-injected Manually-injected 0.0616 0.839
Real-world Non-fault 0.7211 < 0.001
Automatically-injected Non-fault 0.7154 < 0.001
Manually-injected Non-fault 0.7083 < 0.001

Figure 7.5: Kolmogorov-Smirnov test results for the dataset.

faults vary in their severity.

7.4 Modeling Consumer-Perceived Severities of Web Errors

In the previous section, web application faults, whether real-world or seeded, were shown to differ

in their severity as perceived by consumers. This section shows that a model of consumer-perceived

severity can be successfully built that agrees with average human judgments more often than hu-

mans agree with each other. First, a proof-of-concept human-assisted model is presented, that is

then extended to an automated version, and supporting Hypothesis (H4). Web applications are sen-

sitive to the consumer perception of their reliability. Such a model can be used by developers of

web applications to prioritize faults they plan to fix, or by researchers to compare various testing

methodologies, in an effort to minimize consumer loss.

7.4.1 Modeling Error Severity

Although web applications themselves vary widely in their presentation and functionality, web ap-

plication errors do have common features (see Chapter 6). For example, a stack trace may be

displayed to users for a number of reasons, across a number of platforms, in unrelated web appli-

cations. Such errors in deeper levels of the application are commonly corralled into user-visible

HTML [81, 104]. Based on this insight, seventeen boolean surface features of web application

browser output are presented that may be indicative of faults. These features, summarized in Fig-

ure 7.8, can accurately model consumer-perceived fault severity: given the presence or absence
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Benchmark ≤ 1 > 1 and ≤ 2 > 2 and < 2.5 ≥ 2.5
PRESTASHOP 37% 27% 17% 20%
real-world
PRESTASHOP 24% 45% 24% 6%
automatically-injected
PRESTASHOP 30% 33% 21% 15%
manually-injected
OPENREALTY 41% 21% 31% 7%
real-world
OPENREALTY 21% 24% 18% 36%
automatically-injected
OPENREALTY 45% 24% 27% 3%
manually-injected
DOKUWIKI 22% 22% 11% 44%
real-world
DOKUWIKI 36% 27% 24% 12%
automatically-injected
DOKUWIKI 12% 27% 21% 39%
manually-injected
VQWIKI 0% 33% 33% 33%
real-world
VQWIKI 21% 24% 31% 24%
automatically-injected
VQWIKI 36% 32% 14% 18%
manually-injected

Figure 7.6: Comparison of real-world and injected faults per application. Reported as a percentage
of total faults for each group.
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LOC Low Medium Medium-High Severe
200K 57% 12% 8% 23%
2,000K* 38% 40% 15% 7%
n/a 90% 5% 3% 2%
20K 90% 10% 0% 0%
n/a 95% 3% 1% 1%
1K 75% 12% 12% 1%
n/a 85% 10% 0% 5%
> 100K 78% 14% 2% 6%
n/a 86% 10% 0% 3%
1K 90% 10% 0% 0%
Average 42% 36% 14% 8%

Figure 7.7: Severity distribution of faults according to developer responses. Average refers to the
average distributions for projects where lines of code (LOC) were provided.

of these seventeen features, the model produces a severity judgment that agrees strongly with the

average human judgment. These features are orthogonal to those presented in Section 5.2.2.

A fault may lead to a combination or constellation of features. For example, a small warning

message on a page that does not interfere with its main functionality may be considered both an

Error Message and Cosmetic according to Figure 7.8. No faults from the human study were labeled

as having more than six features. Figure 7.8 also lists the percent of real-world faults in the human

study that exhibited each feature in the % of Faults column.

The severity model relies on human annotators to label each fault with its respective features.

Twelve graduate students, with an average of twelve, four, and twelve, years of programming, web

programming, and web usage experience respectively, were recruited as annotators. The model

calculates the consumer-perceived severity associated with a web application fault via a manually-

constructed decision tree that was engineered through an analysis of 300 of the 400 real-world faults

described in Section 7.3.1, chosen at random. The remaining 100 faults were held out to serve as

testing data.

For example, a fault labeled as having an Error Message and an Arithmetic Calculation Error

would be predicted to have high severity. An example of such a situation is a miscalculation of

shipped quantities in a shopping cart with a seemingly unjustified associated warning message to
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Feature Description % of Faults
Arithmetic Generally for shopping-cart based applications, 3
Calculation any error in calculating the amount paid,
Error shipping, taxes, discount applied, quantities

ordered, etc.
Blank Page An empty page containing no information or text. 2
404 Error An error experienced when the URL is not found; 3

the words “404” or “not found” must appear
somewhere on the page.

Cosmetic An error that does not affect the functionality 24
of the website, such as a typo, small formatting
issues, bits of visible HTML code, etc.

Language An inability to encode or correctly convert 2
Error characters between languages, often resulting in

incorrect characters on the page.
CSS Error An error in loading the stylesheet between the ≤ 1

current and next pages.
Code on the Any error that results in non-HTML, non-SQL 24
Screen program code appearing on screen, including any

error referring to a line number.
Error Message Either any error message, or any error that 52
/ Other Error cannot be classified in any other category.
Form Error Missing, malformed, or extra buttons, form fields, 7

drop-down menus, etc, including incorrectly
validating forms.

Missing Any part of a webpage that is missing, not 13
Information including images.
Wrong Page An unexpected page is loaded. 12
/ No Redirect
Authentication Any errors that occur during login. 6
Permission Any errors occurring with respect to user 4

permissions in an application, such as access
being incorrectly denied to a user.

Session An unexpected session timeout or other session- 1
related issues.

Search Errors occurring during searching, such as 2
incorrectly printing out results.

Database Any errors associated with accessing or querying 9
a database, including visible SQL code being
displayed.

Failed Upload An error during the upload of an item. 5
Missing Image A missing image. 3

Figure 7.8: Boolean surface features associated with web application faults. These features form
the basis of the formal model of human-perceived fault severity.
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Model SRCC Accuracy Severe
Missed

Manual Decision Tree 0.84 84% 1/30
Individual human (avg) 0.70 59% 8/30
Always Average Rating 0.51 58% 30/30
Always Median Rating 0.51 59% 30/30
C4.5 Decision Tree 0.76 85% 5/30

Figure 7.9: Average Spearman’s Ranking Correlation Coefficient (SRCC) between each model and
the average human over 100 held-out faults. A correlation of 1 indicates perfect agreement, whereas
a correlation of 0 indicates no correlation. An SRCC score of more than 0.5 is considered to have
moderate to strong correlation for a human study [44]. The model agrees with the average human
judgment more strongly than humans agree with the average human judgment. An ‘Accurate’
prediction differs with the average human value by less than 0.75.

the user. Similarly, perceiving a fault as Cosmetic would result in an assignment of low to moderate

severity, even when combined with other features. The complete decision tree is available in the

Appendix in Section A.4; it includes 29 conditional judgments. Its behavior can be summarized

by noting that Arithmetic Calculation Errors, Errors Message / Other Errors, Authentication and

Permission issues, Code on the Screen, and loading the incorrect page or no page at all are associated

with more consumer dissatisfaction than other fault features.

7.4.2 Human-annotated Model Performance

The predictive model was tested on the remaining 100 real-world faults excluded from the training

dataset. The model’s performance was compared to that of subjects from the human study (see

Section 7.3.1). A number of baseline approaches, such as always predicting the average fault sever-

ity, always predicting the median fault severity, and a C4.5 decision tree [49] derived automatically

from the same training set of human annotations used to construct the manual decision tree model,

were also included.

The goal of the model is to agree with the average human severity rating for this group of faults

more often than the humans themselves agree. Therefore, the Spearman’s Ranking Correlation

Coefficient (SRCC) [107] was measured between each technique and the average human severity

rating for each fault, averaged across all 100 held-out testing faults. Figure 7.9 presents the results.
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Although there is a strong positive correlation between individual human judgments of error

severity and the average perceived severity of a particular fault, the predictive model outperforms

all other baselines with an SRCC of 0.84, including the average performance of individual humans.

The average standard deviation of human judgments on a single fault was 0.95, almost an entire

point on the 5 point scale; a single human opinion of fault severity is therefore inherently unreliable.

As a concrete and typical example, in one moderate fault, four respondents said they would return

to the website, seven would probably return, while two would not. In the two most severe faults

included in the study, while 22 users would file a complaint or not return to the website, three

respondents reported that they probably would visit the website again. Figure 7.4, which includes

the consumer-perceived severity of non-faults, demonstrates that humans are not always accurate

at judging the average severity: they sometimes perceive even non-faults as faults. Relying on

any one human observer, such as a developer involved in making the web application, is therefore

not necessarily a reliable way to infer actual severities of faults in the spirit of prioritizing them

for resolution. Developer-perceived severities have the additional confounds related to inaccurate

judgments detailed in [79, 80].

Figure 7.9 lists the percentage of accurate severity judgments for all models across the test set

of 100 faults, as well as the number of severe faults missed. The manual decision tree model, using

the seventeen features in Figure 7.8 accurately predicted the severity of 84% of the faults in the

sample, where an accurate prediction is defined as lying within 0.75 of the goal severity score, a

round cutoff that is less than both the standard deviation and variance. Missing severe faults is

likely more dangerous than assigning high severity to non-severe faults, as the former may translate

into lost consumers, while the latter only increases the number of faults a developer may have to

examine. Overall, the model missed only one high-severity fault, and in cases where the prediction

was not within 0.75, it generally predicated the fault as too severe, rather than not severe enough.

Notably, the model outperforms an average human in terms of severe fault identification, implying

that it is more reliable to use the model to assign fault severities to web application faults than to

rely on any one arbitrary individual.

The predictive power of the features was also investigated by performing an analysis of vari-
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Feature Correlation F p value
Code on the Screen + 19.47 < 0.001
Cosmetic - 13.23 < 0.001
Database + 12.36 < 0.001
Authentication + 6.99 0.01
Functional Display - 6.00 0.01
Code Error + 4.40 0.03

Figure 7.10: Analysis of variance showing relative feature predictive power for finding high-
severity faults. F denotes the F-ratio, which is the square root of variance explained by that feature
over variance not explained. Higher F values affect the model more. The last column denotes the
significance level of F (i.e., the probability that the feature does not affect the model); values below
0.05 are significant.

ance [74] when predicting high-severity faults, shown in Figure 7.10 (only features with a signif-

icant main effect are listed). Web application faults that were labeled by humans as having any

type of code on the screen (e.g., Code on the Screen and Database errors) were most significantly

correlated with high-severity faults. Faults labeled as Cosmetic were very unlikely to be considered

severe, and faults during authentication and those that displayed error messages were judged as

more likely to result in consumer loss than other types of faults.

7.5 Automatically Predicting Error Severity

Having established that it is possible to model web application error severities with greater preci-

sion than an average individual human would, this section shows that it is possible to automate such

a model, and thus not rely on human annotation of fault surface features, without a large sacrifice

in accuracy. An automated model is now described that examines HTML output to assign a fault

severity to a faulty web page when compared with the expected oracle output. The model is eval-

uated not only by comparing its precision to that of the human-based model of Section 7.4.2, but

also with an experiment to show the potential savings developers may experience when using the

model to prioritize faults.
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7.5.1 Experimental Setup

The automated model relies on the same decision tree architecture as the human-dependent model,

but approximates the seventeen features’ labels (see Figure 7.8) automatically by examining HTML

code. For example, the Wrong Page feature is set if the only HTML elements shared between two

pages are <html>, <head>, and <body> elements, while a Missing Image occurs if the <img> src

attribute has changed or is missing between the two webpage versions. The model first builds a

mapping between the correct, expected HTML output and the faulty HTML using the DIFF-X [20]

algorithm (presented in Section 5.2.2), and then examines the unmapped nodes between the two

webpages in order to determine which features apply. This use of features based on a mapping

between before-and-after web page HTML is similar in spirit to approaches that reduce the cost of

regression testing for web-based applications in previous chapters.

Because the automated model cannot mimic many context-dependent human judgments, the

decision tree from Section 7.4.1 is modified to focus more on those features that are likely to be

correctly labeled. For example, while a human may distinguish between an incorrect page being

loaded and a missing image, the model will frequently flag both the wrong page and missing image

attributes in such an instance as the incorrect HTML input happens to be missing the image by

virtue of it being the wrong page.

To measure the potential savings associated with the automated model, consider a scenario

where a developer has limited resources to fix known faults between releases of the application,

and therefore wishes to prioritize those faults by severity. It is assumed that focusing on high-

severity faults, instead of low and medium severity faults, will result in greater consumer retention.

However, addressing each fault requires developer effort. Savings are therefore measured in terms

of the number of non-severe faults the automated model can correctly flag which do not need to

be addressed, while simultaneously avoiding failing to flag faults that are severe and thus need

preferential attention. The same 100 held-out real-world faults from Section 7.4.2 are used as the

test dataset so as to compare the automated model’s performance to that of the annotation-based

model of the previous section.
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Figure 7.11: Cumulative severity over time when prioritizing faults by the automated and human-
annotated models versus random priority, optimal priority, and worst-case priority.

7.5.2 Automated Model Performance

Figure 7.12 summarizes the automated model’s performance on the dataset of 100 real-world faults.

The automated model has a Spearman Ranking Correlation Coefficient of 0.78 with average human

judgments, placing it between the manual model (0.84) and human themselves (0.70) in terms of

agreement with the norm. While it drops in accuracy, in terms of correctly labeling fault severi-

ties, by 1% when compared to the human-annotated model, the SRCC scores are comparable, and

exceed that of humans on average. The automated model missed no severe faults, and it is able

to identify 39 out of 70 non-severe faults to be assigned a lower developer priority. While the

human-annotated model correctly finds 61 such faults, note that it requires initial investment of

humans manually examining each webpage output. The automated model is conservative in that

it will generally label any fault with a medium-high or high severity as severe and requiring hu-

man attention. Consequently, it is able to achieve high accuracy with this approach, estimating true

severities to within 0.75 (although the savings decrease by about a third, due to situations where
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Model Accuracy Severe Non-Severe
Missed Correct

Automated Model 83% 0/30 39/70
Annotation-based Model 84% 1/30 61/70
Individual Human (avg) 59% 8/30 53/70
Always Average Rating 58% 30/30 70/70
Always Median Rating 59% 30/30 70/70
C4.5 Decision Tree 85% 5/30 65/70

Figure 7.12: Performance of the automated model against the human-annotation-based model and
other baselines. Accuracy is the percentage of faults predicted within 0.75 of the average human
rating. Severe Missed refers to the number of severe faults incorrectly labeled, Non-Severe Correct
to the number of non-severe faults correctly labeled.

a medium-severity fault is predicted as severe and requiring developer attention, while still falling

within the 0.75 cutoff). Figure 7.11 presents the cumulative severity over time when prioritizing

the 100 faults in the dataset using the automated model and human-annotated model versus using

random prioritization, optimal prioritization, and worst-case prioritization. Both the automated and

manually-annotated models significantly outperform random prioritization, and closely approxi-

mate optimal prioritization.

This experiment demonstrates that the automated model has high accuracy with respect to find-

ing severe faults, and can save developers resources by allowing them to prioritize the faults they

will fix by severity. As explained in Section 7.3.2, the dataset has a relatively high proportion of

severe faults (28%). It is likely that web applications experience severe faults as a small percentage

of their total fault distribution, and therefore, the automated model may deliver even higher savings

in industrial contexts where there are more non-severe faults than in the experiments in this chapter.

Additionally, the predictive power of the features was investigated by performing an analysis of

variance [74] when predicting high-severity faults with the automated model. Figure 7.13 lists the

significant features (cf. Figure 7.10). Again, web application faults that had Code on the Screen

were significantly correlated with high severity faults. Similarly, Cosmetic faults were still unlikely

to be considered severe.
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Feature Correlation F p value
Cosmetic - 30.51 < 0.001
Functional Display + 27.12 0.01
Code on the Screen + 22.83 < 0.001
Code Error + 5.32 0.02
Wrong Page - 5.31 0.02

Figure 7.13: Analysis of variance showing feature predictive power for the automated model with
no human annotation. F denotes the F-ratio, which is the square root of variance explained by
that feature over variance not explained. Higher F values affect the model more. The last column
denotes the significance level of F (i.e., the probability that the feature does not affect the model);
values below 0.05 are significant.

7.6 Summary of Experiments

Consumer-perceived error severities have not been thoroughly studied in the context of web appli-

cation testing. In Section 7.3.1, a human study was conducted on 400 real-world faults, 400 injected

faults, and 100 non-faults to demonstrate that faults have varying severity distributions with an av-

erage standard deviation of 0.95. The results refuted the underlying assumption in fault injection

that all faults are equally severe (a standard deviation of 0.0) and supported Hypothesis (H3).

Having established that faults have varying severities, Section 7.4.1 presented a predictive

model of fault severity, that correlates strongly with consumer-judged severity, agreeing with hu-

mans more often than they agree with themselves. Because this initial model relies on human

annotators to label surface features of faults, in Section 7.5 an automated fault severity predictor

was introduced that operates without manual effort. Both the human-annotation- based and au-

tomated fault severity predictors have comparable levels of agreement in terms of labeling fault

severity to that of humans, with SRCC scores of 0.84, 0.78, and 0.70 respectively, supporting Hy-

pothesis (H4). Because the human-annotation-based model is more precise in terms of predicting

fault severity than an average human, developers can use this model to replace human judgments of

fault severity when prioritizing test cases, and in situations where such resources are unavailable,

the automated model be used with a minimal loss of accuracy.

In a hypothetical defect report prioritization scenario, the automated model and annotation-

based models we were able to correctly identify (and thus free developers from focusing on) 39
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and 61 out of 70 non-severe defect reports, and thus 39% and 61% of all faults could be correctly

de-prioritized. In industry application these savings could increase to 51% and 80%, respectively,

due to the lower prevalence of severe faults in practice as reported in Section 7.3.2.

7.6.1 Threats to Validity

Although the annotation-based model outperforms humans at predicting consumer-perceived fault

severity, and shows significant savings in terms of prioritizing severe and non-severe faults, it is

possible that the mined faults are not indicative of web application faults in general. To mitigate this

threat, a large number of benchmarks were chosen from varied domains and using heterogeneous

languages. Other work [69] has examined a similar number of real-world faults to construct a web

fault taxonomy, and many of the faults in the dataset were in the same equivalence classes. In

addition, it is possible that the human study participants are not indicative of average consumers.

For example, the population of undergraduate students may attach a different severity to shopping

cart monetary miscalculations than would average consumers. Conversely, the feature annotation

requires specific expertise (e.g., to distinguish between general Error Messages and Database ones)

to form the basis of the model; to mitigate this threat a dozen experienced graduate students were

used.

Simulating or capturing user experiences using screenshots with the current-description-next

scenario idiom may also have been inaccurate. Although either screenshots submitted with bug

reports, or carefully constructed screenshots given the description of the fault in the bug repository

were used, it is possible that faults may not have been exactly replicated. Constructed screenshots

erred on the side of conservatism, only introducing the error exactly as described and in the context

of the application; for example, knowing to color an error message in red was not obvious unless

such instructions were found in the text of a bug report. There are also classes of errors such a

scenario cannot capture, such as an email not being delivered, or security vulnerabilities; neither

the survey nor the models can speak to such errors. Such non-visible faults, however, are likely to

compose a small percentage of faults overall: in a sample of over 200 real-world faults mined from

the bug repositories of the benchmarks from this chapter, using the same mining methodology as
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for the 400 real-world faults, 90% percent of the reported defects were user-visible.

In an effort to characterize the stability of the models in this chapter, the Appendix includes

Section A.3 which grounds the dominant technologies in the current web development environment,

and specifically the benchmarks used, with respect to the models. As these technologies evolve and

change, it is possible that the models may need to be updated, although most of the features in

Figure 7.8 are generic and not tied to any particular implementation.

Finally, the automated model assumes an existing, correct HTML output, which may not be

readily available when a bug is reported to a developer through a repository. For developers fixing

bugs by examining bug reports, given the overhead of reading a bug report, using the annotation-

based model delivers high accuracy in terms of fault severity assigned with very little additional

effort. Using the automated model is most appropriate in regression testing settings where the

oracle output is immediately available.

7.7 Related Work to Studying Web Errors and Severity

Causes of failures in web applications have been examined by Pertet and Narasimhan [81]. Software

failures, operator error, hardware and environmental failures, and security violations were identified

as four failure categories, with significant causes including system overload, resource exhaustion,

complex fault recovery routines, and system complexity. Although manifestations of failure, such

as partial or total site unavailability, system exceptions, incorrect results, data loss, and performance

slowdown, were identified, no attempt was made to assign severities to failures. By contrast, the

models in this chapter assign consumer-perceived severities to web application faults.

Strecker and Memon examine the relationship between faults, test suites, and fault detection for

GUIs [108]. They also note that it is a common research practice to assume all faults are equally

severe, and that determining what a truly representative fault set looks like is difficult. Elbaum et

al. [40] try to account for factors such as fault severity as a metric in test suite construction, but they

give no guidelines for measuring fault severity besides the time required to locate or correct a fault,

lost business, or damage to persons or property — figures which are difficult to calculate in general
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or in advance. Ma and Tian present a defect classification framework to analyze web errors and

identify problematic areas in the context of reliability improvement [67]. Their research relies on

web server logs to extract information, rather than studying browser output. Although they mention

defect severity as a classification attribute, like Elbaum et al. they provide no guidelines for how to

measure this feature. The work in this chapter provides annotation-based and automated models to

accurately assign consumer-perceived severities to web application faults.

Ostrand and Weyuker examine faults distributions in large industrial software systems, under

which fault severities were assigned according to fix priority [79]. In follow-up work [80], they dis-

covered that such developer-reported severities were highly subjective, and often inconsistent, in-

accurate, or motivated by political considerations. Ultimately, they rejected using such a developer-

reported fault severity measure in their fault localization predictor due to these concerns. The work

presented here relies on consumer-perceived fault severities to avoid many of the problems associ-

ated with self-reported developer assignments.

Zhou and Leung analyze object-oriented design metrics for predicting fault severity. They

discovered that features such as methods per class, coupling between object classes, and lack of co-

hesion in methods were statistically significant across fault severity in their exploratory study. The

models in this chapter relies on HTML output, rather then web application source code, to predict

fault severity. In addition, their study [123] may suffer from subjectivity problems in reporting fault

severity [80], which can be minimized by relying on consumers to judge fault severity rather than

developers.

7.8 Summary

Web applications are often untested due to extreme resource constraints during their develop-

ment [86]. Providing a consumer-perceived error severity model can allow developers to prioritize

errors according to their likelihood of impacting consumer retention, and thus encourage web-

application developers to test more effectively. Obtaining 12,600 human judgments of 400 real-

world faults, 400 injected faults, and 100 non-faults led to the discovery that relying on a single
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human observer to judge the severity of a particular fault is inherently unreliable. Consequently,

this chapter presented two models of error severity that outperform humans in terms of accurately

predicting the average severity of web application errors. The first model relies on human annota-

tions of error surface features, and successfully identified 87% of non-severe faults to be assigned

low priority in the experiments. A fully automated model was also presented, that can obviate ex-

amining 55% of such faults. Both models are significantly better than humans at flagging severe

faults for examination, and can therefore replace or augment humans when assigning fix priorities

to faults encountered in web application development and testing.

The main thesis of this dissertation is that user-visible web-based application errors have special

properties that can be used to improve the current state of web application error detection, testing

and development. This chapter showed how the consumer-perceived severity of an error can be con-

sidered during test case prioritization, saving significant effort while retaining consumers. Having

a successful predictive model of consumer-perceived error severity can also lead to the exploration

of ways to map software engineering practices, testing techniques, and current technologies to

high-severity errors, which is explored in the following chapter. Specifically, Section 8.5 explores

applying the automated model of error severity introduced in this chapter to test suite reduction

approaches for web applications.



Chapter 8 Addressing High Severity Errors in Web

Application Testing
The previous chapter hypothesized that a model of error severity can be used to guide testing tech-

niques towards prioritizing high severity errors, thereby increasing the perceived return on invest-

ment for testing in the web domain. This chapter expands upon those results by applying the error

severity model in techniques to reduce the introduction of high severity errors during application de-

velopment, as well as further reducing the cost of testing web applications by focusing on revealing

high severity errors during test case design, selection, and prioritization.

Although web applications are highly human-centric, consumer-perceived error severity has

not been systematically approached as a metric for selecting development and testing strategies

in this domain. This chapter will provide concrete guidelines to increase the perceived return-

on-investment of testing, and show that even coarse-grained, automated test cases can detect high

severity errors. Specifically, Hypothesis (H5), that

there exists a statistically significant correlation (SRCC > 0.60 [44, 107]) be-

tween severe errors in web applications and various software engineering as-

pects of web application development,

(H5)

is evaluated. Developers can also mitigate consumer perceptions of error severity by presenting

errors using specific idioms that minimize disruptions to application interaction. Finally, the trade

offs between various user-session-based test suite reduction approaches for web applications and

the severity of uncovered faults will be examined. Hypothesis (H6), that

there exist test suite reduction strategies that expose at least 90% of the severe

errors found via corresponding retest-all approaches for web applications,
(H6)

is also evaluated in this chapter; even modest testing approaches are able to provide significant

predicted gains in consumer satisfaction by focusing on flagging and preventing high severity errors.

104
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8.1 Strategies For Addressing High Severity Errors in Web Testing

The study of consumer-perceived high-severity faults in web applications can be used to direct

development and testing strategies towards their reduction in the context of such demanding devel-

opment circumstances. In the human study from Section 7.3, several observations can be made

about severe faults in web applications, which translate into implementable software engineering

guidelines. In addition, the distribution of consumer-perceived fault severities is demonstrated to be

independent of the type of application. Neither the application type (e.g., shopping cart or online

forum), nor, to a lesser degree, the technologies used (e.g., PHP or ASP.net) are predictors of high

or low severity faults. Similarly, certain fault features, distinct from the context of the fault, are

shown to be related to the consumer-perceived severity of these faults. Given the same defect in the

source code, the presentation of the fault to the user (e.g., via a stack trace or a human-generated

error message) influences the likelihood that the consumer will return to the website in the future.

Finally, the kinds of defects that are associated with faults of varying consumer-perceived severity

levels are explored. For example, many severe faults are due to configuration errors that are easily

detected by running a simple test suite, while less severe faults may require changes to specific lines

of application code, and can be more difficult to detect.

This chapter further discusses such observations and supplements them with concrete sugges-

tions that developers can implement. These contributions provide the foundation for guidelines that

assume few resources will be allocated to testing. In situations where web applications are already

being tested, the trade offs between various test case reduction (see Chapter 2) methodology costs

and the severities of the faults these techniques uncover in the context of user-session-based test-

ing are studied. One goal is to provide developers guidance towards choosing an optimal testing

approach when performing automated testing. This chapter examines the trade offs between var-

ious test suite reduction methodologies [105] in terms of the consumer-perceived fault severities

revealed by each approach.
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Figure 8.1: The breakdown of severe faults for each benchmark application. Each application is
individually normalized to 100%. There is no apparent pattern between the type of application and
its fault severity distribution (see also Figure 8.2).

8.2 Fault Severity Distribution by Application

The study of 400 real-world faults in the previous chapter revealed an approximately even distribu-

tion of low, medium, medium-high, and severe faults (labeled with average ratings of ≤ 1, > 1 and

≤ 2, > 2 and < 2.5, and ≥ 2.5 respectively, see Figure 7.1) within each of the benchmarks. Al-

though lower-severity faults are likely underrepresented in this population, because they are more

frequently not reported or recorded in the bug repositories faults were mined from, the relatively

high number of severe faults that were witnessed provides a large data set of severe faults to study.

Recall that severe faults are most likely to translate into consumer losses (see Figure 7.1).
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Feature SRCC with high severity
is written in PHP 0.16
is written in ASP.net 0.32
is a Gallery 0.38
is a Wiki 0.35
is a Forum 0.34
is a Content Mgmt. System 0.30
is E-commerce 0.22

Figure 8.2: Spearman’s Ranking Correlation Coefficient (SRCC) between an application feature
and the severity of its faults. An SRCC of 0.3–0.5 is considered weak, while 0–0.3 indicates little
to no correlation [44].

First, correlations between high severity faults and either the type or the web application (e.g.,

a shopping cart versus a forum), or the underlying technologies involved (e.g., PHP or ASP.net)

were analyzed. Figure 8.1 presents the distribution of fault severities across the seventeen bench-

marks from Figure 7.2, normalized to 100% for each application. Figure 8.2 shows the Spearman’s

Ranking Correlation [44] between various features, such as the programming language used or ap-

plication type, and consumer-perceived fault severity. Overall, the application features all hover

between no correlation and very weak correlation with high severity faults. While a limited argu-

ment could be made that ASP.net and image gallery applications are slightly more likely to have

high severity faults, the results generally refute the hypothesis that certain application types have

higher user-perceived fault severities. For example, among benchmarks in the dataset with at least

30 faults, both the benchmark with the highest number of severe faults (ZEN) and the lowest number

of severe faults (PRESTASHOP) were e-commerce, shopping-cart based applications. Similarly, the

choice of development language and infrastructure in these benchmarks did not strongly correlate

with fault severity.

8.3 Fault Features Related to Severities

The primary goal of this chapter is to provide empirically-backed recommendations to help devel-

opers produce reliable web applications under the assumption of limited testing resources. This
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Feature Description
Same The error is visible within the same page and
Page application (imagine a website with frames);

the title, menu, and/or sidebars stay the same
New A page is loaded that does not look like other
Page pages in the application; examples are blank

pages or server-generated error messages
Generic A human-readable wrapper around an exception,
Error which frequently provides no useful information
Message about the problem
Popup The error resulted or was displayed in a popup
Server The error was a standard server-generated

complaint, such as an HTTP 404 or 500 error
stack A stack trace or other visible part of non-
trace HTML code
Other Text exists on the page indicating there was
Error an error (as opposed to a missing image or
Message other “silent” fault)

Figure 8.3: Context-independent fault features.

section demonstrates that faults of varying severities can be classified according to both contextual

and context-independent characteristics.

Contextual features are defined to be visual stimuli or use-case based characteristics exposed to

the user as part of the fault manifestation. Contextual features are tied to the underlying origin of

the defect in the source code. Examples of such visual stimuli include stack traces, missing images,

and small cosmetic errors. Use-case based features associated with faults include authentication,

permission, or upload scenarios. The previous chapter used such contextual features to assign

severities to faults in web applications (see Figure 7.8).

Context-independent features, by contrast, can be viewed independently of the actual context

of the fault. Given the same source-level defect, the multiple ways the fault may be presented

to users are the various context-independent fault manifestations. Context-independent features,

summarized in Figure 8.3, include displaying the fault on the same page as the current page (in a

“frame” style where the header, footer, and side menu bars are preserved), loading a new page that

is visually different from the normal theme of the web application, wrapping the fault in a generic
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or customized human-readable error message, popups, server-generated error messages (such as

HTTP “404 not found” errors — see Section 2.1.2), or displaying a stack trace.

Contextual fault characteristics can highlight possibilities for focusing testing on certain parts

of the source code. Context-independent features, by contrast, can be translated into opportunities

to decrease the perceived severity of faults, regardless of their origin.

In terms of contextual features (from Figure 7.8), a deeper analysis of the human study data from

Section 7.3 reveals that errors presented with a stack trace were viewed as most severe, followed

by database errors with visible SQL code, authentication problems, and then error messages in

general. Cosmetic errors, such as a typographic mistake, that do not affect the usability of the

website were perceived as having the lowest severity, followed by form errors such as extra buttons.

Although minor faults, such as typos, formatting issues, and form field problems are often easier to

trace in the source code, in that there can be few to no business logic defects involved with these

kinds of faults, finding such trivial errors can actually be potentially more challenging when using

traditional testing approaches in a web application environment. Imagine a test suite with oracle

output exists for an old version of a web application. When the application undergoes development,

the HTML output will most likely change, and it becomes difficult to distinguish between faulty

output and harmless program evolutions, especially with automated tools (see Section 5.1). By

contrast, severe errors that present with a stack trace or errors messages on the screen are more

easily identified, due to the relative larger difference between expected and actual output. These

results highlight the benefits of using even simple, automated testing approaches that search for

error keywords [27] in that keywords are likely to quickly and reliably identify high-severity faults.

The issue of fault causes is further discussed in Section 8.4.

Modifying the context-independent features of consumer-visible faults is an orthogonal ap-

proach to testing strategies in the arena of consumer retention. Although the visual presentation

is not the only deciding factor with respect to consumer-perceived fault severity, various fault pre-

sentations are associated with different severity levels. When programming defensively, developers

often have the option of managing the way faults are presented to users. Consider the case of the

inability to upload an image; the set of real-world faults used in the human study includes thirteen
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Figure 8.4: Severity distribution as a function of context-independent fault characteristics.

such instances. In every case where the fault was judged as severe (5 out of 13 instances), the faulty

page was displayed with either a stack trace or a server generated error message, in a new page

(i.e., a webpage with a different header, footer, sidebar menus, and layout than the original website

template). When the same fault was judged as medium-high severity (4 out of 13 times) a stack

trace was present, but in half of those pages the page layout did not change. When the fault was

judged with only medium severity (the remaining 4 out of 13 times), the page layout remained the

same, and a stack trace was usually absent. This example demonstrates how developers can reduce

the perceived severity of such faults by preventing the appearance of the page from changing and

wrapping the fault in an error message displayed on the same page.

Figure 8.4 presents the visual, context-independent characteristics of the real world faults in the
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study, broken into five fault severity groups (very high faults have severities ≥ 3). Each feature

is shown with the corresponding percentage of total faults of all severity ratings that fell into that

category. For example, about 10% of medium high severity faults were presented as popups. Be-

cause a fault can occur either on the same page, or on a new page, these two features are mutually

exclusive and therefore each severity category will total to 100% between these two items; this is

not the case for the remaining features as not all faults had to exhibit any of these conditions. In

general, faults that occur in the same page, as opposed to loading a new and visually discordant

page, are much more likely to be judged as lower severity. The converse is also true: faults with

new pages are associated with increasing severity ratings. The analysis of the study revealed that

the worst way to present faults to consumers is in the form of a stack trace; wrapping the fault in

an error message was associated with a lower severity. Server-generated error messages were also

poorly received. Error messages that were displayed as popup windows were regarded as the least

upsetting to consumers. Developers conscious of the impact on consumer-perceived severity of var-

ious fault presentations can therefore choose options such as maintaining the same page appearance

and relying on popups that are associated with higher consumer satisfaction.

8.4 Fault Causes Related to Severities

In this section, the causes of errors are analyzed, independently of their visual or use-case context,

to associate faults of varying severities with different components in the code or environment. The

goal is to provide developers with ways to target web application design and testing to reduce the

frequency of high severity faults by focusing on the potential causes of defects. In the analysis of

the human study data, nine recurring causes of defects were identified, summarized in Figure 8.5.

Recall that all defects in the study were taken from real-world bug reports filed in bug databases

(see Section 7.3.1).

Figure 8.6 shows the fault severity distributions associated with the causes from Figure 8.5.

Severe faults are frequently associated with unhandled NULL objects, missing files or incorrect

upgrades, database issues, and incorrect configurations. The lower the severity of a fault, the more
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Cause Description SRCC with
high severity

Database An error in the database configuration 0.66
or structure

SQL A buggy SQL query that lead to an 0.69
exception

NULL An empty code or database object which 0.69
lead to an exception

Source An error due to incorrect logic in the 0.18
Code source code
Config Configuration settings were inconsistent 0.68
Component A third party component was 0.62

incompatible or caused an error
Upgrade A file was missing, or a recent upgrade 0.63

caused an error
Permission The operating system failed to allocate 0.68

resources or open files
Server Incorrectly configured server 0.68

Figure 8.5: Common defect causes from the four hundred real-world faults in the human study. The
SRCC column gives the Spearman correlation between faults having that cause and high severity
(≥ 2.5). An SRCC above 0.5 is considered moderate to strong correlation [44].
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Figure 8.6: Fault severity as a function of underlying defect causes.

likely it was due to erroneous logic in the application source code not associated with the database

or NULL objects. These results are consistent with those of Figure 7.10, in that errors that fre-

quently manifest as stack traces are due to unhandled exceptions, and database access problems are

associated with displaying SQL code on the screen. As explained in Section 8.3, severe faults that

are due to exceptions or configuration issues are often easier to detect with even a coarse-grained,

automated test suite, because the difference between the expected output and actual application

output is more dramatic.

Finding logic errors in program source code poses a greater challenge, as it is less likely that any

individual test case will exercise any single line of code, and the difference between the oracle and

actual test output may be difficult to recognize as a fault instead of a harmless program evolution
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(see Section 5.1). Once again, even a simple, naı̈ve test suite that uses keywords to detect faulty

output can be used with a high return on investment when seeking high severity faults. Approaches

that orthogonally address the prevention of unexpected NULL objects [38] and database testing

rigs [34] can be used in conjunction with such modest testing techniques to successfully prevent or

flag proportionally more severe faults.

8.5 Test Case Reduction And Severity

The previous sections tied severe faults to different types of visual stimuli, use cases, and defect

causes, supporting Hypothesis (H5). Even a simple test suite which looks for error keywords or

large differences between expected and actual test case output may thus capture a large percentage

of high severity faults. This section presents further empirically-backed recommendations, assum-

ing that an organization has some resources to invest in more rigorous testing approaches, but still

would like to minimize the resources required.

Consider a scenario in which user-session-based testing (see Section 3.2.1), a kind of capture-

replay technique that is largely automatic, is currently implemented as a company’s testing method-

ology. This approach works by recording user accesses through the server and replaying them

during testing [39, 101]. Although a server needs only small modifications to log such sessions,

this type of testing has the drawback that large volumes of session data are captured. Replaying

all recorded user sessions is often infeasible, and test suite reduction with user-session-based test-

ing has been studied extensively [41, 51, 65, 93, 105]. The goal of test suite reduction is to select

a subset of all user sessions to replay that will reveal the largest number of faults during testing.

While the trade offs between fault detection and test case size have been explored for web appli-

cations [93, 105], the severity of the faults uncovered by various reduction techniques has yet to be

addressed. In particular, this section will present empirical data to support Hypothesis (H6).
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8.5.1 Reduction — Experimental Setup

To measure the severities uncovered by various test suite reduction techniques, 90 faults were manu-

ally seeded in three PHP applications in Figure 8.7 denoted by an asterisk (an online store, a forum,

and a real estate website). The faults were equally distributed among the applications and were

seeded according to the methodology of Sprenkle et al. [105]. One hundred and fifty user sessions

were then collected from volunteers asked to interact with each application in a typical manner. A

test case is defined here to be all the URLs in one user session, and each test case was run on a faulty

version of a benchmark with one fault injected at a time. All three web applications had database

components, the states of which were saved at the beginning of each user session so that when a

test case was replayed, it operated on the same relative state.

Various user-session test suite reduction strategies explored by Sprenkle et al. [105] were se-

lected to be implemented: retest-all, Harrold-Gupta-Soffa, and Concept. The retest-all strategy

does not reduce the size of the test suite and serves as a baseline for fault detection. Harrold-

Gupta-Soffa is a general technique [51] that uses a heuristic which selects a subset of the original

test suite by approximating the optimized reduced set (a NP-complete problem). The algorithm

chooses test cases from the original test suite one at a time, always choosing the test case that will

cover the most untouched URLs next. Concept is Sprenkle et al.’s orthogonal approach that builds

a concept lattice where each node is a test case that inherits the attributes from all previous nodes.

The lattice therefore constructs a partial ordering between all test cases, based on the URLs each test

case covers. The parent nodes of the bottom of the lattice represent the minimal set of test cases that

will cover all URLs using this approach. Two readily-available tools were adopted, concepts [45]

and RAISE [46], to implement the Concept and Harrold-Gupta-Soffa approaches, respectively.

Both methodologies need to associate requirements with each test case, where a requirement is

some desired coverage property. The experimental setup in [105] was followed, taking a test case to

be user session composed of URLs in a specific order, and its requirements to be the respective URLs

each user session exercises. Because URLs frequently contain form data as name-value pairs, Spren-

kle et al. [91, 105] was followed by examining the URLs independent of these values. For exam-

ple, http://example.com/order.php?sku=12&id=11 and http://example.com/order.php?id=15
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are considered the same URL and therefore the same requirement, because this approach ignores

all name-value pairs after the ? in the URL. Conversely, the OPENREALTY benchmark used the

same PHP page for almost all requests, and specified actions via arguments such as do=Preview.

For this benchmark the value of this action name-value pair only was considered in mapping the

URL to a requirement.

The fault detection ability of each test suite was tested by cloning each benchmark into 30 ver-

sions with one seeded fault each, and running each test suite on each cloned version. The faulty

output and expected output were collected for each faulty version of source code by customizing

a diff-like tool to ignore data such as timestamps and session tokens that would be different be-

tween even correct versions of output. Comparing the HTML output of web applications in regres-

sion testing is a known problem, due to the inability to distinguish between erroneous output and

harmless program evolutions, and has been addressed through partially- and fully-automated tools

(see Section 5.1). Although SMART, the highly-precise oracle comparator presented in Chapter 5

and Chapter 6 could have been applied to detect erroneous output, using a customized diff-like

comparator eliminated false positives and false negatives that may have occurred with such a model.

After collecting the faulty and expected versions of output, the consumer-perceived fault sever-

ity of each defect was then measured: the automated formal model derived from the user study in

the previous chapter was used to accurately predict the severity between a faulty HTML output and

an oracle output.

8.5.2 Reduction — Experimental Results

Figure 8.7 shows the number of test cases (user sessions) for each test reduction methodology in

this experiment, and the number of uncovered faults of varying severities. Because the severity of a

fault depends on the concrete manifestation of the fault in HTML, rather than source code, the same

fault may materialize with different severities on different URLs. For example, a fault in a line of

code that accesses database values may display a stack trace when exercised from certain URLs, but

may only show a warning in others. Therefore, Figure 8.7 shows the number faults in each severity

category when considering the average severity rating for any HTML manifestation of a particular
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Method/Benchmark Test Cases Low Medium Medium-High High Total
retest-all 50 0 3 24 3 30
PRESTASHOP

HGS 8 0 3 24 3 30
PRESTASHOP

Concept 27 0 3 24 3 30
PRESTASHOP

retest-all 50 1 3 1 23 28
OPENREALTY

HGS 15 1 3 1 20 25
OPENREALTY

Concept 40 1 3 1 23 28
OPENREALTY

retest-all 50 5 22 2 1 30
VANILLA

HGS 4 5 22 2 1 30
VANILLA

Concept 9 5 22 2 1 30
VANILLA

Figure 8.7: Fault severity uncovered via reduced test suites. The “Method” is either retest-all (the
baseline), HGS [51] or Concept [105]. The “Test Cases” column counts the number of test cases in
the reduced suited produced by that methodology (out of 50). The “Low” through “High” columns
count the number of faults exposed in each such severity level. The “Total” column gives the total
number of faults across all severities exposed by each technique on each benchmark application.
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fault.

Previous work has shown both the Concept [105] and Harrold-Gupta-Soffa [51] test suite re-

duction methodologies to be highly effective at maintaining the fault exposure properties of the

original retest-all baseline — when all faults are treated equally. This experiments shows that these

techniques are also effective when fault severity is taken into account. Reduced test suites were able

to match the same number of exposed faults in cases where the faults were generally of medium-

high (PRESTASHOP) and medium (VANILLA) severity. For the benchmark that happened to be

seeded with mostly severe faults (OPENREALTY), both test suite reduction approaches had compa-

rable results to the baseline. Although this property of effective fault exposure may not generalize

beyond these benchmarks and more experimental work is required, this experimental setup seeks

to reproduce the results of existing test suite reduction techniques with fault severity in mind; test

suite reduction of user-session based test suites is an effective way to maintain high levels of severe

fault exposure while reducing costs in this study.

Test suite reduction techniques may also want to take advantage of various properties of severe

fault localizations in web applications. Figure 7.10 showed that both database and authentication

errors were highly correlated with severe faults. Consequently, test cases as URLs that exercise parts

of the authentication process may be selected to be assigned special priority in test suite reduction

approaches in this domain. Similarly, test cases that are known to interact with the database can

also be considered more likely to reveal severe faults.

8.6 Threats to Validity

Because the results detailed in this chapter depend on the human study and fault severity model

of the previous chapter, the threats to validity from the previous chapter are also inherited here.

For example, it is possible that the conclusions drawn from this dataset do not disseminate to web

applications in general, although an effort was made to select open-source real-world benchmarks

from a wide variety of domains and technologies.

It is also possible that because fault localization and manifestation conclusions were drawn
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from bug repositories, that the underlying cause of, or actual visual representation of, a fault may

be inaccurate or incomplete. To lessen this danger, fault causes were conservatively assigned;

for example, either the bug description or the actual HTML rendering had to provide reasonable

indication that a NULL object was being mishandled, for the fault to be classified as due to NULL

in Figure 8.6. It is conversely plausible that other faults were also due to NULL issues that were not

so labeled because not enough information was provided to make this judgment. Although exact

knowledge of fault localization may change the actual data values in Figure 8.6, it is unlikely that

the overall trends witnessed in this section would be significantly impacted; there is no reason to

believe that missing labels (such as not knowing something was due to a NULL issue) would not

be relatively evenly distributed along all severity categories, thereby leaving the overall trend the

same.

8.7 Related Work to Web Failures, Severity, and Test Suites

The prevalence of failures in web application has been widely studied. A 2005 survey identified

89% of online customers encounter problems when completing online transactions [50, 81]. User-

visible failures are common in top-performing web applications: about 70% of top-performing

sites are subject to user-visible failures within the first fifteen minutes of testing [112], a majority

of which could have been prevented through earlier detection [98].

A number of preliminary web fault taxonomies have been proposed. Guo and Sampath identify

seven types of faults as an initial step towards web fault classification [47]. Marchetto et al. validate

a web fault taxonomy to be used towards fault seeding [69], using fault characteristics such as level

in the three-tiered architecture the fault occurred on or some of the underlying, specific web-based

technologies (such as sessions). In these fault classifications [47, 69] there is no formal concept or

analysis of severity; some categories of faults may produce more errors that would turn customers

away, but this consideration is not explored. This chapter also divides up faults according to fault

localization, but is able to associate consumer-perceived severities with different sources of faults.

Di Lucca et al. have also explored reduction of user-session test suites in [65], where they mea-
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sure coverage of URLs as well as Built Client Pages, which are dynamically built pages generated

from user input and application state data. Rather than only considering URLs as coverage criteria,

they rely on static and dynamic analysis of the web application to generate a reduced test suite

smaller than those of Concept [105] for their benchmarks. This chapter focused on Concept’s and

Harrold-Gupta-Soffa’s [51] reduction techniques because they rely on simple analysis of URLs in

collected use cases; in future work this study could be extended to reduction techniques such as Di

Lucca et al. have explored.

8.8 Summary

Formal testing of web applications is frequently a casualty of the extreme resource constraints of

their development environments [86]. At the same time, web applications are highly human-centric,

and consumer retention is known to be low [76]. This chapter analyzed the results of a study of

the consumer-perceived severity of 400 real-world web application faults (from Section 7.3.1) with

the explicit goal of providing concrete software engineering guidelines to increase the perceived

return-on-investment of even naı̈ve testing approaches. Given the same defect in the source code,

different visual presentations of the fault to consumers were found to have different impacts on

their perceived severity. Controlling fault presentation by opting for pop-ups and error messages

over stack traces and changing page layout is a simple and effective way to reduce the consumer-

perceived severity of faults. In studying the causes of various types of faults, the utility of coarse-

grained test suites that only detect relatively large differences in HTML output or rely on error

keywords were revealed as effective ways of capturing many high severity faults, encouraging all

developers to invest in at least some minimal testing infrastructure. Finally, the trade offs between

the costs of various user-session-based test suites for web applications were examined, finding that

reduced test suites were effective at maintaining fault exposure properties across all fault severity

levels.

The main thesis of this dissertation is that user-visible web-based application errors have special

properties that can be used to improve the current state of web application error detection, testing
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and development. This chapter explored the hypothesis that consumer-perceived error severity can

be used to increase the perceived lack of return on investment within the demanding development

environment, by focusing on retaining consumers through the prevention of severe errors; even

simple testing approaches are able to achieve significant gains in consumer satisfaction. Having

presented an automated model of consumer-perceived error severity in Chapter 7, this chapter ex-

plored practical applications of such a model in terms of software engineering guidelines as well

as test suite comparison. The following chapter will similarly explore applying the error severity

model in an applied setting by measuring the error severity exposure properties of SMART, the

oracle comparator from Chapter 6, on popular web applications.



Chapter 9 Combining Error Detection During

Regression Testing with Error Severity
The previous four chapters explored techniques for reducing the costs associated with regression

testing web-based applications through automated oracle comparators that rely on both the structure

of HTML/XML output as well as the predictable way in which web applications evolve and fail,

and the consumer-perceived severity of user-visible errors in this domain. This chapter explores

the trade offs between using such an automated oracle comparator and the severity of the errors

uncovered and overlooked by such an approach. Specifically, Hypothesis (H7), that

at most 1% of the false negatives produced by the proposed highly-precise,

fully-automated oracle comparator correspond to severe errors,
(H7)

is tested on a set of popular, open-source web applications. Automated oracle comparators

remain a cost-effective approach for regression testing under these circumstances, despite the heavy

use of non-deterministic output (such as session cookie identifiers) by applications. This chapter

shows that the oracle comparator in Chapter 6 will primarily fail to flag non-severe errors.

9.1 Motivation

Chapter 6 presented a fully automated approach using SMART, a highly-precise oracle comparator,

to reduce the number of false positives associated with regression testing web-based applications

while minimizing or eliminating false negatives. This chapter presents SMART’s performance on

three popular, open-source PHP web applications. Although the model’s performance on two web

applications was evaluated in Section 6.3.2, CLICK and VQWIKI, the goal of this chapter is to in-

vestigate SMART’s performance on additional and potentially more typical and challenging bench-

marks. For this purpose the model’s performance was evaluated on three open-source popular web

applications summarized in Figure 9.1.

122
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Benchmark Versions LOC Description Training Faults Testing Faults Test Suite
PRESTASHOP v1.1.0.55 155K e-commerce 0 431 83

(shopping cart)
OPENREALTY v2.5.6 185K real estate 4506 62 33

listing management
VANILLA v1.1.5a 35K web forum 895 462 48
Total 375K 5401 955 164

Figure 9.1: Additional web application benchmarks.

The first benchmark, PRESTASHOP, is an e-commerce application with over 24,000 companies

deploying their own instances of the product worldwide [16]. Besides featuring authentication and

database properties, PRESTASHOP is interesting from a regression testing perspective because some

of its customer-facing pages include a featured product that might change between page views.

OPENREALTY is an online real estate listing management application with over ten thousand regis-

tered members in their development forum [15]. VANILLA is a standards-compliant, multi-lingual,

theme-able, pluggable discussion forum for the web with “over 300,000 businesses, brands, and

fans” [17]. All three PHP applications make use of session cookies that result in additional non-

deterministic output that would be flagged by a naı̈ve comparator such as diff.

In an effort to provide a crisper analysis of SMART’s fault revealing properties for these popular

web applications, manual injection of source code faults (see Section 2.2.3) for each benchmark

is employed, rather than running the test suite on two different versions as in previous sections.

Although this setup no longer provides an opportunity to ignore natural program evolutions, this

experimental design was chosen to know with certainty whether or not the faults that should be

flagged are actual errors. This is in contrast to the potential faults SMART sought to flag in previous

chapters. Furthermore, the heavy use of non-deterministic output in these benchmarks provides a

challenge similar to that of ignoring harmless program evolutions in the previous experiments.

The Testing Faults column of Figure 9.1 gives the number of manually injected faults SMART

should detect. Because these are known faults, rather than potential faults as flagged by a human

annotator, the experiments in this section are expected to have more false negatives. Therefore,

this section characterizes the consumer perceived severity of correctly flagged and missed faults.
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If the severity of missed faults is not high, using SMART under the automated approach is still a

useful investment to developers, even if some bugs are missed, given the resource constraints of

development in this domain. Specifically, the use of such a highly-precise oracle comparator in this

artificial setting, when seeking to identify injected faults in one source code version, is considered

successful if on average 99% of the severe faults are correctly identified (see Hypothesis (H7)), and

if on average at least 70% of non-faults are correctly labeled as such.

9.2 Feature Analysis

Before evaluating the performance of SMART in an experimental setup with known faults, to mea-

sure the consumer-perceived severity of defects that the oracle comparator fails to flag, the hypothe-

ses about feature associations with faults and non-faults presented in Section 5.2.2 are first explored.

Figure 9.2 presents the results of analysis of variance [74] experiments conducted on all of the test

applications from Chapter 6 plus the three PHP benchmarks from this chapter added in. Each value

represents the coefficient of the feature in the model — higher values are more strongly associated

with errors, for features whose p-value is less than 0.05. The F values are not shown, and for the

training dataset, only those features are shown which overlap with at least one significant feature

from one of the testing benchmarks.

Although several analyses of variance for feature significance were conveyed in the dissertation

thus far, this section examines the results qualitatively in detail, tying in feature importance to

concrete software features remains to be explored. A deeper analysis of delete, move, text-only,

and error keywords features is conducted in this section, beginning with their significance in the

representative PHP benchmarks, and extending the analysis to all test applications visited in this

work.

9.2.1 Moves and Deletes

Of all the features SMART employs, DIFF-X-move and DIFF-X-delete were the only two shared by

every test benchmark, as seen in Figure 9.2. In addition, the F-value (not shown) for at least one



Chapter 9. Combining Error Detection During Regression Testing with Error Severity 125

B
en

ch
m

ar
k

m
ov

e
in

se
rt

de
le

te
te

xt
gr

ou
p

ch
ild

m
is

si
ng

in
ve

rs
io

n
ne

w
de

pt
h

er
ro

r
te

xt
gr

ou
p

fu
nc

tio
na

lit
y

on
ly

at
tr

te
xt

ke
yw

or
ds

ra
tio

bi
na

ry
P

R
E

S
TA

S
H

O
P

+0
.0

84
-0

.0
04

+0
.0

09
-0

.3
68

-0
.0

08
-0

.5
15

O
P

E
N

R
E

A
LT

Y
+0

.0
08

+0
.0

36
-0

.3
88

+0
.5

76
V

A
N

IL
L

A
-0

.0
02

+0
.0

23
+0

.0
24

-0
.3

26
-0

.0
25

-0
.0

03
H

T
M

LT
ID

Y
+0

.0
01

+0
.0

50
-0

.0
25

-0
.9

19
-0

.1
21

-0
.0

61
-0

.0
10

+0
.2

20
+0

.0
04

+0
.5

53
+0

.6
30

G
C

C
-X

M
L

+0
.0

00
+0

.0
05

-0
.1

63
-0

.0
13

+0
.0

00
-0

.0
11

+0
.8

35
C

L
IC

K
+0

.0
00

+0
.0

00
+0

.0
00

+0
.0

00
+0

.0
00

+0
.0

00
+0

.0
00

+0
.0

00
+1

.0
00

+0
.0

00
V

Q
W

IK
I

+0
.0

88
+0

.0
00

-0
.0

00
T

R
A

IN
IN

G
+0

.0
02

+0
.0

29
+0

.0
29

-0
.2

88
-0

.0
12

-0
.0

02
-0

.0
48

+0
.0

01
-0

.0
00

+0
.1

74
-0

.0
07

+0
.7

14
-0

.0
19

Fi
gu

re
9.

2:
C

oe
ffi

ci
en

ts
of

si
gn

ifi
ca

nt
(p

<
0.

05
)f

ea
tu

re
va

lu
es

ac
ro

ss
al

lt
es

tb
en

ch
m

ar
ks

,p
lu

s
th

e
ge

ne
ri

c
tr

ai
ni

ng
da

ta
se

t.



Chapter 9. Combining Error Detection During Regression Testing with Error Severity 126

of these features is always either the highest or second-highest for each specific benchmark model,

indicating that these features significantly affected the respective model.

Given the importance of DIFF-X-move and DIFF-X-delete in the oracle comparator models,

the goal is to characterize the nature of the faults these features tended to predict, as they were gen-

erally indicative of faults across most benchmarks. To do so, the HTML output for test cases in the

dataset that were labeled as having high DIFF-X-move and DIFF-X-delete values were manually

examined, as well as those with low DIFF-X-move and DIFF-X-delete values. For the three PHP

web applications, high DIFF-X-delete values indicated large chunks of expected output were miss-

ing. For example, in VANILLA an output pair with a high DIFF-X-delete feature value typically

corresponded to output in which all forum comments are gone, or in which a search returned no

results. In OPENREALTY, high DIFF-X-delete values were associated with missing a large loan

calculator form, while in PRESTASHOP, they indicated blank pages that contained a single error

message such as “Error: install directory is missing”. Similarly, high DIFF-X-delete values in

VQWIKI and CLICK, the other two web applications, were instances of pages not being found or

missing the entire body of data. By contrast, low DIFF-X-delete values were associated with less

severe errors such as missing links, small parts of pages, or small bits of functionality like a calendar

Javascript.

Like DIFF-X-delete, high DIFF-X-move values were also generally associated with faults. For

the three PHP benchmarks, high DIFF-X-move scores indicated authentication failures, missing

entire forms, or other high severity faults with explicit error messages. For the other benchmarks,

high DIFF-X-move values revealed the same faults as those with DIFF-X-delete scores. Low DIFF-

X-move values are less indicative of lower severity errors than low DIFF-X-delete scores. For

example, low DIFF-X-move scores were found when large parts of the webpage are missing, as

well as for small amounts of missing data such as parts of pages or incorrectly calculated data

items.

Overall high DIFF-X-delete and DIFF-X-move values are generally indicative of severe faults

in web-based applications, as they correlate with large amounts of missing data. The severity of a

user-visible fault can frequently be predicted by the size of the DIFF-X-delete value.
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9.2.2 Text-only differences

The third feature examined in depth is when the difference between two HTML outputs can be

qualified as only changes to the natural language text within the documents. As Section 5.2.2

hypothesized, such a feature is likely to play a large part in SMART’s ability to outperform a diff-

like comparator. More than any other feature, text-only changes significantly impacted the negative

performance of SMART in cases of false positives and false negatives when its respective F-value

was high (PRESTASHOP, OPENREALTY, VANILLA, GCC-XML, and HTMLTIDY).

For example, text-only changes in PRESTASHOP correlate negatively with faults, but were not

helpful at reducing false positives. For PRESTASHOP, a rotating “featured product” display caused

even the “clean” (non-fault) output pairs to include text-only changes. Text-only changes in OPEN-

REALTY and VANILLA had the opposite effect on SMART’s performance: rather than failing to rule

out false positives, in the case of OPENREALTY text-only changes were responsible for every false

negative. For example, faults, such as incorrectly calculating the number of comments on a forum,

appeared to SMART as simple text-only changes. In VANILLA, all other false negatives were due

to SMART ignoring changed HTML attribute values, the default behavior to avoid flagging changes

to image height and other non-errors. For example, in VANILLA an input field’s name attribute was

mistyped. In future work, SMART’s performance when flagging attribute changes for HTML files

as well as XML output can be explored.

9.2.3 Error Keywords

Finally, the issue of error keywords and their ability to predict faults in web-based application

output is revisited here. Manual inspection of output pairs rated as severe revealed that they fre-

quently contain error keywords. For example, a common severe fault renders as an otherwise-blank

page containing only a server-generated error message. Despite this, the overall predictive power

(F-value, not shown) of this feature was generally low, with the exception of CLICK where error

keywords are able to perfectly predict actual faults. The main reason is that none of these real-world

web applications ever displayed a stack trace in test case output, and instead wrapped their visible

errors in more human-friendly formats; this behavior is in contrast to the experience with web ap-
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plication faults in general (see Chapter 8). From a consumer perspective, it could be possible to

design web applications that fail elegantly without stack traces or upsetting error messages and yet

still rely on a sophisticated tool such as SMART that can nevertheless detect such failures without

relying on a search for any particular keywords in the document.

9.3 Severity of Missed Errors using SMART

Having studied feature significance across the benchmarks from Chapter 6 as well as the three new

PHP benchmarks presented in this chapter, the issue of fault severity with respect to faults missed

by SMART is now explored. Recall that for the three PHP benchmarks in Figure 9.1, manual

injection of source code defects, as opposed to using two different versions of each benchmark,

yielded a set of Testing Faults to be revealed by the oracle comparator. This section measures the

consumer-perceived severity of the subset of these known faults that SMART may miss. Specifically,

Hypothesis (H7), that at most 1% of the false negatives produced by the highly-precise, fully-

automated oracle comparator correspond to severe faults, is empirically tested.

9.3.1 Experimental Setup

Recall from Chapter 6 that SMART uses a pre-existing corpus of data (in Figure 5.2) to train the or-

acle comparator. In Section 6.4, this set of training data was augmented with automatically injected

faults to improve performance. This same setup is adopted here; in addition to the training dataset

of Figure 5.2, Figure 9.1 indicates the number of automatically injected faults used as training

data for each benchmark in the Training Faults column. Because of the heavy reliance on non-

deterministic output for these PHP benchmarks, the training data set was also supplemented with

a pair of “clean” runs of the test suite where no faults were injected but where non-deterministic

output still existed, and labeled these test outputs as non-faults. Figure 9.1 indicates the number

of test cases in such a clean run in the Test Suite column. The training data for OPENREALTY

and VANILLA were augmented with such non-fault and injected-fault information; for comparison,

PRESTASHOP was not.
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To test SMART’s performance on the PHP benchmarks, manual fault injection was utilized

according to the methodology of Sprenkle et al. [105] to obtain the Testing Faults in Figure 9.1.

Another pair of “clean” runs were also included in the testing dataset to measure SMART’s ability to

reduce false negatives. It may be more difficult to reduce false positives in web applications which

make the heaviest use of non-deterministic output. Fault severity was provided by the automated

model presented in Section 7.5 which calculates consumer-perceived (as opposed to developer-

perceived) fault severity at least as accurately as humans do, on average.

9.3.2 Experimental Results

Figure 9.3 presents the results of a severity analysis of the faults missed by SMART, broken down

into severe (≥ 2.5) and non-severe (medium (> 2 and < 2.5), low (> 1 and ≤ 2), and very low

(≤ 1)) categories, as in Section 7.3.1. These severity ratings correspond to varying levels of human

actions based upon a fault seen; for example, severe faults occur when the user would either 1) file

a complaint, 2) not return to the website, or 3) probably return to the website. Conversely, a rating

of very low indicates that no fault was noticed by the consumer. Severity is considered because

SMART may fail to report some defects, but not all defects are equally important to users. The

Weighted Found column refers to the percent of total faults correctly identified by SMART when

assigning weights ranging from 1–4 for severity in increasing order. PRESTASHOP, OPENREALTY,

and VANILLA missed 1%, 9%, and 0% of the severe faults in their testing data respectively, indi-

cating that overall the percentage of severe faults missed is extremely low. Out of 532 severe faults

considered, SMART missed only 7.

The last column of Figure 9.3 shows the number of non-faults that were classified correctly by

SMART. Using the terminology of Section 5.5.2, this corresponds to the amount of effort saved

compared to diff (i.e., the factor multiplied by LookCost). For example, for VANILLA, SMART

reduces developer inspection costs by 97% without missing any severe faults. For PRESTASHOP,

SMART reduces inspection costs by 47% while missing only 1% of severe faults. Precision, in terms

of correctly identifying non-faults, was found to be inversely proportional to recall (the number of

actual faults found).
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This experiment demonstrated that even under circumstances where the number of severe faults

to be detected is artificially high, SMART correctly flags 99% of such known defects. At the same

time, SMART correctly labels over 70% of non-faults, on average, as not requiring human inspec-

tion, which is a significant improvement over a diff-like tool that would label all output as contain-

ing errors due to the non-deterministic nature of these benchmarks. In VANILLA, all severe faults

were correctly detected, while 97% of the non-faulty output was labeled as such. These empiri-

cal results were achieved without requiring any manual annotation or customization of the oracle

comparator, making the adoption of this highly effective approach almost effortless in industrial

settings.

9.4 Summary

The main thesis of this dissertation is that user-visible web-based application errors have special

properties that can be used to improve the current state of web application error detection, testing

and development. This chapter explored the trade offs when using a fully-automated highly-precise

oracle comparator, SMART, that relies on the structure of XML/HTML output as well as similarities

between unrelated web-based applications, and the consumer-perceived severities of known errors

missed by such an approach. Using a set of popular, open-source web applications that make heavy

use of non-deterministic HTML output, SMART was shown to save developers from examining

50–100% of the non-faults in regression test output, while correctly flagging most actual errors. In

cases where faults were not flagged by the oracle comparator, SMART missed 1% of severe faults

on average. In addition, the precision with which non-faults were correctly labeled as not requiring

human attention was found to be inversely proportional to the accuracy with which actual faults are

appropriately labeled.

Overall, using this fully-automated oracle comparator was found to be an effective approach

for reducing the cost of regression testing real-world, popular websites due to the special proper-

ties of web applications. Specifically, unrelated web-based applications fail and evolve in similar

ways, making it possible to train such an oracle comparator automatically; the oracle comparator is



Chapter 9. Combining Error Detection During Regression Testing with Error Severity 132

effective at classifying faulty and non-faulty output by relying on features of XML/HTML output.

Appreciating the impact of consumer-perceived error severity in this domain can allow such an au-

tomated oracle comparator to be readily adopted, as the severity of errors missed by this approach

can be measured and was found to generally be low. Consequently, the thesis that user-visible web-

based application errors have special properties that can be used to improve the current state of error

detection in this domain was supported in this chapter.



Chapter 10 Conclusions and Future Work
Although web-based applications are involved in transactions totaling several trillion dollars an-

nually, designing and testing them remains a challenge due to resource constraints during their

development and the additional complexities involved in generating dynamic content. Such pres-

sures frequently leave web applications untested, despite their high reliability requirements: testing

is perceived to have a low return-on-investment in this domain. This research explored errors in

web-based applications in the context of web-based application error detection. The main thesis

is that user-visible web-based application errors have special properties that can be exploited to

improve the current state of web application error detection, testing and development. Two main

contexts were explored: 1) error detection during the regression testing of web-based applications,

and 2) focusing on severe errors in design and testing. Within these contexts, seven hypotheses

were tested:

• that recognizing that errors in web-based applications can be successfully modeled due to the

tree-structured nature of XML/HTML output (see (H1)),

• that unrelated web-based applications fail in similar ways (see (H2)),

• that not all failures are equally severe from a consumer perspective (see (H3)),

• that these failures can be modeled according to their consumer-perceived severities (see

(H4)),

• that severe errors correspond to specific software engineering aspects during web application

development (see (H5)),

• that test suites can be reduced in size while preserving severe error exposure (see (H6)),

• and that automated tools to detect errors rarely miss severe errors (see (H7)).

133
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Specifically, this work demonstrated how the special structure of web-based applications can be

harnessed to provide a partially-automated highly-precise oracle comparator for the web-based ap-

plication testing domain. Such a comparator is an important contribution to this field because more

naı̈ve approaches are associated with a high number of false positives, and resource constraints are

extreme. By relying on underlying similarities between the evolution and failure of unrelated web-

based applications, this work extended such a comparator to be fully automatic. Having provided

a means for reducing the effort required to test web-based applications, a model of consumer-

perceived error severity was then explored. The model, derived from the results of a large-scale

human study, was shown to be more accurate than average humans at judging error severity, even

under complete automation. Developers have the opportunity to save effort as well as retain more

consumers when such a model is used to prioritize errors for fixes, understand how to avoid high

severity errors during web application development, and safely employ test suite reduction tech-

niques without sacrificing revealing high-severity errors. This dissertation is further summarized

below.

10.1 Improving Error Detection During Regression Testing

Chapter 5 presented a partially-automated highly-precise oracle comparator for reducing the cost of

regression testing by using syntactic and structural features to decide whether or not test case output

merits human inspection. In the web-based testing domain, traditional diff-based comparators are

prone to a high rate of false positives. Due to the special structure of web-based application output,

a number of features were suggested that can be used to distinguish potential errors from harmless

functionality additions or rendering changes. The highly-precise oracle comparator, SMART, was

evaluated as a model and as a cost-saving technique. As a model evaluated on 7154 test case

pairs from 10 projects, SMART obtained a precision of 0.9972, a recall of 0.9890 and an F1-score

of 0.9931, which is over three times as good as the standard diff F1-score of 0.3004. These

strong machine learning results are complemented with a simulated deployment involving 20232

test cases; SMART had 1% of the false positives of diff — and saves development in typical
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industrial practice as well as doing 20% better than previously-published results, thereby supporting

Hypothesis (H1).

10.2 Automating Error Detection During Regression Testing

Chapter 6 built on the results in Chapter 5 by providing a fully-automated highly-precise oracle

comparator for regression testing web-based applications. By taking advantage of the inherent un-

derlying similarities in the way in which web-based applications evolve and fail, a fully automated

comparator was introduced that outperformed diff anywhere from 2.5 to 50 times, achieving per-

fect precision and recall half the time, and very close to perfect precision and recall otherwise,

supporting Hypothesis (H2). Such automation was achieved by relying on pre-existing training

data from unrelated web-based applications to train a comparator for the application-at-test; in sit-

uations where such a comparator missed too many actual errors, source code mutation could be

used as an automated means by which to supplement the training data set with application-specific

output, thereby improving the oracle comparator’s performance.

10.3 Modeling Consumer-Perceived Web Application Error Severi-

ties for Testing

Chapter 7 provided a consumer-perceived error severity model that allows developers to prioritize

errors according to their likelihood of impacting consumer retention, thereby encouraging more

effective testing. A human study was presented with over 12,600 human judgments of 400 real-

world faults, 400 injected faults, and 100 non-faults, leading to the discovery that relying on a

single human observer to judge the severity of a particular fault is inherently unreliable. Specif-

ically, Hypothesis (H3) was supported by the observation that not all web application errors have

the same severity level. Building on such a baseline, two models of error severity were then pre-

sented, each outperforming humans in terms of accurately predicting the average severity of web

application errors. The first model relies on human annotations of error surface features, and suc-
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cessfully identified 87% of non-severe errors to be assigned low priority in the experiments. A fully

automated model was also presented, that can obviate examining 55% of such errors. Both models

are significantly better than humans at flagging severe errors for examination, and can therefore

replace or augment humans when assigning fix priorities to errors encountered in web application

development and testing, supporting Hypothesis (H4).

10.4 Addressing High Severity Errors in Web Application Testing

Chapter 8 further analyzed the results of a study of the consumer-perceived severity of 400 real-

world web application faults with the explicit goal of providing concrete guidelines to increase

the perceived return-on-investment of even naive testing approaches. This chapter showed that the

distribution of consumer-perceived fault severities is independent of the type or language of the

application, making it theoretically possible to deliver high quality software for any use obviating

constraints on the underlying technologies used. Similarly, given the same defect in the source code,

different visual presentations of the fault to consumers have different impacts on their perceived

severity. Controlling fault presentation by opting for pop-ups and error messages over stack traces

and changing page layout is a simple and effective way to reduce the consumer-perceived severity

of faults. In studying the causes of various types of faults, the utility of coarse-grained test suites

that only detect relatively large differences in HTML output or rely on error keywords were revealed

as effective ways of capturing many high severity faults, encouraging all developers to invest in at

least some minimal testing infrastructure. Taken together, these observations support Hypothesis

(H5), as various software engineering aspects of web application development correlate with severe

faults. Finally, the trade offs between the costs of various user-session-based test suites for web

applications were examined, finding that reduced test suites were effective at maintaining fault

exposure properties across all fault severity levels, supporting Hypothesis (H6).
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10.5 Combining Error Detection and Error Severity

Chapter 9 sought to tie together the insights in fault detection during automated regression testing

and consumer-perceived fault severity in web applications. The trade offs when using a fully-

automated highly-precise oracle comparator, SMART, that relies on the structure of XML/HTML

output as well as similarities between unrelated web-based applications, and the consumer-

perceived severities of known errors missed by such an approach was explored. Using SMART

was found to be effective at reducing the cost of regression testing real-world, popular web applica-

tions due to their special properties, supporting Hypothesis (H7). Specifically, unrelated web-based

applications fail and evolve in similar ways, making it possible to train SMART automatically; the

oracle comparator is effective at classifying faulty and correct output by relying on features of XM-

L/HTML output. Appreciating the impact of consumer-perceived error severity in this domain can

allow such an automated oracle comparator to be readily adopted, as the severity of faults missed

by this approach can be measured and was found to generally be low.

10.6 Conclusions and Future Implications

This dissertation focused on the special properties of web-based applications that can be used to

improve development, testing, and error detection in this domain. Given the promising results

in Chapter 9, I hope one implication of this work is that developers will readily use the models

within this document to invest in testing web-based applications, as testing is frequently overlooked

in this domain. To the best of my knowledge, the oracle comparator presented in Chapter 6 and

Chapter 9 is the first fully-automated approach towards comparing test case outputs in web-based

applications. Because there are few upfront costs in adopting such an approach, and as Chapter 9

demonstrated, the oracle comparator was highly effective for real-world web applications that rely

heavily on non-deterministic output.

The research in this dissertation was conducted under the assumed context that few or no re-

sources are devoted to testing web applications. Chapter 7 presented a model of consumer-perceived

error severity that was used in Chapter 8 to provide concrete software engineering guidelines to de-



Chapter 10. Conclusions and Future Work 138

velopers in the web application domain. My aspiration is that such guidelines can be easily and

effectively incorporated in industrial settings, as they can help prevent the loss of consumers by

reducing the severity of faults in web applications. Recognizing that testing is an expensive and

time-consuming process, I also anticipate that the manual and automated models of consumer-

perceived web error severity will see industrial applications, specifically when prioritizing defects

for fixes. To the best of my knowledge, the work in this document is the first to formally study

consumer-perceived faults in web applications, and to provide both human-assisted and automated

models for their classification.

My hope is that the strategies presented in this dissertation will lead to (1) an increase in the

perceived return-on-investment for testing web-based applications, thereby encouraging testing and

consequently improving their reliability, as well as (2) a decrease in consumer loss due to errors

and their perceived severity. Having provided first steps towards cost-cognizant means by which

to achieve these two goals, I believe that future research can focus on the prevention of errors in

web-based applications, in addition to their detection and severity classification.
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Appendix A
This Appendix provides supplemental material to various studies and experiments contained in this

dissertation. In particular, Section A.1 and Section A.2 contain information about the two user

studies conducted in Chapter 7. Section A.1.2 through Section A.1.3 are an exact replication of the

instructions presented to human subjects for the consumer study in Section 7.3.1. Similarly, Sec-

tion A.2 duplicates exactly the information presented to developers in the small survey in Figure 7.7

in the same chapter. Section A.3 grounds the dominant technologies used in the models in Chap-

ter 7. Finally, Section A.4 presents the decision tree the manually-annotated model in Section 7.4.1

uses to determine the consumer-perceived severity of user-visible faults. Section A.5 provides a

formal definition of web-based applications.

A.1 Web Application Fault Severity Study

A.1.1 Participants and Subject Data

There were no prerequisites or special skills participants were required to have, except that they

had previously used the Internet (through a browser). There were no age, sex, or other restrictions

on volunteers, although a majority of people taking this survey were undergraduate students at the

Universities of Virginia and Maryland. It is possible that the results are biased towards younger

people, although these same individuals may use the net more frequently, especially when making

purchases online.

A five level rating scale is used by participants to rate the severity of faults they see, shown in

Figure A.3. It is possible that users may not agree that filing a complaint has a higher severity (4)

than not returning to the website (3), although the implied scale of low severity to high severity is

meant to prevent such interpretations.

139
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A.1.2 About

It has been estimated that 40 to 70 percent of web applications exhibit user-visible errors. In some

instances, these faults can be so severe that customers are unable to complete their activities on a

website and companies end up losing business as a result. Web applications are unique in their re-

quirements for high quality (as customer loyalty is low), and the speed at which they are developed.

Consequently, testing would be especially important for websites, but is often overlooked due to a

perceived low return on investment.

In this study, we will be examining the user (or customer) perceived severity of various errors

encountered during normal website activities. Our goal is to be able to characterize the nature of

different severities of web application faults, as well as get an idea for the underlying distribution

of the different severity levels.

If you have any questions please feel free to contact me (Kinga Dobolyi) at

dobolyi@virginia.edu

A.1.3 Instructions for Rating Websites

Subject Matter

You will be asked to examine pairs of website screenshots in order to identify and rank the severity

of webpages that exhibit faults. The websites you will be looking at are based off of real-world web

applications, although the faults you will see are simulations.

You will be shown 50 website pair screenshots. Some of these screenshots will not have any

faults, but many of them will. If you correctly identify all of the actual faults in your set of 50 trials,

you will be entered in a drawing for a $50 Amazon.com gift certificate.

We will not ask you for your name, and will not record any identifying information. Data

obtained in this study will be used to identify a taxonomy or model of web applications faults. We

anticipate including an evaluation of this tool in an upcoming publication.

Completing this survey is completely voluntary. If you do choose to participate, you will be

asked to rate the severity of a set of 50 website screenshot pairs on a 0 – 4 scale. No special
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Figure A.1: The “current” page

knowledge or experience is required for participation. Most people complete the program in about

15 minutes, but there is no time limit.

Example Trial

You will be shown a pair of website screenshots.

• The first page corresponds to the “current” page in the browser. You will see a small explana-

tion of what you, the user, are trying to do on the current page - note that you will be unable to

actually click anything on the website, because it is only a screen capture. For example, you

may see a login screen with a username and password entered, and you will be told that you

want to log in to the application, and to pretend that you clicked the Log In button. Figure A.1

is an example of such a “current” page.

• The second page corresponds to the “next” page in the browser - that is, what would appear

if you took the action described on the “current” page. For example, for the login page

scenario described above, the “next” page would be a screen capture of the welcome page of

the website you would see after you have successfully logged in. Figure A.2 is an example

of such a “next” page.

• You will then be asked to determine whether or not you think there is a fault on the “next”

page, based on what you saw and were instructed to pretend to do on the “current” page. If
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Figure A.2: The “next” page

you believe there is a fault, you will be asked to rate the severity of that fault as we define in

Figure A.3.

Things to Keep in Mind

Please consider the following items as you are completing the study:

• The “current” pages you will see are not intended to contain faults. If you do notice a fault on

the “current” page, please DO NOT consider that a fault for the purposes of our experiment.

Only rate the faults that you see on the “next” pages.

• Please do not make any assumptions about the distribution of faulty versus non-faulty “next”

pages you will see. While you will see some faulty pages and some non-faulty pages, the

frequency of faulty pages you will be shown may not correspond to your experience in your

daily life.
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• When you do notice a fault on the “next” page, in making your decision of which severity

rating to assign it to, assume that the fault will eventually be corrected, but you do not know

when. For example, if the fault is that clicking on a button returns a blank page, you should

assume that at some point in the future when you click on that button it will return the correct

page. You do not know, however, when that will be — it may be the next time you click the

button (if this were a real application), or it may not be fixed for 1 year.

• You will have access to this set of instructions as a help link while you are completing the

experiment, which will open in a separate pop-up window.

• If you want, you can skip a set of screen captures for any reason. However, you can’t go

back.

Web Application Fault Severity Study

After you have read the instructions above and are ready to start, click below.

Launch Web Application Fault Severity Study

Reward

To encourage participation, we offer a financial reward for participation. You will be asked to select

from the following two options when you start the study:

• We will give out $5 to anyone who completes the study until money runs out

• We will enter you in a drawing to win a $100 gift certificate to Amazon.com

These rewards are in addition to the $50 Amazon.com gift certificate drawing you can qualify

for if you correctly find all faults in the web application screen captures you will be presented with.

Upon completion of the severity rating, you will receive an 8 character completion code. Bring

this code to the following address any time to receive your reward: Olsson 219 (Westley Weimer’s

Office) 151 Engineer’s Way Charlottesville, VA 22903
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In order to receive your Amazon.com prizes (if you win the drawings), we will need to be

able to contact you by email. You will therefore have the option of providing your email address

before the study begins, which will only be associated with your completion code. If you do not

wish to provide your email, you may still complete the study and still collect the $5 reward (when

applicable) in person.

FAQ

How long does it take? We designed the experiment to take about 15 minutes. However, there is no

time limit.

How do I know if the web page has a fault? We are asking you to use your previous web

browsing experience to determine whether or not the web page screen captures you will see have

faults.

Where did these web pages come from? Various open source projects.

A.2 Web Application Fault Severity Survey

The following survey is part of a study on the severity of web application faults and failures at

the University of Virginia department of computer science. Our goal is to estimate the distribution

the severity of faults in real web application development environments. In doing so, we will be

able to design testing techniques and methodologies that target high-severity faults. Please read the

instructions below and complete the survey to the best of your ability; your participation is entirely

voluntary. We do not record your name, company, or any other information that could identify your

submission, therefore, the data we collect remains anonymous.

We are offering a drawing for a $25 Amazon.com gift certificate for survey participants. If you

would like to participate in this drawing, you may provide us with your email address to notify you

if you are the winner, though this step is optional.

Thank you in advance, Laura Dobolyi

PhD Graduate Student University of Virginia dobolyi@virginia.edu
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Figure A.3: The severity rating used in the human study

A.2.1 Instructions

Our goal in conducting this survey is to measure the distribution of fault severity in real world

web application development environments. To do so, we ask you to asses the level of severity of

faults you have encountered during your web application development and provide us with either

the actual or relative distribution of those faults, according to the ranking in the table in Figure A.3:

An example of an actual distribution of faults would be to report out of 323 faults encountered,

56 were level 0, 79 were level 1, 60 were level 2, 84 were level 3, and 44 were level 4.

An example of a relative distribution of faults would be to report that 17% of faults were level

0, 24% of faults were level 1, 19% were level 2, 26% were level 3, and 14% were level 4.

Note that the previous two distributions are examples and are not meant to imply any kind of

specific distribution that you should report.

In determining the distribution of faults your company has encountered during development

and product maintenance, please report both bugs found during testing by developers as well as

bugs reported by customers during or after deployment. We are interested in measuring these faults

together and do not make the distinction between the two when collecting statistics on fault severity.

In addition, please use the following guidelines when selecting which faults to include in the

fault severity rankings of this survey:

• Include bugs from the entire time of the product development lifecycle once testing has be-
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gun. In other words, do not report faults that occurred only in the last year; instead, please

report all faults encountered during the testing and product deployment/maintenance (when

applicable).

• Include all and only user-visible faults. A user visible fault is a bug that exists on the website

itself, though it may originate from any level of the application. For example, a database

error may produce incorrect results, return wrong or missing information, or show an error

message or crash dump on the website itself, which a customer/user is exposed to - in this

case because the user can see this error on the website, it should be recorded in the survey.

Other errors such as broken or missing links or images may be found in faulty HTML code

and should also be reported. An example of an error that is NOT user visible and should NOT

be reported is a missing or broken logfile that is only used by developers to debug the system.

• Duplicate faults (such as 5 users reporting the same error) should be reported only once.

Enter Your Results

Please use the form in Figure A.4 to report the distribution of faults you encountered using

the guidelines above. If you are reporting a relative distribution using percentages, report the per-

centages in the column “Number of Faults (or percentage)”. Please consistently use either actual

number or percentages.

A.3 Dominant Technologies Used in Current Web Applications

Chapter 7 through Chapter 9 make use of a web application fault severity model that relies on sur-

face features of web application output to decide on a consumer-perceived fault severity rating for

a particular defect. Because the manually-annotated version of the model uses a textual description

of fault features provided to humans, and is therefore relatively easily updated to reflect changes

in underlying web application technologies, this section focuses on the impact of such changes on

the automated severity model which compares HTML output. Arguably, the latter model is more

sensitive to technological advances and the impact of such evolution will be explored here.
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Figure A.4: The survey used in the developer study
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The following features are unlikely to become obsolete as long as HTML tags for basic func-

tionality (such as images and forms) do not change, although both the manual and automated models

in Chapter 7 can be updated to reflect the current tags should such changes occur:

• Arithmetic Calculation Errors are differences in numeric output and do not depend on any

particular implementation.

• Missing Information and Missing Images are identified in the automated model in situations

where HTML tags are missing between versions; consequently, there is no reliance on any

particular underlying technologies.

• Blank Pages and Wrong Pages are easily characterized by missing information (see above)

and missing any meaningful HTML tags besides <HTML>, <HEAD>, and <BODY>.

• Form Errors are identified by comparing the instances of various HTML tags associated

with such functional items across two HTML outputs. Should HTML standards change, the

model can be updated to reflect additional types of functional HTML elements identified by

new HTML tags.

• Cosmetic and Language Errors indicate only small, non-meaningful changes between out-

put and are not calculated based on any particular implementation.

• Code on the Screen and Error Message / Other Errors are calculated by searching for

generic code constructs such as equal signs and braces, as well as keywords such as “error”,

“warning” and “line”, that exist in one HTML output file and not the other. Because these

keywords and constructs do not depend on any particular language, they are likely to be

robust in the face of technological updates.

• Failed Uploads and Search errors occur when various keywords, such as “upload” or “re-

sults” occur on one HTML output but not the other. These keywords are predicted to occur in

natural language messages to web application users, rather than as a consequence of any par-

ticular underlying implementation, and are therefore unlikely to change as web application

technologies evolve.



Appendix A. 149

While the other features used by the models in Chapter 7 are also generic, they do assume some

underlying implementation or technologies. In particular,

• CSS Errors are identified in the automated model by counting and comparing the <LINK>

tags and their href attributes. Such an implementation is not sensitive to changes in Cas-

cading Stylesheet technology, as it simply looks for instances in HTML output where these

stylesheets are imported.

• 404 Errors are calculated by counting the number of times the keywords “not found” or

“404” occur on one HTML output but not the other; such keywords can be updated to reflect

new server implementations.

• Session errors occur when various keywords, such as “expired” or “log in” occur in one

HTML output and not another. Evolutions in session management may affect the automated

model if they notify users of session expiration using different terminology, although in these

instances the model can be supplemented with additional keywords to examine.

• Database errors are mined by comparing HTML output and looking for the presence of SQL

keywords in one output and not the other. As database technologies evolve, the model may

have to be updated to rely on new constructs in SQL or other database languages.

• Permission and Authentication features are identified by comparing the number of occur-

rences of natural language keywords such as “access” and “password” between two HTML

outputs. Such keywords are meant to capture the human-readable warning messages gener-

ated by web applications when logins are unsuccessful or access to various parts of websites

are denied, rather than focusing on any particular software implementations of authentication.

Although these features are still relatively universal, the technologies they are built upon are

explicitly documented below, particularly within the benchmark applications used to derive the

severity models.
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A.3.1 Cascading Stylesheets

Cascading Stylesheets (CSS) are a way to control the presentation of various HTML forms to the

user, without directly embedding such controls into the HTML output directly. Instead, CSS are fre-

quently imported, or otherwise isolated from the rest of the HTML output so that such presentation

control elements are separated from the rest of the document. Although the actual CSS implemen-

tation and standards are not important for the purposes of this work, the models in Chapter 7 do

assume that these stylesheets are directly imported into HTML output.

A.3.2 Web Application Server Implementation

The models in Chapter 7 attempt to identify missing pages, in part, by looking for a particular

standard HTTP response code known as a 404 or not found error message. These errors occur

when a client was able to establish communication with the server, but the server was unable to find

the requested resource for the client. It is also possible to customize these server-generated error

pages within the web server into more human-friendly formats that may display links, search forms,

or other potentially helpful information. Although this work assumes that such a standard HTTP

code and response is unlikely to change, because web servers can customize such error messages,

other features in Chapter 7 are able to identify instances where the incorrect or unexpected web

page is loaded.

A.3.3 Sessions and User Authentication

Because HTTP is a stateless protocol, client and servers rely on user sessions to manage the stateful

properties of the web application user experience. In these situations an HTTP session cookie is

frequently used as a means to identify client sessions to the server; the cookie has a unique identifier

that is passed between the client and server to identify the session.

In many instances, a client-server interaction is built around concepts of restricted access and

privacy. For example, in an online bookstore, all users are free to search the shop to browse for

books and session cookies can be used to manage the different search results per user request.
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These same cookies can also be used to control access to restricted areas of the website, such as

user accounts, by requiring that users log in with some identifying information (such as a username

and password) to gain access to their account. The session cookie then becomes responsible for

managing this authenticated access between the client and the server. Such session cookies that are

used to deal with authenticated users are frequently set to expire after a certain amount of inactivity

to prevent situations where the user forgets to log out and leaves his or her public computer accessi-

ble to others. The models in this work are limited in the context of user sessions and authentication

in that they assume users will use usernames and passwords to validate themselves through a web-

site, generating a session token, and these sessions frequently expire and ask the user to log back in

or display an error message.

A.3.4 Databases

State is frequently managed in web applications through the use of databases, as HTTP is a stateless

protocol. Almost all of the benchmarks used to build the models in Chapter 7 rely on database

access for storing stateful data. Although the actual database technology is transparent in this work,

it is assumed that Structured Query Language (SQL) is used in conjunction with relational database

management systems. Consequently, the automated severity model from Section 7.5 expects basic

SQL keywords, such as SELECT and UPDATE, to be present in error messages when SQL code is

dumped on the screen.

A.4 Decision Tree For Consumer-perceived Fault Severity Prediction

Model

1 double score = -1;

2

3 if (wrongPage.compareTo("on") == 0 && missingInfo.compareTo("on") == 0)

4 score = 2.5;

5 else if(permission.compareTo("on") == 0 && session.compareTo("on") != 0)

6 score = 2.5;
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7 else if(missingPhoto.compareTo("on") == 0

8 && codeError.compareTo("on") != 0){

9 if(cosmetic.compareTo("on") == 0)

10 score = 0.5;

11 else

12 score = 2.5;

13 }

14 else if(mathCalc.compareTo("on") == 0 && codeError.compareTo("on") == 0)

15 score = 2.5;

16 else if(functionalDisplay.compareTo("on") == 0

17 && codeError.compareTo("on") == 0)

18 score = 2.5;

19 else if(database.compareTo("on") == 0)

20 score = 2.5;

21 else if(codeError.compareTo("on") == 0)

22 score = 2.5;

23 else if(codeDump.compareTo("on") == 0)

24 score = 2.5;

25 else if(authentication.compareTo("on") == 0){

26 if(permission.compareTo("on") == 0)

27 score = 3;

28 else

29 score = 2.5;

30 }

31 else if(error404.compareTo("on") == 0)

32 score = 2.5;

33 else if(wrongPage.compareTo("on") == 0)

34 score = 2;

35 else if(session.compareTo("on") == 0)

36 score = 2;

37 else if(search.compareTo("on") == 0 && cosmetic.compareTo("on") != 0)

38 score = 2;

39 else if(missingInfo.compareTo("on") == 0

40 && cosmetic.compareTo("on") != 0)
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41 score = 2;

42 else if(upload.compareTo("on") == 0)

43 score = 1.5;

44 else if(missingPhoto.compareTo("on") == 0

45 && codeError.compareTo("on") == 0)

46 score = 1.5;

47 else if(mathCalc.compareTo("on") == 0 && cosmetic.compareTo("on") != 0)

48 score = 1.5;

49 else if(functionalDisplay.compareTo("on") == 0

50 && cosmetic.compareTo("on") != 0)

51 score = 1.5;

52 else if(css.compareTo("on") == 0)

53 score = 1.5;

54 else if(mathCalc.compareTo("on") == 0 && cosmetic.compareTo("on") == 0)

55 score = 1;

56 else if(language.compareTo("on") == 0)

57 score = 1;

58 else if(functionalDisplay.compareTo("on") == 0

59 && cosmetic.compareTo("on") == 0)

60 score = 1;

61 else if(database.compareTo("on") == 0 && cosmetic.compareTo("on") == 0)

62 score = 0.5;

63 else if(missingInfo.compareTo("on") == 0

64 && cosmetic.compareTo("on") == 0)

65 score = 0.5;

66 else if(search.compareTo("on") == 0 && cosmetic.compareTo("on") == 0)

67 score = 0.5;

68 else //if no fault was seen

69 score = 0.5;

70

71 if (cosmetic.compareTo("on") == 0 && score > 0.5)

72 score = 1;
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A.5 Definition of Web-based Applications

The terms web-based application and web application are frequently used interchangeably in the

web community. For the purposes of this document, a web-based application is different from a

web application in that web-based applications may output XML code that does not necessarily end

up rendered by a browser. For example, web services frequently communicate through XML, and

such XML output is passed between separate components rather than displayed directly to a user.
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