
An Exploration of User-Visible Errors to Improve Fault Detection in
Web-based Applications

A Dissertation Proposal

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Kinga Dobolyi

May 2009

c© Copyright June 2009

Kinga Dobolyi

All rights reserved

Thesis Proposal Committee

Mary Lou Soffa (chair)

Westley Weimer (advisor)

John C. Knight

Willaim A. Wulf

Chad S. Dodson (Psychology)

June 2009

Abstract

Web-based applications are one of the most widely used types of software and have become the
backbone of the e-commerce and communications businesses. These applications are often mission-
critical for many organizations, but they generally suffer from low customer loyalty and approval.
Although such concerns would normally motivate the need for highly reliable and well-tested sys-
tems, web-based applications are subject to further constraints in their development lifecycles that
often preclude complete testing.

To address these constraints, this research will explore user-visible web-based application er-
rors in the context of web-based application fault detection and classification. The main thesis of
this research is that web-based application errors have special properties that can be exploited to
improve the current state of web application fault detection, testing, and development. This pro-
posed research will result in precise, automated approaches to the testing of web-based applications
that reduce the cost of such testing, making its adoption more feasible for developers. Additionally,
I propose to construct a model of user-visible web application fault severity, backed by a human
study, to validate or refute the current underlying assumption of fault severity uniformity in defect
seeding for this domain, propose software engineering guidelines to avoid high severity faults, and
facilitate testing techniques in find high-severity faults.

Studying fault severities from the customer perspective is a novel contribution to the web appli-
cation testing field. This research will approach testing web-based applications by recognizing that
errors in web applications can be successfully modeled due to the tree-structured nature of XM-
L/HTML output, that unrelated web applications fail in similar ways, and that these failures can be
modeled according to their customer-perceived severities, with the ultimate goal of improving the
current state of web application testing and development.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Web-based Applications . 2
1.3 Challenges for Testing Web-based Applications 2
1.4 Errors in the Context of Web-based Application Testing 3

2 Background 3
2.1 Testing Web-based Applications . 3
2.2 Existing Approaches . 3
2.3 Graphical User Interface Testing . 7
2.4 Improving the Current State of the Art . 7

3 Goals and Approaches 8
3.1 Goals . 8
3.2 Research Steps . 9

4 Preliminary Work 13
4.1 Step 1: Construct a reasonably precise oracle-comparator using tree-structured

XML/HTML output and other features. 13
4.2 Step 2: Exploit similarities in web application failures to avoid human annotations

when training a reasonably precise oracle-comparator. 16
4.3 Step 3: Model real-world fault severity based on a human study. 18
4.4 Step 4: Compare the severities of real-world faults to seeded faults using human data. 19

5 Expected Contributions and Conclusion 19

6 Appendix 20
6.1 Web-based Applications . 21
6.2 Three-tiered Web Applications . 21
6.3 Dynamic Content Generation in Web Applications 21
6.4 Oracles . 21
6.5 Fault Taxonomies for the Web . 21
6.6 Proposed Research Outline . 21
6.7 Benchmarks in Step 1 . 26
6.8 Benchmarks Used in Step 2 . 26
6.9 Features used in Steps 1 and 2 . 26
6.10 Longitudinal Study Results in Step 1 . 27
6.11 Open Source Web Application Benchmarks used in Steps 3 and 4 27
6.12 Web Application Fault Severity Study . 27
6.13 Web Application Fault Severity Survey . 33

v

Contents vi

Bibliography 36

Chapter 1 Introduction

1.1 Motivation

In the United States, 73% of the population used the Internet in 2008 [9], which contributed to
the over $204 billion dollars in Internet retail sales in the same year [8]. While the global average
for Internet usage is only 24% of the population by comparison [9], online business-to-business e-
commerce1 transactions total several trillions of dollars annually [6]. Therefore, there is a powerful
economic incentive to produce and maintain high quality web-based applications2.

Although many types of software, such as operating systems, are also widely used and highly
distributed, web-based applications have additional challenges in ensuring acceptability and main-
taining a customer base. Customer loyalty towards any particular website is notoriously low, and is
primarily determined by the usability of the application [43]; unlike customers purchasing software
such as Microsoft Windows, web customers can easily switch providers without having to buy an-
other product or install another application. This challenge of customer allegiance is compounded
by high availability and quality requirements: for example, one hour of downtime at Amazon.com
has been estimated to cost the company $1.5 million dollars [47]. User-visible failures are endemic
to top-performing web applications: several surveys have reported that about 70% of such sites
are subject to user-visible failures, a majority of which could have been prevented through earlier
detection [56].

Delivering high quality web-based applications has its own additional challenges. Most web
applications are developed without a formal process model [48]. Despite having high quality re-
quirements that would normally dictate the need for testing and stability, web applications have
short delivery times, high developer turnover rates, and quickly evolving user needs that translate
into an enormous pressure to change [51]. Web application developers often deliver the system
without testing it [51].

Web-based applications are not fundamentally different from other software in terms of tech-
nologies used; however they deserve further attention due to three main characteristics: (1) Web-
based applications form the backbone of the e-commerce and communication businesses, and
therefore they are subject to unique and powerful economic considerations, (2) Web-based ap-
plications provide a variety of services, but are commonly built as three-tiered architectures that
output browser-readable code (see Figure 6.1), and consequently unrelated web-based applications
often fail in similar ways, and (3) Web-based applications are human-centric, implying not only a
“customer” use-case, but also defining the perceived acceptability of results through the eyes of the
user.

1The definition of business-to-business e-commerce includes all transactions of goods and services for which the
order-taking process is completed via the Internet.

2see the Appendix for a definition of web-based applications.

1

Chapter 1. Introduction 2

1.2 Web-based Applications

While the economic urgency of delivering high-quality web-based applications is only compounded
by the lack of investment in formal processes and testing for this type of software, two insights offer
hope of targeting development and testing strategies towards producing high-quality applications.
First, as Figure 6.1 illustrates, although web applications are frequently complex, with opaque,
loosely-coupled components, are composed in multiple programming languages, and maintain per-
sistent session requirements, as my research will show, they tend to fail in similar and predictable
ways. I hypothesize that this similarity is due to the fact that web-based applications render out-
put in XML/HTML, where lower-level faults manifest themselves as user-visible output [47, 60].
Although web applications are often complicated amalgamations of various heterogeneous com-
ponents, the requirement that they produce HTML output corrals failures, even those from lower
levels of the system.

Second, web applications are meant to be viewed by a human user. While this implies that
faults in the system will manifest themselves at the user level and drive away customers, I claim
that this human-centric quality of web applications should actually be viewed as an advantage. The
acceptability of output becomes dependent on whether or not users were able to complete their tasks
satisfactorily — a definition that encompasses a natural amount of leeway. Rather than viewing
verification in absolute terms, developers that are subject to the extreme resource constraints web-
based project often entail may focus on reducing the number of high severity faults that will drive
away customers.

1.3 Challenges for Testing Web-based Applications

Testing is a major component of any software engineering process meant to produce high quality
applications. Despite the drive to retain customers, testing of web-based applications is limited in
current industrial practice due to a number of challenges:

• Rate of Change. The usage profile for any particular web-based application can quickly
change, potentially undermining test suites written with certain use cases in mind [23]. Simi-
larly, websites undergo maintenance faster than other applications [23]. Unlike other types of
software, web-based applications are frequently patched in real-time in response to customer
suggestions or complaints. Regression testing of web-based applications must be flexible
enough to handle such small, incremental changes.

• Resource Constraints. Testing of web applications is often perceived as lacking a signif-
icant payoff [29]. This mindset is a consequence of short delivery times, the pressure to
change, developer turnover, and evolving user needs [51, 67]. Given this human misconcep-
tion of the value of testing, every effort to reduce the burden of testing for applications with
such resource constraints must be made: applying automation to web testing methodologies
increases their viability.

• Dynamic Content Generation. Unlike traditional client-server systems, client side func-
tionality and content may be generated dynamically in web applications [67]. The content of
a page may be customized according to data in a persistent store, the server state, or session
variables. Validating dynamically-generated webpages is difficult because it often requires

testing every possible execution path, and static analyses have difficulty capturing the behav-
ior of code generated on-the-fly by dynamic languages [15].

1.4 Errors in the Context of Web-based Application Testing

In order for testing of web-based applications to be made widely and successfully adopted, testing
methodologies must be flexible, automatic, and able to handle their dynamic nature. This proposed
research will explore errors in web-based applications in the context of web-based application fault
detection. In doing so, my goal is to develop new techniques to reduce the cost of testing web-
based applications as well as provide recommendations to make current testing techniques more
cost-effective. As my thesis, I hypothesize that web-based applications have special properties
that can be harnessed to build tools and models that improve the current state of web application
fault detection, testing, and development. I approach the problem of fault detection in web-based
applications by recognizing that errors in web-based applications can be successfully modeled due
to the tree-structured nature of XML/HTML output, and that unrelated web-based applications fail
in similar ways. Additionally, by analyzing errors in web applications to define a model of severity,
I seek to target fault detection and classification methodologies and evaluation techniques toward
detecting high-severity faults to retain users in the face of low customer loyalty.

The contributions of this research will be: (1) tools and algorithms to further automate fault
detection during the testing of web-based applications, making the efficient adoption of such testing
techniques more feasible for developers, and (2) a model of web application fault severity to guide
software engineering and testing techniques to avoid and find high-severity faults, respectively.

Chapter 2 Background

2.1 Testing Web-based Applications

This section presents an overview of the current state-of-the-art in web-based application testing
technologies, as well as the criteria researchers use to evaluate competing approaches. Most web-
based application testing approaches either tackle the challenge of cost reduction through automa-
tion, or aim to provide guidelines or techniques to increase fault coverage in testing this type of
software where code is often dynamically generated.

2.2 Existing Approaches

Several tools and techniques exist for testing web applications, but most of them focus on protocol
conformance, load testing, broken link detection, HTML validation, and static analyses that do not
address functional validation [23, 62]. These are low-cost approaches with a relatively high return
on investment, in the sense that they can easily detect, without manual effort, some errors that are
likely to drive away users. Unit testing of web applications using tools such as CACTUS [7] require
the developer to manually create test cases and oracles of expected output. Similarly, structural
testing techniques require the construction of a model [35, 39, 50], which is usually carried out
manually [62]. Static components of websites, such as links, HTML conformance, and spelling
can be easily checked by automated spider-like tools that recursively follow all static links of the

3

Chapter 2. Background 4

application, inspecting for errors [17]. Testing the dynamic, functional components automatically
is an active research area [16]. Tools that do approach functional validation are usually of a capture-
replay nature [52], where interactions with the browser are recorded and then replayed during test-
ing. In these cases, a developer manually records a set of test scenarios, possibly by interacting
directly with the application, which can then be automatically rerun through the browser.

2.2.1 Oracles

Inherent to all types of testing is the need for oracles, which are responsible for providing the cor-
rect, expected output of a test case. Formally, an oracle is a mechanism that produces an expected
result and a comparator checks the actual result against the expected result [18]. Figure 6.3 dia-
grams the process of using an oracle-comparator in testing. In the case of unit testing the oracle
output may be manually specified. For other types of testing, and regression testing in particular,
the oracle is commonly a previous, trusted version of the code. Recent work [32, 39, 57, 59, 60]
uses HTML output as oracles, because such data is easily visible and because lower-level faults
typically manifest themselves as user-visible output [47, 60]. Oracle comparators are frequently
used for testing web applications, and in practice discrepancies are examined through human inter-
vention [23, 39, 51, 60].

Testing is often limited by the effort required to compare results between the oracle and test
case outputs. For many types of software, using a textual diff is an effective method for differenti-
ating between passed and failed test cases. Unfortunately, a diff-based comparator for web-based
applications produces frequent false positives [60] which must be manually interpreted. Manual in-
spection is an expensive process, however, and the incremental nature of website updates described
in Section 1.3 often may not change the appearance or functionality experienced by the user.

Change Detection

Detecting changes between domain-specific documents is a frequent challenge is many applica-
tions. For example, differences in tree-based documents (such as XML and abstract syntax trees)
can be accomplished by a tool such as DIFFX [10], which characterizes the number of insertions,
moves, and deletes required to convert one tree to the other as a minimum-cost edit script [10, 66].
Change detection for natural language text can be achieved through a bag-of-words model, standard
diff, and other natural language approaches. Detecting changes between different source code
versions is often accomplished through diff as well. Although recent work has explored using
semantic graph differencing [49] and abstract syntax tree matching [42] for analyzing source code
evolution, such approaches are not helpful in comparing XML and HTML text outputs. Not only
do they depend on the presence of source code constructs such as functions and variables, which
are not present in generic HTML or XML, to make distinctions, but they are meant to summarize
changes, rather than to decide whether or not an update signals an error.

Change detection in web pages has been explored in the context of plagarism detection [55] and
web page update monitoring [25,37,13]. For example, users may want to monitor changes in stock
prices, updates to a class webpage, or other pre-specified data through one of these approaches [13,
3, 1]. Flesca and Masciari use three similarity measures to detect the percentage of similar words,
measures of tree element positions, and similar attributes between two XML-based documents [25].
Such structure-aware analyses may be useful in designing reasonably precise oracle-comparators, as

Chapter 2. Background 5

long as the focus is shifted towards error detection. An ideal comparator for web-based applications
would be able to handle both the structural evolutions (such as DIFFX) as well as updates to content
(such as natural language tools) in order to specifically differentiate between defects and correct
output, as opposed to pinpointing or summarizing updates.

Oracle Comparators for the Web

Traditional testing for programs with tree-structured output is particularly challenging [57] due to
the number of false positives returned by a diff-like comparator [60]. Additionally, if such naı̈ve
comparators are employed, oracle output quickly becomes invalidated as the software evolves, as
test cases are unable to pass the comparator due to minor updates. Instead, web-based applications
would benefit from a reasonably precise comparator that is able to differentiate between unim-
portant syntactic differences and meaningful semantic ones. One approach is for developers to cus-
tomize diff-like comparators for their specific applications (for example, filtering out mismatching
timestamps), but these one-off tools must be manually configured for each project and potentially
each test case — a human-intensive process that may not be amenable to the frequent nature of
updates in the web domain.

Providing a reasonably precise comparator for web-based applications is an active area of re-
search. Sprenkle et al. have focused on oracle comparators for testing web applications [57,59,60].
They use features derived from diff, web page content, and HTML structure, and refine these
features into oracle comparators [60] based on HTML tags, unordered links, tag names, attributes,
forms, the document, and content. Applying decision tree learning allowed them to target com-
binations of oracle comparators for a specific application, however this approach requires manual
annotation [59].

2.2.2 Automation

Given the extraordinary resource constraints in web development environments (see Section 1.1),
the automation of testing techniques has been a main focus of research in this domain. Automation
can occur at any level of the testing life cycle, including test case generation, replay, and failure
detection. This work will focus on automated failure detection in web application testing though
the use of reasonably precise comparators [57] (as described in Section 2.2.1) to verify the function-
ality of the website. Application-level failures in component-based services can also be detected
automatically [20], although this approach is directed more at monitoring activities than testing.
Validating large amounts of output or state remains a difficult problem and is the subject of ongoing
research [30, 62].

2.2.3 Measuring Test Suite Efficacy

Similar to the testing of other types of software, web-based application testing methodologies must
be evaluated on some metric other than their ability to detect real-world faults in the current version
of the application, as real-world faults cannot always be known a priori. Two widely-adopted
complementary criterion are used to identify the efficacy of various test suites:

• Code coverage is a standard software engineering technique used to measure test suite effi-
cacy. Code coverage metrics are frequently used in web application testing [16,23,27,39,54,

Chapter 2. Background 6

57, 58, 59, 60, 61], although the average percentage of statement coverage falls well short of
100% (and is often closer to 60%) in many studies [16, 27, 54, 57, 58, 59, 60, 61].

• Fault detection. An orthogonal approach to code coverage is to directly measure the number
of faults found through the use of a specific test suite [16, 22, 23, 44, 57, 59, 60, 61]. Because
real-world faults are not known in advance (except when looking at older versions of a pro-
gram), fault-based testing is used to introduce faults into the code meant to be uncovered by
the test suite [18,62]. There are two main options for this so-called fault seeding: faults can be
manually inserted by individuals with programming expertise, or mutation operators can be
used to automatically produce faulty versions of code. It is hypothesized that automatically-
seeded faults using source code mutation are at least as difficult to find as naturally occurring
ones for software in general [12, 33]. Whether or not manually seeded faults are equivalent
to naturally occurring faults in web applications remains an open question.

Cost is also an important factor in determining test suite efficacy, especially when considering
the resource constraints web development is subject to (see Chapter 1). In this cost model, the
quality of a testing methodology is defined as the product of the cost of an error and the number
of such errors exposed by the test suite, divided by the cost of designing and running the test
suite. Under the cost model a more effective test suite may ultimately discover fewer faults then a
competitor. Given the large size of the input space, test suite reduction is one technique that aims
to select test cases that are most likely to find bugs, or alternatively, to filter out test cases that are
unlikely to find new bugs (such as duplicate tests). Traditional test reduction techniques such as
Harrold, Gupta, and Soffa’s reduction methodology [28] have been successfully applied to user-
session based testing [32]. Other approaches focus on web applications characteristics in particular,
such as data-flow [38], finite state machine [11] analyses, use case coverage [21] and URL-based
coverage [53].

2.2.4 Defining Errors in Web-based Applications

Web-based applications present additional challenges in testing because the term “fault” may have
different meanings to different people. As an example, usability issues, such as the inability of a
customer to locate a Login link, may not be considered as faults in testing. Ma and Tian define a
web failure as “the inability to obtain and deliver information, such as documents or computational
results, requested by web users.” [40]. It remains unclear whether usability (as opposed to correct-
ness) issues are adequately considered in the automated testing processes of web applications.

Faults uncovered in testing can also be classified into different types, and some techniques
are better at exposing certain types of faults [62]. Ostrand and Weyuker initially classified faults in
terms of their fix-priorities [45], but later rejected that approach, concluding that using such severity
measures was subjective and inaccurate [46, 62].

Fault taxonomies for web applications are in their infancy, in that only a few preliminary models
exist. For web applications in particular, Guo and Sampath identify seven types of faults as an
initial step towards web fault classification [26]. Marchetto et al. validate a web fault taxonomy to
be used towards fault seeding in [41]. Their fault categories are summarized in Figure 6.4, and are
organized by characteristics of the fault that generally have to do with what level in the three-tiered
architecture the fault occurred on or some of the underlying, specific web-based technologies (such
as sessions). In these fault classifications [26,41] there is no explicit concept or analysis of severity

Chapter 2. Background 7

— while some categories of faults may, in general, produce more errors that would turn customers
away, this consideration is not explored.

2.3 Graphical User Interface Testing

Many similarities exist between Graphical User Interfaces (GUIs) and web applications — a
brower-displayed webpage is a kind of GUI. Like a webpage, a GUI can be characterized in terms of
its widgets and their respective values. Xie and Memon define a GUI as a “hierarchical, graphical
front-end to a software system that accepts input as user-generated and system-generated events,
from a fixed set of events, and produces deterministic graphical output.” [69]. Notably, they ex-
clude web-user interfaces that have “synchronization and timing constraints among objects” and
“GUIs that are tightly coupled with the back-end code, e.g., ones whose content is created dynami-
cally...” [69].

Like web applications, GUIs are difficult to test due to the exponential number of states the
software can be in [68], as well as the manual effort required to develop test scripts and detect
failures [19]. Similarly, they are often not tested at all, or are tested using capture-replay tools that
capture either GUI widgets or mouse coordinates [2]. While advances in GUI testing technology
may apply to the web application testing domain, the latter has its own additional challenges. Pri-
marily, most GUIs lack a dynamically-generated HTML description. The availability of HTML as a
standard description language for both content and presentation control implies that further analyses
are possible on this output, and some GUI testing methodologies are not directly applicable. Web
application content is very likely to by dynamically generated, while GUIs are relatively static by
comparison. Additionally, customers using the web frequently have the option of easily switching
providers, while GUI-based systems are often purchased and installed, making a direct compari-
son of customer-perceived fault severity between the two types of software difficult, and faults are
likely to manifest themselves in different ways (for example, web applications frequently fail and
display stack traces, while GUIs are less likely to do so in the middle of normal GUI content). This
research will focus on web-based application user interfaces only. In future work, I would like to
analyze faults in GUI applications and potentially extend some of the guidelines and techniques in
the current proposed work to that domain.

2.4 Improving the Current State of the Art

Research in web-based application testing often focuses on reducing costs through (1) the automa-
tion of activities, and (2) more precise error exposure. By studying errors in web-based applica-
tions in the context of web-based application testing, my goal is to further cut the costs of testing
by modeling errors in web-based applications to identify them more accurately, as well as further
automating the oracle-comparator process. Specifically, my research will focus on fault detection,
with the assumption of a provided test-suite with a retest-all strategy.

Additionally, I propose to make web testing more cost-effective by devising a model of fault
severity that will guide test case design, selection, and prioritization. This model of fault severity
will have the additional benefits of validating or refuting the underlying assumption that all faults are
equally severe in fault-based testing [24,63] for web applications, and offering software engineering
techniques for high-severity fault avoidance to developers who do not have the resources to invest

in testing. Unlike the severities explored by Ostrand and Weyuker [45, 46], these severities are
not the developer-assigned severities to faults (such as found in bug reporting databases), but are
instead based on human studies of customer-perceived severities of real-world faults. I claim such
human-driven results would be more indicative of true monetary losses and especially relevant in
the web domain.

Chapter 3 Goals and Approaches
This research explores errors in web-based applications in the context of web-based application
fault detection. My main hypothesis is that web-based application errors have special properties
that can be exploited to improve the current state of web application fault detection, testing and
development. This chapter details the goals of my research and the approaches and steps I will take
to carry it out.

3.1 Goals

The main goals for this research are:

1. Improve fault detection during regression testing web-based applications to reduce the cost
of this activity by capitalizing on the special structure of web-based application output to
precisely identify errors.

2. Automate fault detection during web-based application regression testing by relying on the
discovery that unrelated web-based applications tend to fail in similar ways.

3. Understand customer-perceived severities of web application errors.

4. Formally ground the current state of industrial practice by validating or refuting fault injec-
tion as a standard for measuring web application test suite quality. The research will assess
whether or not the assumption that all injected faults have the same non-trivial severity, and
thus, the same benefit to developers, holds.

5. Understand how to avoid high-severity faults during web application design and development.

6. Reduce the cost of testing web applications by exposing high-severity faults through test case
design, selection, and prioritization (test suite reduction).

By improving upon fault detection, this proposed research will result efficient, automated ap-
proaches to the testing of web-based applications that reduce the cost of this activity, making its
adoption more feasible for developers. Additionally, I aim to construct a model of web applica-
tion fault severity to validate the current underlying assumption of fault severity uniformity in fault
seeding, guide software engineering to avoid high severity faults, and assist testing techniques in
find high-severity faults.

Studying fault severities from the customer perspective is a novel contribution to the web ap-
plication testing field. This research will approach the web-based application testing challenge
by recognizing that errors in web-based applications can be successfully modeled due to the tree-
structured nature of XML/HTML output, that unrelated web-based applications fail in similar ways,

8

Chapter 3. Goals and Approaches 9

and that these failures can be modeled according to their customer-perceived severities. Figure 6.5
summarizes the proposed outline.

3.2 Research Steps

This section details the major steps to achieve the goals above.

3.2.1 Step 1: Construct a reasonably precise oracle-comparator that uses the tree-
structured nature of XML/HTML output and other features.

In Step 1, I propose to focus on reducing the cost of current regression testing techniques for web-
based applications by focusing on fault detection. Regression testing programs with tree-structured
output is traditionally challenging [57] due to the number of false positives returned by naı̈ve diff-
like comparators [60]. Comparators that are not robust enough to handle the incremental, and often
non-functional, evolutions of web applications further compound the problem by invalidating old
oracle outputs.

I propose to construct a reasonably precise oracle comparator that reduces the number of false
positives associated with traditional regression testing output comparison approaches for web-based
applications without sacrificing true positives1. To do so, I target the tree-structured nature of
XML/HTML output and build a comparator that examines these two output trees. This approach
will classify test case output based on structural and semantic features of tree-structured documents.
A semantic distance metric that is based on the weighted sum of individual features will decide
whether or not an output pair needs to be examined by a human. I propose to use linear regression
to learn the feature weights and identify a global cutoff for each benchmark application. The idea
behind this approach is to model web-based application errors on a per-project basis through feature
analysis; once I have modeled the signature of an erroneous output in a specific application, I will
to use the model to differentiate between correct and faulty output.

3.2.2 Step 2: Harness the similar way in which web applications fail to avoid
the need for human annotations in training a reasonably precise oracle-
comparator.

Although Step 1 aims to reduce the effort required to verify regression test outputs, the approach is
not entirely automated. In my preliminary work, a small amount (20%) of test cases output must
be manually annotated in each iteration to train the model. In this step, I propose to employ the
inherent similarities between unrelated web-based applications to train a model for a reasonably
precise comparator in an automatic manner.

I will annotate pairs of oracle-testcase output from a set of benchmark applications to use as
training data for a model of web-based application errors as in Step 1. I will then use this model as
a comparator for separate, unrelated applications. This step is possible because of the predictable
way in which unrelated web-based applications often fail; I will explicitly test this hypothesis by
recording what features are shared between different applications’ faults and evolutions. While this
is a reasonable general approach, it is possible that there are target test applications that do not

1The word reasonably is defined as an F-score of 0.9 or better.

Chapter 3. Goals and Approaches 10

exhibit faults in a manner similar enough to my corpus of training data to apply this technique as-is.
In such cases, I propose to use fault injection through source code mutation to generate oracle-fault
pairs of output, that I can then apply to the training data set and customize my comparator to the
application at test, all the while avoiding manual annotations. Using fault seeding to simulate errors
in test case output for web-based applications has previously been explored in [36, 59].

3.2.3 Step 3: Conduct a human study of real-world fault severity to identify a model
of fault severity.

Customer-perceived fault severities have not been studied in the context of web applications, even
though this domain is highly human-interaction centric. While fault severities are frequently
recorded during the testing and maintenance phases of software development in bug repositories,
these judgments have been found to not represent true severities and may instead factor in other
variables, such as the politics behind labeling a bug with a certain severity rating [46]. Due to the
business-oriented nature of web applications, it is less likely that customers will report faults in bug
repositories — instead, they are more likely to contact the website’s company directly. For exam-
ple, Amazon.com does not have a customer-accessible bug repository and instead offers customers
correspondence through email or phone [5].

This research will attempt to build a model or taxonomy of customer-perceived fault severities
through the use of real-world faults (from open-source web applications) in a human study.2 In
the human study, subjects will be asked to view pairs of website screenshots corresponding to the
current-next page idiom, and identify the severity of faults encountered on the next page. For the
initial study, real-world faults will be collected from technical forums of open-source benchmark
web applications. Human subjects will be asked to categorize faults according to how likely they are
to drive away a customer. Once the different levels of fault severities are populated with real-world
errors, I will examine the faults in each category to determine commonalities that can be used to
create a model of severity based on features of the fault. For example, faults in purchasing a product
from an online vendor, such as a shopping cart not updating or a payment not being processed, are
likely to be much more distressing for customers than a simple typo in a product description. I will
also capture the number and characteristics of each different type of fault. Although code synthesis
is rising in popularity, the scope of this step will be limited to general faults in hand-crafted web
applications, with the aim of extending my model to synthesized code in later work. Additionally,
I propose to discover more about how web errors are developed and reported in industrial develop-
ment. Although the human study is likely to give a good estimate of this distribution, I will also
survey web application developers that are currently working on web applications for this informa-
tion. In essence, this survey will ask developers to report how many faults of each different severity
level they encountered during the entire lifetime of their current project.

3.2.4 Step 4: Compare the severities of real-world faults to seeded faults using hu-
man data.

After creating a model of the severity of real-world faults in Step 3, I propose to validate or refute
the underlying assumption that fault seeding is an accurate way to measure test suite efficacy. While

2I have obtained UVA IRB approval for all human studies described in this proposal (IRB SBS 2009009200, March
12 2009).

Chapter 3. Goals and Approaches 11

fault seeding assumes that all faults have the same severity [24, 63], this assumption may be dan-
gerous for web applications if the seeded faults happen to be of low severity. By contrast, seeding
only high-severity faults is not necessarily a disadvantage. To measure the severity levels of seeded
faults, the human subject study from Step 3 will include seeded faults mixed in with the real-world
faults. Half of these seeded faults will be manually generated, and the other half obtained from
automatic source code mutation. Subjects will not know if they are rating a real-world fault or a
seeded one during the experiment.

The severity ratings for faults will be broken down per benchmark, and analyzed to see if:

• the severities of seeded errors have uniform distributions, or

• the severity distribution of seeded errors matches the distribution of real-world errors, ac-
cording to the results of the survey from Step 3.

In cases where the same benchmark application was used with both real-world and seeded faults,
the distributions will be compared directly.

3.2.5 Step 5: Identify underlying technologies and methodologies that correlate with
high-severity faults.

Testing web applications is sometimes perceived as lacking a payoff [29] and developers often forgo
it altogether [51]. Because it is unlikely that the economic conditions surrounding web application
development will change in the near future, providing developers with guidelines to build better
systems in the absence of testing remains an important consideration. While advances in reducing
the cost of testing increase the likelihood of testing approaches being adopted, offering alternatives
to achieve high quality systems with less of a reliance on testing is an orthogonal approach, and the
two are not mutually exclusive.

Based on the model of web application error severities derived in Step 3, I propose to further
analyze high severity errors in an attempt to tie them to underlying code, programming languages,
components, or software engineering practices. To do so, I plan to use error features available from
the technical forums of these open source benchmarks for the real-world errors in Step 3, combined
with surface features of the errors themselves, and map these features into my severity categories.
Although not all bugs reports will provide specifics on how the error was discovered or patched,
often the screenshots of each error can offer valuable information, such as a stack trace, which can
then be pieced together into a narrative of why the error occurred. As I am examining errors in
bug repositories, I also propose to measure the percentage of faults reported that are user-visible, as
these are the types of faults my work is able to address. In this step I will also ground the dominant
technologies in the current web development environment to characterize the stability of the model
I am building.

3.2.6 Step 6: Identify testing techniques to maximize return on investment by tar-
geting high-severity faults.

Returning to the example of a shopping cart error versus a misspelled word, my proposed fault
model from Step 3 will be able to identify the severities associated with each of these types of
faults. I thus suggest to make recommendations on how to find higher-severity defects during
testing. For example, higher priority may be given to test cases that exercise the business logic of

Chapter 3. Goals and Approaches 12

the shopping cart. Although this example is a natural conclusion, it is an important one, as other
metrics used in test case selection, such as code coverage, may not give high priority to the shopping
cart business logic code. As another example, it is unknown how the typical white screen of death
(WSOD) exhibited by faulty web applications affects customer perception of the website overall.
Such errors have varied causes — for example, the server may be overloaded, or if the page was
written in PHP, a simple syntax error in the code can prevent any information from being displayed.
If such occurrences are found to drive away customers and the application is using PHP, it may
be advisable to re-run all test cases executing the modified PHP files and use program slicing to
determine which subset of test cases should then be executed [65].

Applying a model of fault severity to testing introduces a new metric for the (web application)
test suite reduction research community. There are two options to associate test cases with the
severities of faults they are likely to expose:

• either the user patterns (or use cases) of the test suite [21] will have to be analyzed and
assigned severity ratings, or

• severity ratings will have to be associated with parts of the code and then the code must be
mapped to exercising test cases.

Automatic analysis of user session data and URLs as test cases is inherently easier than automatic
analysis of dynamic-code-generating web application source code. In the former the URLs are the
test cases; therefore, an analysis to reduce the test suite size can target these items directly. For
the latter, in order to reduce the test suite through metrics that depend on the characteristics of the
source code, there must be a way to associate which test suite exercises which piece of code. The
Tarantula fault localization algorithm [14] can be applied to this problem to associate test cases
with the parts of code they execute. Which approach I will use depends on whether or not fault
severity can be determined by examining the URL, or if different severities are more associated with
certain parts of the source code (such as database accesses, authentication, business logic, etc).

3.2.7 Experimental evaluation

• Steps 1 and 2: To evaluate my reasonably precise comparator I will use the recall and pre-
cision metrics from the domain of information retrieval. My comparator will be successful
if it is able to minimize the number of errors it fails to identify in addition to minimizing
the number of non-errors it mistakenly reports. For Step 1 I will also conduct a longitudi-
nal study across multiple released versions of the same benchmark to approximate the cost
savings over a naı̈ve diff-like comparator my technique offers.

• Step 3: The accuracy of the fault severity model will be evaluated by training and testing
on separate subsets of human subjects. Information from the training set will be used to
construct a model that classifies faults into severity categories. The fault severity model will
be successful if it can correctly identify most high severity faults in the held-out testing set.
Since not all humans agree on fault severities, my predictive model will be successful if it
is able to agree with humans about as often as they agree with each other on average. The
distribution of fault severities in the human study will be compared to the distribution of faults
collected from web application developer surveys.

• Step 4: The assumption that using fault seeding to measure test suite efficacy in web appli-
cations will either be validated or refuted based on whether or not seeded faults exhibit at
least as many high severity variants as those in the real world. In addition, the distributions
of seeded fault severities versus real-world fault severities obtained from the survey in Step 3
will be compared for similarity using standard statistical approaches.

• Steps 5: In this step I propose to recommend software engineering guidelines to reduce
high-severity faults in the absence of testing. Because the measure of customer-perceived
severity is a subjective one, this implies the need for several data points. Although it would
theoretically be possible to compare industrial web applications developed with competing
methodologies (one intended to minimize faults of high severity, the other serving as a con-
trol), it is not feasible to obtain enough benchmarks within the scope of this dissertation for
statistically significant results. Instead, I will attempt to survey developers and ask them to
rate their adherence to my guidelines and their observed error rates under the assumption
that I will be able to find enough volunteers. I will thus be able to determine which of my
guidelines are most effective at reducing high severity faults. In the meantime, being able to
identify commonalities between faults of a specific severity serves as a proof-of-concept for
the derived guidelines.

• Step 6: Fault severity as a metric for test suite reduction can be compared to other approaches
in this area by quantifying the number and severity of faults exposed by each test reduction
technique. My approach of applying an error severity model to web application test suite
reduction will be successful if I am able to reveal more high-severity faults per benchmark
application than comparable existing techniques.

Chapter 4 Preliminary Work
This section will describe preliminary research conducted in studying web-based application errors
in the context of web-based application fault detection. Experiments in Steps 1 and 2 will show that
a feature-based analysis of web-based application errors can be applied to fault detection during
regression testing these systems. Step 2 will also show that web-based application errors have
commonalities that span across project bounds. Steps 3 – 6 will continue to present analogies across
web applications to develop a model of customer-perceived web-based application error severities.
Although work remains to be done for Steps 3 though 6, this chapter will demonstrate that a careful
study of errors and their detection in web-based applications can reduce the costs associated with
testing these systems.

4.1 Step 1: Construct a reasonably precise oracle-comparator using
tree-structured XML/HTML output and other features.

The goal of this step is to reduce the cost of regression testing web-based applications by exploiting
the special structure of web-based application output to precisely identify errors. I hypothesize that
errors in these systems have quantifiable features that can be used to derive a model of errors in a
specific application. To do so, I built a reasonably precise comparator for each target application

13

Chapter 4. Preliminary Work 14

that reduces the number of false positives associated with naive diff-like approaches. The next
section describes how I built my reasonably precise comparator to model errors through structural
and semantic features of the pairs of oracle-testcase output. Section 4.1.2 describes my experimental
setup and results.

4.1.1 Comparing pairs of documents

My approach classifies test case output based on structural and semantic features of tree-structured
documents. To do so, I parse the XML/HTML output of both the oracle1 and test case to align these
input trees by matching up nodes with similar elements. My goal is to find the minimal number of
changes required to align the two documents, and to do so, I adapt the DIFFX [10] algorithm for
calculating structural differences between XML documents. I then calculate the value of 22 features
for each pair of trees. My features fall into two main categories: those that measure differences in
the tree structure of the document, and those that emulate human judgment of interesting differences
between pairs of XML/HTML output. Features may be correlated positively or negatively with test
output errors, depending on the target application. Most of my features are relatively simple, and
I summarize the most important ones in Figure 6.8. For each pair of oracle-testcase output, each
feature is assigned a numeric weight that measures its relative importance. Whenever the weighted
sum of all feature values for a pair of oracle-testcase output exceeds a certain cutoff value, my
model decides that the output is worth examining by a human. The weights and cutoff value are
learned empirically; I return to this issue when discussing my experimental setup below.

4.1.2 Experimental Setup and Results

I evaluated my reasonably precise comparator on ten open source benchmarks from an assortment
of domains, summarized in Figure 6.6. For each benchmark, I manually inspected outputs for each
version; the older version was assumed to be the oracle output and the newer version the test output.
I marked each output pair as “definitely not a bug” or “possibly a bug, merits human inspection”.
I conservatively erred on the side of requiring human inspection. My initial experiments involve
7154 pairs of test case output, where 919 were labeled as requiring inspection.

I then evaluated my reasonably precise-comparator as an information retrieval task by creating
a linear regression model from my feature values and identifying an optimal cutoff to form a binary
classifier. Because I test and train on the same data, I used 10-fold cross validation [34] to detect
and rule out any bias introduced by doing so. I then use precision and recall to evaluate my precise-
comparator’s effectiveness at correctly labeling pairs of test case output. Precision can be trivially
maximized by returning a single test case, while recall can similarly be maximized by returning all
test cases. I avoid these scenarios by combining the two measures and taking their harmonic mean.
The result is the F1-score.

Figure 4.1 shows my precision, recall, and F1-score values for my dataset, as well as diff,
xmldiff [4], coin toss, and biased coin toss as baseline values. The biased coin toss returns “no”
with probability equal to the actual underlying distribution for this dataset: (7154−919)/7154. My
precise-comparator is three times as effective as diff, and is overall quite powerful with its F1-score
being close to perfect. Cross validation revealed that there was little to no bias from overfitting (a
delta of 0.0004).

1The oracle output is output from a previous, trusted version of the code.

Chapter 4. Preliminary Work 15

Comparator F1-score Precision Recall
precise-comparator 0.9931 0.9972 0.9890
precise-comparator w/
cross-validation 0.9935 0.9951 0.9920
diff 0.3004 0.1767 1.0000
xmldiff 0.2406 0.1368 1.0000
fair coin toss 0.2045 0.1286 0.4984
biased coin toss 0.2268 0.1300 0.8868

Figure 4.1: The F1-score, precision, and recall values for my reasonably precise-comparator on my
entire dataset. Results for diff, xmldiff, and random approaches are given as baselines; diff
represents current industrial practice.

I also analyzed which features influenced my comparator the most through an analysis of vari-
ance (see Figure 4.2). My most powerful feature was whether or not the changes between the
pairs of output involve only natural language text — this feature is strongly negatively correlated
with errors, and explains my significant advantage over a diff-like comparator. In contrast, the
DIFFX-move feature was frequently correlated with test case errors, as these changes show up as a
side-effect of other large changes such as the introduction or deletion of one element often moves
neighbors. Despite the high F-ratio of the DIFFX-move feature, its model coefficient was an order
of magnitude smaller than those of insert or delete, which implies that other features also had to be
present in order for the test case output to merit inspection.

My analysis of variance relies on three assumptions: (1) that my samples are independent, (2)
that the underlying distribution of the features is normal, and (3) the variances of each feature are
similar. I will explicitly test assumptions 2 and 3 by conducting an Anderson-Darling normality test
and explicitly measuring the variance of each feature, respectively. If the underlying distribution
is not normal, a different ANOVA will be employed (such as the KruskalWallis test), while any
feature whose variance deviates from the norm will be discarded from the ANOVA analysis.

I also conducted a longitudinal study to measure the hypothetical amount of effort that could be
saved when my reasonably precise-comparator is applied in an industrial setting. I considered the
situation where an organization uses my reasonably precise-comparator on all successive product
releases, and I assume that humans manually annotate a small percentage of test case output (20%)
flagged by diff for each version, using this as training data for the comparator. Subsequent releases
of the project retain training information from previous releases, and incorporate the false positive
or true positive results of any test case that my tool deemed to require manual inspection.

The amount of effort saved by developers using my reasonably precise-comparator is measured
by defining a cost of looking (LookCost) at a test case and a cost of missing (MissCost) for each
test case that should have been flagged but was not. A useful investment in my reasonably precise-
comparator occurs when the cost of looking at the false positives flagged by diff, but not my
approach, exceeds the cost of any missed test cases:

(TruePos+FalsePos)×LookCost +FalseNeg×MissCost

is less than the cost of |diff|×LookCost. Therefore, I are profitable when:

Chapter 4. Preliminary Work 16

Feature Coefficient F p

Text Only - 0.217 179000 0
DIFFX-move + 0.003 170000 0
DIFFX-delete + 0.017 52700 0
Grouped Boolean + 0.792 9070 0
DIFFX-insert + 0.019 862 0
Error Keywords + 0.510 410 0
Input Elements + 0.118 184 0
Depth - 0.001 128 0
Missing Attribute - 0.045 116 0
Children Order - 0.000 77 0
Grouped Change - 0.078 62 0
Text/Multimedia + 0.009 19 0
Inversions - 0.000 6 0.02
Text Ratios - 0.001 6 0.02

Figure 4.2: Analysis of variance of my model. A + in the ‘Coefficient’ column means high values
of that feature correlate with test cases outputs that should be inspected. The higher the value in the
‘F’ column, the more the feature affects the model. The ‘p’ column gives the significance level of
F ; features with no significant main effect (p≥ 0.05) are not shown.

LookCost
MissCost

>
−FalseNeg

TruePos+FalsePos−|diff|
I assume LookCost�MissCost, so I would like this ratio to be as small as possible (see Figure 6.9).
For example, when applying my technique to the last release of HTMLTIDY, my approach is prof-
itable if the ratio is about 1/1000 — that is, if the cost of missing a potentially useful regression test
report is no greater than 1000 times the cost of triaging and inspecting a test case I am able to save
developers effort. A ratio of 0 is optimal with respect to false negatives and is always an improve-
ment over diff. My reasonably precise-comparator generally improves on subsequent releases,
sometimes completely avoiding false negatives. My model is at its worst, however, when there is a
large relative increase in errors between two versions (see the fourth release of HTMLTIDY)— such
a situation can exist during a rushed release that breaks existing code.

Previous work on bug report triage has used a LookCost to MissCost ratio of 0.023 as a metric
for success [31]. My average performance (0.0183) is a 20% improvement over that figure, and
when I exclude the HTMLTIDY outlier mentioned above I achieve a ratio of 0.0015, exceeding the
utility of previous tools by an order of magnitude.

4.2 Step 2: Exploit similarities in web application failures to avoid
human annotations when training a reasonably precise oracle-
comparator.

The goal of this step is to further automate regression testing of web-based applications by rely-
ing on the predictable and similar ways in which they fail to train a reasonably precise oracle-

Chapter 4. Preliminary Work 17

comparator with out the need for manual annotation. Existing reasonably precise-comparators for
web applications typically have average F-measures of up to 0.91, in terms of finding manually-
seeded faults, in the absence of manual training, although it is impossible to know which oracle
combinations yielded the best results without evaluating all of them, manually examining the num-
ber of false positives returned by each one [60]. diff-based approaches are wrong 70–90% of the
time in my experiments. The next section describes how I apply data from unrelated web applica-
tions to train a reasonably precise oracle-comparator for a separate target application. Section 4.2.2
describes my experimental setup and results.

4.2.1 Training a Reasonably Precise Oracle-comparator Without the Need for Man-
ual Annotation

In this step I use the same feature-based, linear regression model from Step 1 as my compara-
tor. Instead of training the comparator with manually-annotated data from the application-at-test,
I use previously annotated data from unrelated applications. This approach is straightforward and
Section 4.2.2 will demonstrate that it is feasible to use training data from unrelated web-based
applications to test one of interest.

One complication may arise, however, with this approach: when the application-at-test does
not exhibit errors in the same way as the benchmarks used to generate the training data. In such a
situation I propose to use defect seeding to supplement the corpus of training data with application-
at-test-tailored output. Note that this does not change the automatic nature of the approach signif-
icantly, as the process of fault seeding can be automated. To do so I implemented defect seeding
through a subset of mutation operators described by Ellims et al. [12]. For example, mutation op-
erators include deleting a line of code, replacing a statement with a return, or changing a binary
operator, such as swapping AND for OR.

Each mutant version of the source code contains only one seeded fault, and is compiled and
re-run through the regression test suite. The process of mutation is quite rapid; I am able to obtain
11,000 usable faulty outputs within 90 minutes on a 3 GHz Intel Xeon computer. Section 4.2.2 will
show I only need a very small subset of mutants to improve my comparator’s performance.

4.2.2 Experimental Setup and Results

I used the same benchmarks from Step 1 as my corpus of training data. My testing benchmarks
are summarized in Figure 6.7. Although I used ten benchmarks as my training corpus, only two of
them (HTMLTIDY and GCC-XML) had a statistically significant number of output pairs that were
labeled as errors (given by the “Test Cases to Inspect” column) to qualify as testing subjects. I
supplemented these two benchmarks with two open source web applications (CLICK and VQWIKI)
as a “worst-case scenario”: none of the training benchmarks are web applications, so successful
performance on them further supports my claim about wide-reaching application similarities.

My experiment results are summarized in Figure 4.3. My tool is anywhere from over 2.5 to
almost 50 times as good as diff, and for the web applications I achieve perfect results. While my
F1-score for GCC-XML was three times better than that of diff, its recall score of 0.84 implies that
I may be missing a significant number of actual errors. For this benchmark I applied the mutation
procedure described in the previous section. Figure 4.4 shows my F1-scores when adding between
0 and 5 defect-seeded output pairs to the set of training data (0 is provided as a baseline). The

Chapter 4. Preliminary Work 18

Figure 4.3: F1-score on each test benchmark (HTMLTIDY, GCC-XML, VQWIKI, CLICK using my
Model, and other baseline comparators. 1.0 is a perfect score: no false positives or false negatives.

large margin of error when adding only one mutant output pair implies that performance relies on
selecting the most useful mutant outputs to include as a part of the training data set, but selecting
any output is always advantageous. Additionally, no performance gains were witnessed after adding
5 mutants, with a near-perfect F1-score at that point.

4.3 Step 3: Model real-world fault severity based on a human study.

Step 2 suggests that web-based applications have underlying similarities in the way failures mani-
fest. The goal of this step is to build a model of web fault severity through a human study, expanding
this concept that errors in web applications have predictable properties. At the time this document
was written, this human study was currently under way. Four hundred real-world faults were col-
lected from over 17 open-source PHP, Java, and ASP.NET web applications from different domains,
summarized in Figure 6.10. Faults were obtained by systematically browsing the technical forums
for each benchmark to include both faults from the beginning of the development of the project, as
well as the most recent faults, in equal distribution. In selecting faults, I iterated through the forum
entries in order, using each fault where either a screenshot was provided, or the post described the
fault in enough detail in order for me to re-create it in a screenshot.

Section 4.4 explains the setup of the human study, as real-world and seeded faults were anony-
mously combined and presented concurrently to test subjects. Although I have yet to analyze the
results of this human study, in manually collecting the faults I have noticed very similar types of
faults occurring across my benchmarks and suggest that having 100 faults would have been repre-
sentative enough to derive a model.

The appendix contains a copy of the survey targeted at developers for estimating the distribution
of fault severities in the real world. It uses the same severity rating as the human subject study.

Figure 4.4: F1-score for GCC-XML using my model with different numbers of test case output pairs
from original-mutant versions of the source code. The “0” column indicates no mutant test outputs
were used as part of the training data. Each bar represents the average of 1000 random trails; error
bars indicate the standard deviation.

4.4 Step 4: Compare the severities of real-world faults to seeded faults
using human data.

The goal of this step is to validate or refute the underlying assumption that fault seeding is an ac-
curate way to measure test suite efficacy. In addition to the 400 real-world faults collected, 200
automatically-generated faults, equally distributed in six of the benchmarks in Figure 6.10 (de-
noted with an asterisk), were introduced through the same source code mutation described in Sec-
tion 4.2.1. Two hundred manually-seeded faults were similarly obtained for those six benchmarks
by instructing three graduate students with programming experience to insert one fault per mutant
version of source code according to the fault seeding methodology in [32,57]. Manually-generated
test suites were then replayed for these 6 applications to collect the manually-seeded faults.

These 400 real-world and 400 seeded faults were then combined with 100 correct outputs ran-
domly chosen from the 17 benchmarks, and then divided into eighteen groups of 50 pairs of screen-
shots a piece. Once the test items were randomized, human subjects were asked to rate the perceived
severity of faults they noticed, if any, according to the Likert scale in Figure 6.13. Participants were
instructed to use their judgment and past experiences to rate faults; the appendix contains a copy of
the instructions provided to them.

Chapter 5 Expected Contributions and Conclusion
This research will explore and analyze errors in web-based applications in the context of fault
detection. Although I currently focus on testing web-based applications, the work can be extended
to other areas, such as usability and human-computer interaction, as well as other sub-fields, such

19

as graphical user interfaces. The main contributions are expected to be:

• Improve fault detection by constructing a reasonably precise oracle-comparator. My
work focuses on the semantic, rather than the syntactic, difference between pairs of test case
output. In doing so, I can build a model of errors in a web-based application that can be used
by a reasonably precise oracle-comparator to reduce the number of false positives returned
by more naive approaches. By exploiting similarities across seemingly unrelated applica-
tions, I propose to further automate such regression testing by obviating the need to provide
(manually-annotated) training data.

• Develop a model of customer-perceived severities of web application faults. Severities
in web application errors have not been previously explored, despite the customer-oriented
nature of these systems. I expect to produce a model that agrees with an average human
annotator at least as well as humans agree with each other.

• Validate or refute fault injection as a standard for measuring web application test suite
quality by assessing whether or not the assumption that all injected faults have the same
non-trivial severity holds. If fault seeding is found to be a non-representative application of
severity in web application defects, this contribution implies the need to change the metrics
by which competing test cases are evaluated in the web testing field. I expect to discover that
naı̈ve fault injection does not always produce faults of the same severity, as judged by users.
I further expect to propose, based on my formal model of fault severity, ways in which fault
injection can be guided to produce higher-severity faults.

• Propose new software engineering guidelines for web application development. The
first set of guidelines will target high-severity fault avoidance during product design. These
guidelines will be designed under the assumption that developers are choosing not to test
their system, and are therefore orthogonal to testing-based approaches. The second set of
guidelines will target making testing efficient. These guidelines may be incorporated into
test case design, selection, and prioritization (test suite reduction). In this instance my fault
severity model becomes another metric by which testing techniques can me measured. I
expect to produce less than a dozen such guidelines.

While the proposed work focuses on web applications, it may be possible to extend some of the
results and contributions to other domains. Web-based applications and graphical user interfaces
(GUIs) are both used in a visual, interactive manner. It is likely that visible faults in both systems
manifest themselves in similar ways. Previous work has made the assumption that fault severities
are equal in the domain of graphical user interfaces [64], but to my knowledge no work to date has
explored such severities as as a characteristic of the application under test. Similarly, the models
constructed in this research may have a general applicability beyond web testing, in areas such as
human computer interaction and usability. For example, faults with a certain severity rating can be
analyzed for similarities with common usability issues, such as the inability to locate a link. This
methodology will allow web application developers to focus their usability analysis on the most
critical components of their human interface.

Chapter 6 Appendix

20

Chapter 6. Appendix 21

6.1 Web-based Applications

The terms “web-based application” and “web application” are frequently used interchangeably in
the web community. For the purposes of this proposal, a web-based application is different from
a web application in that web-based applications may output XML code that does not necessarily
end up rendered by a browser. For example, web services frequently communicate through XML,
and such XML output is passed between separate components rather than displayed directly to a
user. Testing of such applications has primarily focused on model-based techniques [62].

6.2 Three-tiered Web Applications

An example three-tiered web application is shown in Figure 6.1. The first row in the diagram
represents the client-server model. Text in bold are various types of software vendors, many of
which are off-the-shelf, opaque components. Example programming languages are associated with
each component in the architecture

6.3 Dynamic Content Generation in Web Applications

Figure 6.2 shows server-side dynamic content generation. Adapted from
http://blog.search3w.com/dynamic-to-static/hello-world/

6.4 Oracles

An oracle-comparator is shown in Figure 6.3. A human (or in some cases software) provides test
input to the system. If capture-replay is being used, these inputs are recorded and then can be
re-run on demand. The application is run on the test inputs and produces output, usually in the
form of XML/HTML for web-based applications. These test outputs are compared against oracle
outputs (which must be specified in advance by a human or other software) using a comparator. The
comparator may either be a developer manually examining output pairs, or it can be software. The
comparator determines if the test case is passed or failed, and a human judges the acceptability of
the output.

6.5 Fault Taxonomies for the Web

Figure 6.4 is a fragment of the initial taxonomy of Marchetto et al. [41]. Only selected
(sub)characteristics and classes of faults are shown. This table is reprinted from [41].

6.6 Proposed Research Outline

My proposed research outline is shown in Figure 6.5.

Chapter 6. Appendix 22

Figure 6.1: Three-tiered web application

Chapter 6. Appendix 23

Figure 6.2: Dynamic content generation

Chapter 6. Appendix 24

Figure 6.3: The oracle-comparator

Figure 6.4: Fragment of the initial taxonomy of Marchetto et al. [41]

Chapter 6. Appendix 25

Figure 6.5: Proposed research outline

Chapter 6. Appendix 26

Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
LIBXML2 v2.3.5 v2.3.10 84K XML parser 441 0
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
CODE2WEB v1.0 v1.1 23K pretty printer 3 3
DOCBOOK v1.72 v1.74 182K document creation 7 5
FREEMARKER v2.3.11 v2.3.13 69K template engine 42 1
JSPPP v0.5a v0.5.1a 10K pretty printer 25 0
TEXT2HTML v2.23 v2.51 6K text converter 23 6
TXT2TAGS v2.3 v2.4 26K text converter 94 4
UMT v0.8 v0.98 15K UML transformations 6 0
Total 473K 7154 919

Figure 6.6: Benchmarks used in step 1

Benchmark Versions LOC Description Test cases Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K W3C HTML validation 2402 25
GCC-XML Nov’05 Nov’07 20K XML output for GCC 4111 875
VQWIKI 2.8-beta 2.8-RC1 39K wiki web application 135 34
CLICK 1.5-RC2 1.5-RC3 11K JEE web application 80 7
Total 108K 6728 941

Figure 6.7: Benchmarks used in step 2

6.7 Benchmarks in Step 1

Figure 6.6 shows the benchmarks used in our experiments in Step 1. The “Test cases” column gives
the number of regression tests we used for that project; the “Test cases to Inspect” column gives the
number of those tests for which our manual inspection indicated a possible bug.

6.8 Benchmarks Used in Step 2

The benchmarks used as test data for our experiment are shown in Figure 6.7. The “Test cases”
column gives the number of regression tests used; the “Test cases to Inspect” column counts those
tests for which our manual inspection indicated a possible bug. When testing on HTMLTIDY or
GCC-XML, we remove it from the training set.

6.9 Features used in Steps 1 and 2

Features between pairs of XML/HTML test case outputs used to make comparator judgments are
shown in Figure 6.8.

Chapter 6. Appendix 27

The number of inserts, deletes, and moves required to transform
one tree into the other
The number of element inversions of non-text nodes, calculated by
removing nodes that are shared in a longest common subsequence
in a sorted list of all tree elements
Grouped changes to a set of contiguous elements in the tree
The maximum depth of changes in the tree
Presence of changes to only text nodes
Presence of changes to child ordering
The ratio of displayed text and the ratio of text to multimedia
between two versions
The number of programming-language based error keywords (i.e.
“exception” or “error”) that occur in the newer version but not
the older
Number of changes to functional elements such as buttons
Presence of changed or missing attribute values of an element

Figure 6.8: Features used in steps 1 and 2

6.10 Longitudinal Study Results in Step 1

Figure 6.9 shows the simulated performance of my technique (PC) on 20232 test cases from multi-
ple releases of two projects. The ‘Test Cases’ column gives the total number of regression tests per
release. The ‘Should Inspect’ column counts the number of those tests that my manual annotation
indicated should be inspected (i.e., might indicate a bug). The ‘Inspected’ column gives the number
of tests that my technique and diff flag for inspection. The False Positives’ and ‘False Negatives’
columns measure accuracy, and the ‘Ratio’ column indicates the value of LookCost/MissCost above
which my technique becomes profitable (lower values are better).

6.11 Open Source Web Application Benchmarks used in Steps 3 and
4

Figure 6.10 shows open-source applications used to collect real-world faults. Items with an asterisk
were benchmarks in which faults were also seeded.

6.12 Web Application Fault Severity Study

6.12.1 Participants and Subject Data

There were no prerequisites or special skills participants were required to have, except that they
had previously used the Internet (through a browser). There were no age, sex, or other restrictions
on volunteers, although a majority of people taking this survey were undergraduate students at the

Chapter 6. Appendix 28

Test Should True Positive False Positives False Negatives
Benchmark Release Cases Inspect PC diff PC diff PC diff Ratio
HTMLTIDY 2nd 2402 12 5 12 78 781 7 0 0.0099

3rd 2402 48 48 48 0 782 0 0 0
4th 2402 254 109 254 1 574 145 0 0.2019
5th 2402 48 48 48 0 775 0 0 0
6th 2402 20 19 20 1 774 1 0 0.0013

GCC-XML 2nd 4111 662 658 662 16 2258 4 0 0.0018
3rd 4111 544 544 544 0 2577 0 0 0

total 20232 1588 1431 1588 96 8521 157 0 0.0183

Figure 6.9: Longitudinal study results in step 1

Name Language Description Real-world Faults
Prestashop* PHP shopping cart/e-commerce 30
Dokuwiki* PHP wiki 30
Dokeos PHP e-learning and course management 22
Click* Java JEE web application framework 3
VQwiki* Java wiki 6
OpenRealty* PHP real estate listing management 30
OpenGoo PHP web office 30
Zomplog PHP blog 30
Aef PHP forum 30
Bitweaver PHP content management framework 30
ASPgallery ASP.NET gallery 30
Yet Another Forum ASP.NET forum 30
ScrewTurn ASP.NET wiki 30
Mojo ASP.NET content management system 30
Zen Cart PHP shopping cart/e-commerce 30
Vanilla* PHP forum 0
other - - 9

Figure 6.10: Open source web applications used in steps 3 and 4

Chapter 6. Appendix 29

University of Virginia. It is possible that our results are biased towards younger people, although
these seem individuals may use the net more frequently, especially when making purchases online.

A five level rating scale is used by participants to rate the severity of faults they see, shown in
Figure 6.13. It is possible that users may not agree that filing a complaint has a higher severity (4)
than not returning to the website (3), although the implied scale of low severity to high severity is
meant to prevent such interpretations. It is also possible that very few or no faults will be rated with
the highest severity rating; in this case, levels 3 and 4 can be collapsed into one rating.

This study will attempt to build a predictive model of fault severity by analyzing the human
judgments of severities of faults in my dataset. In doing so, I must be confident that the difference
in ratings between different faults are due to different true severities of the faults themselves, rather
than due to some variation in ratings from the subjects. To reject the null hypothesis that differences
in severities across faults are a consequence of random chance related to not having enough human
subjects, I propose to conduct a two-way analysis of variance to calculate estimates on the variance
due to differences between human ratings on the same fault. I will use these estimates to calculate
the intraclass correlation coefficient (ICC) for my dataset: a high ICC score will indicate that raters
tend to agree on fault severities. The ANOVA will also provide me with a confidence interval for
these values. Should my ICC be low, I will solicit more human subjects until I can be sure that voters
agree frequently enough on fault severities with an acceptable level of confidence. Performing the
ANOVA analysis will provide me with a value for the variance of my dataset, which will guide
towards how many human subjects I need to solicit should my initial results be found to require
more.

To compare the distribution of severities across automatically-injected faults, manually-injected
faults, and real-world faults, I propose to use a two-sample KolmogorovSmirnov test to reject the
null hypothesis that the distribution of severities of any of these three groups of faults in my study
is a fixed constant. I will also use this test to test if any of the distributions within these groups are
equivalent to any of the others. The KolmogorovSmirnov test will indicate the level of confidence
with which each null hypothesis can be rejected.

6.12.2 About

It has been estimated that 40 to 70 percent of web applications exhibit user-visible errors. In some
instances, these faults can be so severe that customers are unable to complete their activities on a
website and companies end up losing business as a result. Web applications are unique in their re-
quirements for high quality (as customer loyalty is low), and the speed at which they are developed.
Consequently, testing would be especially important for websites, but is often overlooked due to a
perceived low return on investment.

In this study, we will be examining the user (or customer) perceived severity of various errors
encountered during normal website activities. Our goal is to be able to characterize the nature of
different severities of web application faults, as well as get an idea for the underlying distribution
of the different severity levels.

If you have any questions please feel free to contact me (Kinga Dobolyi) at
dobolyi@virginia.edu

Chapter 6. Appendix 30

Figure 6.11: The “current” page

6.12.3 Instructions for Rating Websites

Subject Matter

You will be asked to examine pairs of website screenshots in order to identify and rank the severity
of webpages that exhibit faults. The websites you will be looking at are based off of real-world web
applications, although the faults you will see are simulations.

You will be shown 50 website pair screenshots. Some of these screenshots will not have any
faults, but many of them will. If you correctly identify all of the actual faults in your set of 50 trials,
you will be entered in a drawing for a $50 Amazon.com gift certificate.

We will not ask you for your name, and will not record any identifying information. Data
obtained in this study will be used to identify a taxonomy or model of web applications faults. We
anticipate including an evaluation of this tool in an upcoming publication.

Completing this survey is completely voluntary. If you do choose to participate, you will be
asked to rate the severity of a set of 50 website screenshot pairs on a 0 – 4 scale. No special
knowledge or experience is required for participation. Most people complete the program in about
15 minutes, but there is no time limit.

Example Trial

You will be shown a pair of website screenshots.

• The first page corresponds to the “current” page in the browser. You will see a small ex-
planation of what you, the user, are trying to do on the current page - note that you will be
unable to actually click anything on the website, because it is only a screen capture. For
example, you may see a login screen with a username and password entered, and you will
be told that you want to log in to the application, and to pretend that you clicked the Log In
button. Figure 6.11 is an example of such a “current” page.

• The second page corresponds to the “next” page in the browser - that is, what would appear
if you took the action described on the “current” page. For example, for the login page

Chapter 6. Appendix 31

Figure 6.12: The “next” page

scenario described above, the “next” page would be a screen capture of the welcome page of
the website you would see after you have successfully logged in. Figure 6.12 is an example
of such a “next” page.

• You will then be asked to determine whether or not you think there is a fault on the ”next”
page, based on what you saw and were instructed to pretend to do on the “current” page. If
you believe there is a fault, you will be asked to rate the severity of that fault as we define in
Figure 6.13.

Things to Keep in Mind

Please consider the following items as you are completing the study:

• The “current” pages you will see are not intended to contain faults. If you do notice a fault on
the “current” page, please DO NOT consider that a fault for the purposes of our experiment.
Only rate the faults that you see on the “next” pages.

• Please do not make any assumptions about the distribution of faulty versus non-faulty “next”
pages you will see. While you will see some faulty pages and some non-faulty pages, the
frequency of faulty pages you will be shown may not correspond to your experience in your
daily life.

• When you do notice a fault on the “next” page, in making your decision of which severity
rating to assign it to, assume that the fault will eventually be corrected, but you do not know

Chapter 6. Appendix 32

when. For example, if the fault is that clicking on a button returns a blank page, you should
assume that at some point in the future when you click on that button it will return the correct
page. You do not know, however, when that will be — it may be the next time you click the
button (if this were a real application), or it may not be fixed for 1 year.

• You will have access to this set of instructions as a help link while you are completing the
experiment, which will open in a separate pop-up window.

• If you want, you can skip a set of screen captures for any reason. However, you can’t go
back.

Web Application Fault Severity Study

After you have read the instructions above and are ready to start, click below.
Launch Web Application Fault Severity Study

Reward

To encourage participation, we offer a financial reward for participation. You will be asked to select
from the following two options when you start the study:

• We will give out $5 to anyone who completes the study until money runs out

• We will enter you in a drawing to win a $100 gift certificate to Amazon.com

These rewards are in addition to the $50 Amazon.com gift certificate drawing you can qualify
for if you correctly find all faults in the web application screen captures you will be presented with.

Upon completion of the severity rating, you will receive a 8 character completion code. Bring
this code to the following address any time to receive your reward: Olsson 219 (Westley Weimer’s
Office) 151 Engineer’s Way Charlottesville, VA 22903

In order to receive your Amazon.com prizes (if you win the drawings), we will need to be
able to contact you by email. You will therefore have the option of providing your email address
before the study begins, which will only be associated with your completion code. If you do not
wish to provide your email, you may still complete the study and still collect the $5 reward (when
applicable) in person.

FAQ

How long does it take?
We designed the experiment to take about 15 minutes. However, there is no time limit.
How do I know if the web page has a fault?
We are asking you to use your previous web browsing experience to determine whether or not

the web page screen captures you will see have faults.
Where did these web pages come from?
Various open source projects.

Chapter 6. Appendix 33

Figure 6.13: The severity rating used in our human study

6.13 Web Application Fault Severity Survey

The following survey is part of a study on the severity of web application faults and failures at
the University of Virginia department of computer science. Our goal is to estimate the distribution
the severity of faults in real web application development environments. In doing so, we will be
able to design testing techniques and methodologies that target high-severity faults. Please read the
instructions below and complete the survey to the best of your ability; your participation is entirely
voluntary. We do not record your name, company, or any other information that could identify your
submission, therefore, the data we collect remains anonymous.

We are offering a drawing for a $25 Amazon.com gift certificate for survey participants. If you
would like to participate in this drawing, you may provide us with your email address to notify you
if you are the winner, though this step is optional.

Thank you in advance, Laura Dobolyi
PhD Graduate Student University of Virginia dobolyi@virginia.edu

6.13.1 Instructions

Our goal in conducting this survey is to measure the distribution of fault severity in real world
web application development environments. To do so, we ask you to asses the level of severity of
faults you have encountered during your web application development and provide us with either
the actual or relative distribution of those faults, according to the ranking in the table in Figure 6.13:

An example of an actual distribution of faults would be to report out of 323 faults encountered,
56 were level 0, 79 were level 1, 60 were level 2, 84 were level 3, and 44 were level 4.

An example of a relative distribution of faults would be to report that 17% of faults were level
0, 24% of faults were level 1, 19% were level 2, 26% were level 3, and 14% were level 4.

Note that the previous two distributions are examples and are not meant to imply any kind of
specific distribution that you should report.

In determining the distribution of faults your company has encountered during development
and product maintenance, please report both bugs found during testing by developers as well as

Chapter 6. Appendix 34

bugs reported by customers during or after deployment. We are interested in measuring these faults
together and do not make the distinction between the two when collecting statistics on fault severity.

In addition, please use the following guidelines when selecting which faults to include in the
fault severity rankings of this survey:

• Include bugs from the entire time of the product development lifecycle once testing has be-
gun. In other words, do not report faults that occurred only in the last year; instead, please
report all faults encountered during the testing and product deployment/maintenance (when
applicable).

• Include all and only user-visible faults. A user visible fault is a bug that exists on the website
itself, though it may originate from any level of the application. For example, a database
error may produce incorrect results, return wrong or missing information, or show an error
message or crash dump on the website itself, which a customer/user is exposed to - in this
case because the user can see this error on the website, it should be recorded in the survey.
Other errors such as broken or missing links or images may be found in faulty HTML code
and should also be reported. An example of an error that is NOT user visible and should NOT
be reported is a missing or broken logfile that is only used by developers to debug the system.

• Duplicate faults (such as 5 users reporting the same error) should be reported only once.

Enter Your Results Please use the form in Figure 6.14 to report the distribution of faults you en-
countered using the guidelines above. If you are reporting a relative distribution using percentages,
report the percentages in the column ”Number of Faults (or percentage)”. Please consistently use
either actual number or percentages.

Chapter 6. Appendix 35

Figure 6.14: The severity rating used in our human study

Bibliography
[1]

[2] Studying the fault-detection effectiveness of gui test cases for rapidly evolving software. IEEE
Trans. Softw. Eng., 31(10):884–896, 2005. Member-Memon,, Atif M. and Student Member-
Xie,, Qing.

[3] Copernic tracker home page. http://www.copernic.com/en/products/tracker/index.
htm, 2006.

[4] A7soft jexamxml is a java based command line xml diff tool for comparing and merging xml
documents. http://www.a7soft.com/jexamxml.html, 2009.

[5] Amazon.com: Help. http://www.amazon.com/gp/help/customer/display.html, 2009.

[6] Gartner group forecasts b2b e-commerce explosion. http://www.crn.com/it-channel/
18833281, 2009.

[7] Jakarta cactus. http://jakarta.apache.org/cactus/, 2009.

[8] Online sales to climb despite struggling economy according to shop.org/forrester research
study. http://www.shop.org/c/journal articles/view article content?groupId=
1&articleId=702&version=1.0, 2009.

[9] World internet usage statistics news and world population stats. http://www.
internetworldstats.com/stats.htm, 2009.

[10] Raihan Al-Ekram, Archana Adma, and Olga Baysal. diffX: an algorithm to detect changes in
multi-version XML documents. In Conference of the Centre for Advanced Studies on Collab-
orative research, pages 1–11, 2005.

[11] Annelise Andrews, Jeff Offutt, and Roger Alexander. Testing web applications by modeling
with fsms. In Software Systems and Modeling, volume 4, pages 326–345, April 2005.

[12] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 402–411, 2005.

[13] Hassan Artail and Michel Abi-Aad. An enhanced web page change detection approach based
on limiting similarity computations to elements of same type. In Journal of Intelligent Infor-
mation Systems, volume 32, pages 1–21, February 2009.

[14] Shay Artzi, Julian Dolby, and Frank Tip. Practical fault localization for dynamic web appli-
cations. IBM Research Report RC24675 (W0810-107), October 2008.

[15] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D. Ernst. Finding bugs in dynamic web applications. In ISSTA ’08: Proceedings
of the 2008 international symposium on Software testing and analysis, pages 261–272, 2008.

36

http://www.copernic.com/en/products/tracker/index.htm
http://www.copernic.com/en/products/tracker/index.htm
http://www.a7soft.com/jexamxml.html
http://www.amazon.com/gp/help/customer/display.html
http://www.crn.com/it-channel/18833281
http://www.crn.com/it-channel/18833281
http://jakarta.apache.org/cactus/
http://www.shop.org/c/journal_articles/view_article_content?groupId=1&articleId=702&version=1.0
http://www.shop.org/c/journal_articles/view_article_content?groupId=1&articleId=702&version=1.0
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

Bibliography 37

[16] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D. Ernst. Finding bugs in dynamic web applications. In ISSTA ’08: Proceedings
of the 2008 international symposium on Software testing and analysis, pages 261–272, 2008.

[17] Michael Benedikt, Juliana Freire, and Patrice Godefroid. Veriweb: Automatically testing
dynamic web sites. In World Wide Web Conference, May 2002.

[18] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools. 1999.

[19] Penelope A. Brooks and Atif M. Memon. Automated gui testing guided by usage profiles.
In ASE ’07: Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering, pages 333–342, 2007.

[20] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pinpoint:
Problem determination in large, dynamic Internet services. In International Conference on
Dependable Systems and Networks, pages 595–604, 2002.

[21] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. A technique for reducing user session data
sets in web application testing. In WSE ’06: Proceedings of the Eighth IEEE International
Symposium on Web Site Evolution, pages 7–13, 2006.

[22] Hyunsook Do and Gregg Rothermel. A controlled experiment assessing test case prioritization
techniques via mutation faults. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 411–420, 2005.

[23] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improving web application testing
with user session data. In International Conference on Software Engineering, pages 49–59,
2003.

[24] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Incorporating varying test
costs and fault severities into test case prioritization. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages 329–338, 2001.

[25] S. Flesca and E. Masciari. Efficient and effective web change detection. Data Knowl. Eng.,
46(2):203–224, 2003.

[26] Yuepu Guo and Sreedevi Sampath. Web application fault classification - an exploratory study.
In ESEM ’08: Proceedings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 303–305, 2008.

[27] William G. J. Halfond and Alessandro Orso. Improving test case generation for web applica-
tions using automated interface discovery. In ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 145–154, 2007.

[28] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for controlling the size
of a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

[29] Edward Hieatt and Robert Mee. Going faster: Testing the web application. IEEE Software,
19(2):60–65, 2002.

Bibliography 38

[30] Douglas Hoffman. A taxonomy for test oracles. Quality Week, 1998.

[31] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In Automated software
engineering, pages 34–43, 2007.

[32] Srikanth Karre. Leveraging user-session data to support web application testing. volume 31,
pages 187–202, 2005.

[33] John C. Knight and Paul E. Ammann. An experimental evaluation of simple methods for
seeding program errors. In ICSE ’85: Proceedings of the 8th international conference on
Software engineering, pages 337–342, 1985.

[34] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. International Joint Conference on Artificial Intelligence, 14(2):1137–1145, 1995.

[35] David Chenho Kung, Chien-Hung Liu, and Pei Hsia. An object-oriented web test model
for testing web applications. In COMPSAC ’00: 24th International Computer Software and
Applications Conference, pages 537–542, 2000.

[36] Suet Chun Lee Lee and Jeff Offutt. Generating test cases for xml-based web component
interactions using mutation analysis. In ISSRE ’01: Proceedings of the 12th International
Symposium on Software Reliability Engineering (ISSRE’01), page 200, 2001.

[37] Seung Jin Lim and Yiu-Kai Ng. An automated change detection algorithm for html documents
based on semantic hierarchies. In Proceedings of the 17th International Conference on Data
Engineering, pages 303–312. IEEE Computer Society, 2001.

[38] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Object-based data flow testing
of web applications. In APAQS ’00: Proceedings of the The First Asia-Pacific Conference on
Quality Software (APAQS’00), page 7, 2000.

[39] G. Di Lucca, A. Fasolino, F. Faralli, and U. de Carlini. Testing web applications. International
Conference on Software Maintenance, page 310, 2002.

[40] Li Ma and Jeff Tian. Analyzing errors and referral pairs to characterize common problems
and improve web reliability. In ICWE 2003 : international conference on web engineering,
Oviedo , Spain, 2003.

[41] A. Marchetto, F. Ricca, and P. Tonella. Empirical validation of a web fault taxonomy and its
usage for fault seeding. pages 31–38, Oct. 2007.

[42] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code evolution
using abstract syntax tree matching. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[43] J. Offutt. Quality attributes of web software applications. Software, IEEE, 19(2):25–32,
Mar/Apr 2002.

[44] J. Offutt, Ye. Wu, X. Du, and H. Huang. Bypass testing of web applications. pages 187–197,
Nov. 2004.

Bibliography 39

[45] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial soft-
ware system. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, pages 55–64, New York, NY, USA, 2002. ACM.

[46] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are. In ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing
and analysis, pages 86–96, 2004.

[47] S. Pertet and P. Narsimhan. Causes of failures in web applications. Technical Report CMU-
PDL-05-109, Carnegie Mellon University, December 2005.

[48] R.S. Pressman. What a tangled web we weave [web engineering]. 17(1):18–21, Jan-
uary/February 2000.

[49] Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Augustine. Dex:
A semantic-graph differencing tool for studying changes in large code bases. pages 188–197,
2004.

[50] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In ICSE ’01:
Proceedings of the 23rd International Conference on Software Engineering, pages 25–34,
2001.

[51] Filippo Ricca and Paolo Tonella. Testing processes of web applications. Ann. Softw. Eng.,
14(1-4):93–114, 2002.

[52] Filippo Ricca and Paolo Tonella. Web testing: a roadmap for the empirical research. In WSE
’05: Proceedings of the Seventh IEEE International Symposium on Web Site Evolution, pages
63–70, 2005.

[53] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, and Lori Pollock. Integrating customized
test requirements with traditional requirements in web application testing. In TAV-WEB ’06:
Proceedings of the 2006 workshop on Testing, analysis, and verification of web services and
applications, pages 23–32, 2006.

[54] Jessica Sant, Amie Souter, and Lloyd Greenwald. An exploration of statistical models for
automated test case generation. volume 30, pages 1–7, 2005.

[55] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data 2003, pages 76–85. ACM Press, 2003.

[56] Luis Moura Silva. Comparing error detection techniques for web applications: An experi-
mental study. In NCA ’08: Proceedings of the 2008 Seventh IEEE International Symposium
on Network Computing and Applications, pages 144–151, 2008.

[57] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. Automated replay and
failure detection for web applications. In Automated Software Engineering, pages 253–262,
2005.

Bibliography 40

[58] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. A case study of automati-
cally creating test suites from web application field data. In TAV-WEB ’06: Proceedings of the
2006 workshop on Testing, analysis, and verification of web services and applications, pages
1–9, 2006.

[59] Sara Sprenkle, Emily Hill, and Lori Pollock. Learning effective oracle comparator combina-
tions for web applications. In International Conference on Quality Software, pages 372–379,
2007.

[60] Sara Sprenkle, Lori Pollock, Holly Esquivel, Barbara Hazelwood, and Stacey Ecott. Auto-
mated oracle comparators for testing web applications. In International Symposium on Relia-
bility Engineering, pages 117–126, 2007.

[61] Sara Sprenkle, Sreedevi Sampath, Emily Gibson, Lori Pollock, and Amie Souter. An em-
pirical comparison of test suite reduction techniques for user-session-based testing of web
applications. volume 0, pages 587–596, 2005.

[62] Sara E. Sprenkle. Strategies for automatically exposing faults in web applications. PhD thesis,
2007.

[63] J. Strecker and A.M. Memon. Relationships between test suites, faults, and fault detection in
gui testing. pages 12–21, April 2008.

[64] Jaymie Strecker and Atif Memon. Relationships between test suites, faults, and fault detection
in gui testing. In ICST ’08: Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation, pages 12–21, 2008.

[65] Paolo Tonella and Filippo Ricca. Web application slicing in presence of dynamic code gener-
ation. Automated Software Engg., 12(2):259–288, 2005.

[66] Y. Wang, D.J. DeWitt, and J.-Y. Cai. X-diff: an effective change detection algorithm for xml
documents. pages 519–530, March 2003.

[67] Ye Wu and Jeff Offutt. Modeling and testing web-based applications. Technical Report ISE-
TR-02-08, 2002.

[68] Qing Xie and Atif M. Memon. Model-based testing of community-driven open-source gui ap-
plications. In ICSM ’06: Proceedings of the 22nd IEEE International Conference on Software
Maintenance, pages 145–154, 2006.

[69] Qing Xie and Atif M. Memon. Designing and comparing automated test oracles for gui-based
software applications. ACM Trans. Softw. Eng. Methodol., 16(1):4, 2007.

Bibliography 41

	Introduction
	Motivation
	Web-based Applications
	Challenges for Testing Web-based Applications
	Errors in the Context of Web-based Application Testing

	Background
	Testing Web-based Applications
	Existing Approaches
	Graphical User Interface Testing
	Improving the Current State of the Art

	Goals and Approaches
	Goals
	Research Steps

	Preliminary Work
	Step 1: Construct a reasonably precise oracle-comparator using tree-structured XML/HTML output and other features.
	Step 2: Exploit similarities in web application failures to avoid human annotations when training a reasonably precise oracle-comparator.
	Step 3: Model real-world fault severity based on a human study.
	Step 4: Compare the severities of real-world faults to seeded faults using human data.

	Expected Contributions and Conclusion
	Appendix
	Web-based Applications
	Three-tiered Web Applications
	Dynamic Content Generation in Web Applications
	Oracles
	Fault Taxonomies for the Web
	Proposed Research Outline
	Benchmarks in Step 1
	Benchmarks Used in Step 2
	Features used in Steps 1 and 2
	Longitudinal Study Results in Step 1
	Open Source Web Application Benchmarks used in Steps 3 and 4
	Web Application Fault Severity Study
	Web Application Fault Severity Survey

	Bibliography

