An Exploration of Errors in Web
Applications in the Context
of Web Application Testing

PhD Dissertation Defense
Kinga Dobolyi
April 2, 2010

The shopping cart

— €[£]5 &a ;7 i 2 P
Currency contact sitemap bocokmark
welcome, Log in
“ P R ESTAS H 0 P rﬁ‘r’our Account ‘\g’ Cart: 1 product 26,00 €
|CATEGGR|F_5 | Home = Your shopping cart
= SHOPPING CART SUMMARY
Script
Summanry Login Address Shipping Payment e i
| MANUFACTURERS | - Total 33,98 €

*»» Apple Computer, Inc 1 . Cart | Check out

»» Shure Incorporated

Al manufacturers i

| NEW PRODUCTS

[INFORMATION |

No image Noimage

Delivery 5 4
available available

Legal Notice
Terms and conditions of use
About us

) iPod Nano

26,00€ W 1_ 26,00 € Disk Space Eval
Example of a short

description »»

Total products: 26,00 € Disk Space Ewal
oy Example of a short

Total shipping: 7,98 € description »»

Total: 33,98¢€ T e Kbl

Example of a short
description »»

Vouchers Code: i Ade i iTOF" SELLERS |

Mo best zellers at this time

Remaining amount to be added to yvour cart in order to obtain free shipping: 274,00 €

Mo specials at this time

Specials | New products | Top sellers | Contact us | Terms and conditions of use | About us | Powered by PrestaShop™

&' PRESTASHOP

| CATEGORIES

Script

| MANUFACTURERS

*» Apple Computer, Inc
»» Shure Incorporated

All manufacturers

| INFORMATION

Drelivery

Legal Motice

Terms and conditions of use
About us

The shopping cart

EeE=

Currency

Home = Your shopping cart

SHOPPING CART SUMMARY

There is 1 error : 1. invalid token

contact

Pr3]

sitemap

Address

0

bookmark

Shipping

o

Payment

Specials | New products | Top =ellers | Contact us | Terms and conditions of use | About us | Powered by PrestaShop™

i P pm—

welcome, Log in

[n Your Account \g Cart: [(empty)

No p

Shipping 0,00 €
Total 0,00 €

Check oot

| NEWW PRODUCT S

No image Noimage
available available

iPod Mano

Disk Space Ewal
Example of a short
description »»

Disk Space Ewal
Example of a short
description »»

Disk Space Ewal
Example of a short
description »»

i e J

| TOP SELLERS |

Mo best sellers at this time

The shopping cart

- HeE= 1 a & o
Currency contact sitemap bookmark
Welcome, Log in
“ PRESTASHOP rﬁ‘f'ourm::ount WCart: 2 products 268,05 €
| TAGS] Home = Your shopping cart
superdrive Ipod touch apple SHOPPING CART SUMMARY
Summary Login Address Shipping Payment
| CATEGORIES | L : '
Gresn
Accessories =
; Shippiing B
iPods Total 276,03 €
Laptops iPod Nano im—gen——
Color: Black, Disk space: 16Go SHR IR
| MANUFACTURERS | .
3 Apple Computer, Inc Your shopping cart contains 2 products | NEW PRODUCTS
*» Shure Incorporated No new product at this time
All manufacturers =l .
s | TOP SELLERS]
1 iPod Nano =] —==
|JNF{)R“A_T|_QN] I Color: Black, Disk space: 16Go ® w9,05¢ W 1 w AEIOSE Mo best sellers at this time
Delivery
Legal Notice E iPod shuffle ® g 1=
Terms and conditions of use Color: Green - £200% = £H00L
About us

Total products: 268,05 €

Total shipping: 7,98 €

Total: 276,03 €

Remaining amount to be added to your cart in order to obtain free shipping: 31,95 €

visaA)
- ==

Specials | New products | Top sellers | Contact us | Terms and conditions of use | About us | Powered by PrestaShop™

What is going on

* Problem: faults in web applications cause
losses of revenue, and they are hard to test

» Approach: explore user-visible errors in web
applications to improve fault detection

« Solution: improve the state of the art in web
testing techniques through guidelines targeted at
high severity faults and automation and
precision in testing

Why do we care about web
application defects?

Internet usage: 73% of people in the US in 2008
— Browsers are dominant application

— $204 billion in Internet retail sales annually

Global online B2B transactions total several
$trillions annually

One hour of downtime at Amazon.com cost $1.5
million dollars

/0% of major online sites exhibit user-visible

failures
— 90% of bugs reported are user-visible

Why do we care about web
application defects?

» Customer loyalty is notoriously low
— Determined by the usability of the application
— Do not have to purchase or install software

— Have especially high reliability, security,
usability, and availability requirements

Web application Testing

* Most web applications are developed
without a formal process model

» Developers often deliver the system
without adequately testing it
— Technological complications
— Resource constraints
— Rate of change

Thesis statement

» Web-based applications have special
properties that can be harnessed to build
tools and models that improve the current
state of web application user-visible fault
detection, testing, and development.

— Tend to evolve and fail in predictable and
similar ways

— Human centric definition of acceptability

Outline

* Hypotheses H1 through H7

1.

bl i A

/.

e Summary

Faults in tree-structured HTML output can be
modeled

Web applications fail in similar ways
Not all faults are equally severe
Faults can be modeled by severity

Severe faults correspond to software engineering
techniques

Automated tools to detect faults rarely miss severe

faults
10

Current state of practice

Developg_:si

e
Web application at test

Humans inspect all
output labeled as a fault

T
A
Output Comparator
incorrect | Results
Assume
Pass/ that all
~—| Fail? faults have
the same

severity

11

Goals and approaches

* | propose to:

— Model errors in web-based applications
« |dentify them more accurately
« Automate the process of comparing expected and
actual test case output
— Make web testing more cost-effective

« Devise a model of fault severity that will guide test
case design, selection, and prioritization

« Refute the current underlying assumption that all
faults are equally severe in fault-based testing

12

Main Contributions

* Reduce the cost of testing web-based
applications (H1, H2, and H7)

— Provide a fully automated, highly-precise
output comparator that uses special structure
of web-based application output to more
precisely identify errors

* Demonstrate that the assumption that
injected faults have the same severity is

false (H3)
— Using a large-scale human study

13

Main Contributions cont’d.

* Provide human-assisted and fully
automated models of fault severity (H4)

— Reduce to cost of testing by exposing high
severity faults

* Provide software engineering guidelines to
decrease severe faults (H5 and Hb6)

— Under the assumption of few resources during
development and testing

14

Outline

* Hypotheses H1 through H7

1.

bl i A

/.

e Summary

Faults in tree-structured HTML output can be
modeled

Web applications fail in similar ways
Not all faults are equally severe
Faults can be modeled by severity

Severe faults correspond to software engineering
techniques

Automated tools to detect faults rarely miss severe

faults
15

Hypothesis H1

A highly-precise output comparator
— Structural and semantic features of XML\HTML output

— reduces the number of non-errors flagged by naive
comparators

— the ratio of the cost of examining a potential bug to the cost of
rr]lissing an actual bug at or below a current state-of-the-art value
of 0.023.

Model errors on a per-project basis
Reduce false positives and false negatives
Used during regression testing web applications

16

What is regression testing?

* Ensures that changes to the code do not
(re-)introduce defects

» Comparing two outputs:
— Expected output (previous, trusted version)
— Test case output

» Comparison often accomplished with
diff (a textual comparison tool)

e Retest-all versus reduced test suites

17

Comparing test output

» Oracle comparators may have difficulty with web
application output

<P>The same table could be indented.
<TABLE border="1">

<p>The same table could be indented.</p>
<table border="1" summary="">

— Although dif£ is automated, lots of false positives
from dif£-like tools

— Want highly precise comparators

18

A better oracle comparator

 Model differences
between test case
output pairs
— 16 surface features

* Tree-based

« Meaning-based

— Use linear
regression to train
the comparator

Average —

Average —

Feature No Inspect [nspect
Text Ratio (0.7996 0.9636
Grouped Boolean 0.0007 0.9767
Text Only (.9946 0.0179
Grouped Change (0.0002 0.1301
Children Order 0.0010 0.1769
Inversions 0.0010 0.0016
Depth 0.0007 0.0172
DIFE-X -delete 0.0007 0.1203
DIFF-X-insert 0.0041 0.0109
Error Keywords 0.0000 0.0096
New Text 0.6197 .9624
New Functionality 0.0000 0.0038
Missing Attribute 0.0047 0. 1580
DIFF-X-move 0.0004 0.0507
Seen Elements 0.0000 0.0014
Changed Attribute 0.5244 0.9546

Hypothesis H1: experimental
setup

 Training and testing
on probable taults
across different program
versions

20

Hypothesis H1: experimental

results

« Measure effort saved:

(TruePos + FalsePos) x LookCost + FalseNeg x MissCost is
less than |dif£f| x LookCost

LookCost

=

MissCost =

— FalseNeg

TruePos + FalsePos — |diff]|

Goal: below 0.023

LookCost = $x

MissCost = $44x

Test | Should True Positive False Positives | False Negatives

Benchmark | Release | Cases | Inspect | SMART | diff|| SMART | diff | SMART | diff
HTMLTIDY | 2nd 2402 12 5 12 78 781 7 (
3rd 2402 48 45 48 0 7182 () 0

4th 2402 254 109 254 ! 574 145 0

Sth 2402 48 48 48 (0 115 () (

6th 2402 20 19 20) ! 774 I 0

GCcCc-XML | 2nd 4111 662 658 662 16 | 2258 4 0
3rd 4111 544 544 544 Q | 2577 0 0

total 20232 1588 1431 | 1588]] 96 | 8521 157 0

l Ratio

0.0099 |
0.2019 |

0.0013 |

0.0018 ||
0

l 0.0183 |

Hypothesis H1: summary

* Errors in web-based applications can be
successfully modeled due to the tree-
structured nature of XML/HTML output
— Reduce false positives vs diff
— LookCost to MissCost ratio below current

state-of-the-art value of 0.023 using the oracle
comparator

22

Outline

* Hypotheses H1 through H7

Web applications fail in similar ways
Not all faults are equally severe
Faults can be modeled by severity

Severe faults correspond to software engineering
techniques

bl i A

/. Automated tools to detect faults rarely miss severe
faults

e Summary

23

Hypothesis H2

* A highly-precise, fully-automatic oracle comparator

— based on pre-existing information from unrelated
applications

— fewer false positives than diff

— maintaining a ratio of the cost of examining a potential bug to the
cost of missing an actual bug at or below a current state-of-the-
art value of 0.023

« Train comparator on data from other, unrelated web-
based applications

« Use fault injection to improve the results when necessary

24

What is fault injection?

 Randomly mutate one line of source code
In the application, and re-run the entire
test suite

— It is assumed that any output that differs from
the expected output in this case is a fault

— Repeat until enough mutant outputs are
generated

25

« Training Data
— 10 web-based
applications

— Pre-annotated

« Testing Data
— Never test and train on the

same data

setup

Web applications

Training
Test
Case

Output

Human
annotations

Hypothesis H2 — experimental

Oracle Comparator
Results

Benchmark | Versions LOC | Description Test cases | Test cases to Inspect
HTMLTIDY | Jul’05 Oct™ 05 38K | W3C HTML validation 2402 25
GCC-XML | Nov' 05 Nov'07 20K | XML output for GCC 4111 875
VQWIKI 2.8-beta 2.8-RC1 39K | wiki web application 135 34
CLICK 1.5-RC2 1.5-RC3 | 1K | JEE web application 80 7
Total 108K 6728 941

Hypothesis H2 — experimental

re

sults

* F-score is the harmonic mean of

false positives and false negatives

F-score
= o2 O
i kR P Ch oD

—
= k3

F-score for Various Comparators

| |EHTMLT idy
| Gec-Aml
| [mvawik
1 1] | |ociick
unbiased hiased diff xmidiff our Mode
coin toss coin toss
Comparator

0.0004

0.0
0.0

27

Hypothesis H2 — experimental

results
» Use fault seeding to reduce false
negatives for Gee-Xml

— Add mutant output to training data set

F-score for Number of Mutant Test Case Outputs

1.02
|

nners? 0000506 0 994358 0.997729 0999007

0 98

0 96
£ o od

L}
v 092 59619

L

0.3 S
0 88

086
M A4

0 1 P 3 4 3

Mum ber of Mutant Test Ca se Outputs

28

Hypothesis H2: summary

» Unrelated web-based applications fail and
evolve in similar ways
— Fully automated
— Reduce false positives vs diff

— LookCost to MissCost ratio below current
state-of-the-art value of 0.023 using the oracle
comparator

29

Outline

* Hypotheses H1 through H7

Not all faults are equally severe
Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

B~ W

/. Automated tools to detect faults rarely miss severe
faults

e Summary

30

Hypothesis H3

 Faults injected into web applications, using an
automated seeding process using mutation
operators, or using manual fault seeding, vary
in their underlying consumer-perceived
severities.

— Raw fault counts may not effective in comparing
competing testing approaches when considering
consumer retention

— Use a human study to measure severities

— Consumer-perceived severity different than developer
perceived severity

31

Hypothesis H3: Human study setup

« Each fault presented as a scenario triple:

— current screenshot
— scenario description
— next screenshot

I&\ PRESTA . - e

Description Severity
Rating

I did not notice any fault 0

I noticed a fault, but I would return to 1

this website again

I noticed a fault, but I would probably 2

return to this website again

I noticed a fault, and I would not return 3

to this website again

I noticed a fault, and I would file a complaint 4

EHeE@=

@' PRESTA

CATEGORIES

visa @z PayPal

o 2 wr o

Hypothesis H3: Human study

results

» Large scale human study
— 400 real-world faults, 400 injected faults, 100

non-faults from 17 real-world web applications

— 386 subjects

— Over 12,000 votes (at least 12 per fault)

Fault Type Low | Med | Med-High | Severe

<1] <2 <25 | =25
Real-world 23% | 30% 19% 28%
Automatic-injected | 25% | 25% 27% 23%
Manual-injected 23% | 28% 27% 22%
Non-fault 92% | 1% 0% [%

33

Hypothesis H3: summary

* Not all failures in web applications have
the same consumer-perceived severity

— Both injected and manual faults vary in their
severity levels

34

Outline

* Hypotheses H1 through H7

4. Faults can be modeled by severity
5. Severe faults correspond to software engineering
techniques

/. Automated tools to detect faults rarely miss severe
faults

e Summary

35

Hypothesis H4

* An automated model of consumer-
perceived fault severity can be
constructed that agrees with human
severity judgments at least as often as
humans agree with each other,
evaluated using the Spearman’s Ranking
Correlation Coefficient (SRCC)

— Can be used to prioritize faults

36

Hypothesis H4: background

« Consumer perceived fault severity is poorly
understood

— Do not rely on individual human judgments of fault
severity, as these can be inaccurate

« Want to make testing more efficient by targeting
consumer perceived fault severity

— Agree with humans at least as often as they agree
with each other

37

Hypothesis H4: Modeling fault
severity

« Build a model of consumer-perceived fault
severity

— Using 17 boolean surface features of faults

« Stack traces, missing images, cosmetic errors, SQL code,
authentication, etc.

— A human-assisted model that uses human
annotations of rendered browser output

— A fully automated model that examines pairs of HTML
output

38

Hypothesis H4 — experimental
results
 Both models are better than humans on

average at correctly predicting fault
severity

Model Accuracy | Severe | Non-Severe
Missed Correct

0.78
0.84

Individual Human (avg) 599 8/30 53/70 0.70
Always Average Rating 58% 30/3 70/70 0.51
Always Median Rating 59% 30/30 70/70 0.51
C4.5 Decision Tree 85% 5/3 65/70 0.76

39

Hypothesis H4: summary

* Faults in web applications can be modeled
according to their consumer-perceived
severities

— Agrees with average human judgments of
severity more often than humans agree with
each other

— Fully automated

40

Outline

* Hypotheses H1 through H7

5. Severe faults correspond to software engineering
techniques

/. Automated tools to detect faults rarely miss severe
faults

e Summary

41

Hypothesis HS

* There exists a statistically significant
correlation (SRCC > 0.60) between
severe faults in web applications and
various software engineering aspects of
web application development

— Can be used when there are few to no
resources for testing

42

Hypothesis H5: experimental setup

* Analyze the data from the large-scale
human study to look for correlation
between high severity faults and
— The type of web application
— The visual presentation of the defect
— The source of the defect in the code

43

Hypothesis H5: application types

* As a baseline, little to no correlation
between the type of application or the
programming languages used and severe

fau ItS Feature SRCC with severe faults
1s written in PHP 0.16
1s written in ASP.net 032
is a Gallery 0.38
1s a Wiki 0.35
1s a Forum 0.34
is a Content Mgmt. System 0.30
1s E-commerce 0.22

44

Hypothesis H5: fault visualization

« Keep the appearance of the page the same

* Opt for popups over server generated error messages or
stack traces

120

B v hioh

B nioh

B medium-high
medium
low

3 & 8 8 g

Percentage of faults in severity category

new same
page page

Context-Independent feature 45

Hypothesis H5: fault causes

« Many classes of faults are associated with high severity
— Even a naive test suite can detect many such faults

Fault Cause SRCC with severe faults
Configuration 0.68
50L 0.69
Permissions 0.68
Server 0.68
MULL 0.69
Component 0.62
Database 0.66
Upgrade 0.63
Othererrorin source code 0.18

Hypothesis H5: summary

» Severe faults correspond to specific
software engineering aspects during web
application development

— Statistically significant correlation

47

Outline

* Hypotheses H1 through H7

/. Automated tools to detect faults rarely miss severe
faults

e Summary

48

Hypothesis H7

At most 1% of the false negatives
produced by the highly-precise, fully-
automated oracle comparator correspond
to severe faults

— Would we want to use this tool in the real
world?

49

Hypothesis H7: approach

« Combine automated comparator with fault
severity model

« Evaluate automated approach on 3 real-
world, popular PHP benchmarks
— Known (seeded faults)
— Heavy use of non-deterministic output
— Measure fault severity of missed faults

50

Hypothesis H7: experimental setup

« Train the oracle comparator

as before
— On data from unrelated web
applications

— Use automatically seeded faults as

additional training data
— Use a clean run of the test suite
as additional training data

Benchmark Versions LOC | Description
PRESTASHOP | vI.1.0.55 || 155K | e-commerce
(shopping cart)
OPENREALTY | v2.5.6 85K | real estate
listing management
VANILLA vl.1.5a 35K | web forum
Total 375K

(=]

Web applications

Training
Test
Case

Human [Output

annotations

—

Web application at test

4

Test
Case
Output

:

Oracle Comparator

Lk
’::> Results

Training Faults

Testing Faults

Test Suite

5401

9355

164

51

Hypothesis H7: experimental
results
» Correctly identified 70% of non-faults
- diff would get 0%
» Correctly identified 99% of severe faults
* Requires no manual annotation or training

Benchmark Goal | Goal | Goal | Goal Miss Miss | Miss | Miss Weighted | % Found
Severe | Medium Low |V Low | Severe || Medium Low |V Low | % Found | Non-Faults

Faults Faults | Faults | Faults | Faults Faults | Faults | Faults Faults (savings)

- PRESTASHOP 302 | 45 571 27 3] 32 17] 26| 98% | 47%
OPENREALTY -+ I I 16 4 I 0 10 83V 100%
VANILLA 186 183 10 83 0 5 8 0 8Y9% 97 %

52

Hypothesis H7: summary

« Automated tools that detect failures rarely
miss severe faults
— The highly-precise, fully-automated oracle

comparator missed only 1% of severe faults
on average

53

Summary

« Web-based applications have special properties
that can be harnessed to build tools and models
that improve the current state of web application
fault detection, testing, and development
— First to provide a fully automated oracle comparator

— First to provide a fully automated model of fault
severity

— Software engineering guidelines to reduce fault
severity

« Strong results on real-world web applications

54

Conclusion

* Problem: faults in web applications cause
losses of revenue, and they are hard to test

» Approach: explore user-visible errors in web
applications to improve fault detection

« Solution: improve the state of the art in web
testing techniques through guidelines targeted at
high severity faults and automation and
precision in testing

55

Questions?

& weather.com - Map Room - Satellite Map, Weather Map, Doppler Radar US Current Snow Cover - Mozilla Firefax

Eile Edit View History Bockmarks Tools Help

@_' fh ﬂ http:ffmvw.weather.com,."maps,factivi_ty,.l’ski;’uscurrentsnowcover_large.html

= |

BNy - | i"." weather
£ Most Visited P Getting Started 5 Latest Headlines

| m weather.com - Map Room - Satellite ... E |

Health & Safety

A

ToutaooTs

® Oceans =
- [Cold & Flu, Severe Weather Alerts) Pets

. Woeather Details -
" (Radar, Weekly Planner, World Regions)

Pinpoint Your Weather on Our All-New Interactive Map $47O PER
T Y | Put weather & alerts on -
imean)] foursasess PERSON.

Current Snow Cover

BOOK NOW,
(depth in inches)

CLICK HERE.

January 30
o,

o)

%
@

31 Jan 2010 13:00 GMT / 31 Jan 2010 08:00 AM EST visit The Weather Channel
How to read this map Severe Weather Outlock g,

; Store
Mational Forecast g,

Select Another M3

24 Hour US Snowfall Forecast
Snow Quality
Western Snowfall Forecast S

Done

m

< WE 1105 AM

Further reading

H1: highly-precise comparator:

— Elizabeth Soechting, Kinga Dobolyi and Westley Weimer. Syntactic Regression
Testing for Tree-Structured Output. Web Systems Evolution, September 2009.
(invited to special section in the International Journal on Software Tools for

Technology Transfer)

H2: automated comparator:
— Kinga Dobolyi and Westley Weimer. Harnessing Web-based Application
Similarities to Aid in Regression Testing. /nternational Symposium on
Software Reliability Engineering, November 2009.

H3 and H4: fault severity models:

— Kinga Dobolyi and Westley Weimer. Modeling Consumer-Perceived Web
Application Fault Severities for Testing. Submitted, /nternational Symposium
on Software Testing and Analysis

H5 and H6: quidelines for reducing fault severity:

— Kinga Dobolyi and Westley Weimer. Addressing High Severity Faults in Web
Application Testing. The IASTED International Conference on Software
Engineering, February 2010.

H7: highly-precise automated comparator on challenging webapps:

— Kinga Dobolyi, Elizabeth Soechting, and Westley Weimer. Harnessing Web-
based Application Similarities to Aid in Automated Regression Testing.
I7r_1viteci|c paper; submitted, International Journal on Software Tools for Technology

ransfer

57

Web Failure

* “the inability to obtain and deliver
information, such as documents or
computational results, requested by web
users.” — Ma and Tian

58

Manual Fault Seeding for web
applications

» Five categories (as in Sprenkle et al.):
— Database
— Logic
— Form
— Appearance
— Link

59

Why is web testing hard?

 Interfaces are difficult to identify

— Pepends on user inputs and data not accessible through web
orms

— Difficult to interact with application so that all forms are exercised
— Interfaces cannot be extracted by a simple local analysis or
spider-like tools
« Control flow depends on individual usage patterns
— Subsequent actions depend on previous user input

« Heterogenous components make modeling and static
analysis difficult

— Static analysis hard for dynamic langugaes such as PHP which
enables creation of code and overriding methods on the fly

— Def-use chains need to be extended across client/server
boundaries

60

How are GUIs tested?

None (most common)

Bypassing GUI that requires major
changes to the architecture

Manual tools that provide little automation
Capture-replay

61

GUI testing and web applications

« GUI and web application similarities
— Are event-based systems operating on state
— Difficult to create oracles for verbose output

« GUI and web application differences Memon]
— GUIs produce deterministic graphical output

— Web applications have synchronization/timing
constraints among objects

— Web applications are tightly coupled with back end
code (i.e. their content is dynamically created using a
database)

62

Hypothesis H6

* There exist test suite reduction
strategies that expose at least 90% of
the severe faults found via corresponding
retest-all approaches for web applications

— ldentify testing techniques to maximize return
on investment by targeting high-severity faults

63

Hypothesis H6 — experimental
setup

* Measure fault severity preservation of test
suite reduction approaches

— 90 manually seeded faults in 3 PHP
benchmarks

— 3x50 user sessions collected from volunteers

— Implement 3 testing strategies:

» Retest-all (baseline)
» HGS: Harrold-Gupta-Soffa
« Concept. Sprenkle et al.

— Define testing requirements as URLs visited

64

Hypothesis H6 — experimental
results

Method/ Test || Low
Benchmark | Cases
[
HGS and retest-all 50 0
. Prestashop
Concept continue [#as T
] Prestashop
'[O be effeC“VG Cor{ce%:r 27 0
Prestashop

When CO”Slderlng retest-all 50]

Openrealty

. HGS 15 1
faU It Severlty Openrealty
Concept 40 1
Openrealty
retest-all 50 3
Vanilla
HGS 4 3 22 2 I 30
Vanilla
Concept 9 3 h.s 2 I 30
Vanilla

Hypothesis H6: summary

 Test suites can be reduced in size while
preserving severe fault exposure

— Reduced test suites exposed at least 90% of
the severe faults

66

H@GS test suite reduction

» Test cases are associated with the requirement

they meet
 The number of test cases that cover a
requirement is the requirement’s cardinality
« Add a test case to the reduced set, marking the
covered requirements
— Select next test case to add that
covers the most unmarked
requirements (i.e. the lowest
requirement cardinality)

GBooks
GMylnfo

@
@ | GDef
® | GReg
® | Glog

67

Concept test suite reduction

 Test cases are associated with the
requirement they meet (a URL)
 Build a concept lattice

— Edges of lattice are partial ordering of concept
nodes GDef GReg Glog

| 1
.,

68

Web-based application

* A web-based application is different from a
web application in that web-based
applications may output XML code that
does not necessarily end up rendered by a
browser (i.e. such as web services that
communicate through XML)

69

* For automated oracle comparators

Training Benchmarks

Benchmark Versions LOC | Description Test cases | Test cases to Inspect
HTMLTIDY Jul’05 Oct’05 38K | W3C HTML validation 2402 25
LIBXML2 v2.3.5v2.3.10 84K | XML parser 441 0
Gcc-XML Nov’ 05 Nov'07 20K | XML output for GCC 4111 875
CODE2WEB v1.Ovl.] 23K | pretty printer 3 3
DocBook v1.72v1.74 182K | document creation 7 5
FREEMARKER | v2.3.11 v2.3.13 69K | template engine 42 1
JSPPP v0.5av0.5.1a 10K | pretty printer 25 0
TEXT2ZHTML | v2.23 v2.51 6K | text converter 23 6
TXT2TAGS v2.3v2.4 26K | text converter 94 -
UMT v0.8 v0.98 15K | UML transformations 6 0
Total 473K 7154 919

70

SMART global results

Comparator Fi-score | Precision | Recall
SMART 0.9931 0.9972 | 0.9890
SMART w/

cross-validation (0.9935 0.9951 | 0.9920
diff 0.3004 0.1767 | 1.0000
xmldiff 0.2406 0.1368 | 1.0000
fair coin toss (0.2045 0.1286 | 0.4984
biased coin toss (0.2268 0.1300 | 0.8868

Feature Coefficient F p
Text Only -0.288 | 168970 | < 0.001
DI1FF-X-move +0.002 | 150840 | < 0.00]
D1FF-X-delete +0.029 | 46062 | < 0.00]
Grouped Boolean +0.714 7804 | < 0.001
DIFF-X-insert +0.029 4761 | < 0.001
Grouped Change -0.012 465 | < 0.001
Children Order - 0.002 317 | <0.00]
Inversions + 0.001 246 | 0.020
Missing Attribute - 0.048 121 | < 0.001
Error Keywords +0.174 115 | < 0.001
Depth - 0.000 21 | < 0.00]
Text Ratios - 0.007 18 | <0.00]
Input Elements -0.019 5 0.03

71

SMART per-project results

Benchmark | Comparator | F; Precision | Recall
HTMLTIDY | SMART 1.000 | 1.000 1.000
diff 0.048 | 0.025 1.000
xmldiff 0.021 | 0.010 1.000
GCcc-XML | SMART 0.999 | 1.000 0.999
diff 0.352 | 0.213 1.000
xmldiff 0.352 | 0.213 1.000
All ten SMART 0.993 | 0.997 0.989
(global) diff 0.300 | 0.177 1.000
xmldiff 0.241 | 0.138 1.000

Web application benchmarks

Name ‘ Language | Description ‘ Faults |

Prestashop® | PHP e-commerce 30

Dokuwiki* PHP wiki 30

Dokeos PHP e-learning 22

Click* Java JEE webapp 3
framework

VQwiki* Java wiki 6

OpenRealty* | PHP real estate listing 30
management

OpenGoo PHP web office 30

Zomplog PHP blog 30

Aef PHP forum 30

Bitweaver PHP content mgmt 30
framework

ASPgallery ASP.NET | gallery 30

YetAnother ASPNET | forum 30

Forum

Screw Turn ASPNET | wiki 30

Mojo ASPNET | content mgmt 30
system

Zen Cart PHP e-commerce 30

Gallery PHP gallery 30

other - - 9

73

2-way ANOVA for human study

Factor F value | p value
Rating 592 | < 0.001
Human Rater 5 | <0.001

Group 1

Group 2

D value

p value

Real-world

Real-world
Automatically-injected
Real-world
Automatically-injected
Manually-injected

Automatically-injected
Manually-injected
Manually-injected
Non-fault

Non-fault

Non-fault

0.0691
0.0969
0.0616
0.7211
0.7154
0.7083

0.524
0.170
0.839
< 0.001
< 0.001
< 0.001

Figure 7.5:

Kolmogorov-Smirnov test results for the dataset.

74

Fault type comparison

‘ Benchmark | <1 | <2 ‘ < 2.5 ‘ >2.5 ‘
PRESTASHOP 37% | 27% | 17% | 20%
real-world
PRESTASHOP 249 | 45% | 24Y% 6%
automatically-injected
PRESTASHOP 309% | 33% | 21% | 15%
manually-injected
OPENREALTY 41% | 21% | 31% 1%
real-world
OPENREALTY 21% | 24% | 18% | 36%
automatically-injected
OPENREALTY 45% | 24% | 27% 3%
manually-injected
DOKUWIKI 229% | 22% | 11% | 44%
real-world
DOKUWIKI 36% | 27% | 24% | 12%
automatically-injected
DOKUWIKI 12% | 27% | 21% | 39%
manually-injected
VQWIKI 0% | 33% | 33% | 33%
real-world
VQWIKI 219% | 24% | 31% | 24%
automatically-injected
VQWIKI 36% | 329% | 14% | 18%
manually-injected

Developer survey results

LOC Low | Med | Med-High | Severe
200K 57% | 12% 8% 23%
2,000K* | 38% | 40% 15% 1%
n/a 90% | 5% 3% 2%
20K 90% | 10% 0% 0%
n/a 95% | 3% 1% 1%
1K 75% | 12% 12% 1%
n/a 85% | 10% 0% 3%
> 100K | 78% | 14% 2% 6%
n/a 86% | 10% 0% 3%
1K 90% | 10% 0% 0%
Average | 42% | 36% 14% 8%

76

Boolean fault
surface features

% of Faults

Arithmetic Generally for shopping-cart based applications, 3
Calculation any error in calculating the amount paid,
Error shipping, taxes, discount applied, quantities
ordered, etc.
Blank Page Anempty page containing no information or text. 2
404 Error An error experienced when the URL is not found; 3
the words “404" or “not found” must appear
somewhere on the page.
Cosmetic An error that does not affect the functionality 24
of the website, such as a typo, small formatting
issues, bits of visible HTML code, etc.
Language An inability to encode or correctly convert 2
Error characters between languages, often resulting in
incorrect characters on the page.
CS5S Error Anerror in loading the stylesheet between the <1
current and next pages.
Code on the Any error that results in non-HTML, non-SQL 24
Screen program code appearing on screen, including any
error referring to a line number.
Error Message | Either any error message, or any error that 52
/ Other Error cannot be classified in any other category.
Form Error Missing, malformed, or extra buttons, form fields, 7
drop-down menus, etc, including incorrectly
validating forms.
Missing Any part of a webpage that is missing, not 13
Information including images.
Wrong Page An unexpected page is loaded. 12
/ No Redirect
Authentication | Any errors that occur during login. a
Permission Any errors occurring with respect to user 4
permissions in an application, such as access
being incorrectly denied to a user.
Session An unexpected session timeout or other session- 1
related issues.
Search Errors occurring during searching, such as 2
incorrectly printing out results.
Database Any errors associated with accessing or querying 9
a database, including visible SQL code being
displayed.
Failed Upload | Anerror during the upload of an item. 5
Missing Image [A missing image. 3

ANQOVAs for fault severity models

Feature Correlation F | pvalue
Code on the Screen + 19.47 | < 0.001
Cosmetic - 13.23 | < 0.001
Database + 12.36 | < 0.001
Authentication + 6.99 0.01
Functional Display - 6.00 0.01
Code Error + 4.40 0.03
Feature Correlation F | pvalue
Cosmetic - 30.51 | < 0.001
Functional Display + 27.12 0.01
Code on the Screen + 22.83 | < 0.001
Code Error + 5.32 0.02
Wrong Page - 5.31 0.02

78

Fault visualizations

Feature | Description
Same The error 18 visible within the same page and
Page application (imagine a website with frames);
the title, menu, and/or sidebars stay the same
New A page is loaded that does not look like other
Page pages in the application; examples are blank
pages or server-generated error messages
Generic | A human-readable wrapper around an exception,
Error which frequently provides no useful information
Message | about the problem
Popup The error resulted or was displayed in a popup
Server The error was a standard server-generated
complaint, such as an HTTP 404 or 500 error
stack A stack trace or other visible part of non-
trace HTML code
Other Text exists on the page indicating there was
Error an error (as opposed to a missing image or
Message | other “silent” fault)

79

Fault localizations

Cause Description SRCC with
high severity

Database An error in the database 0.66
configuration or structure

SQL A buggy SQL query that 0.69
lead to an exception

NULL An empty code or database object 0.69
which lead to an exception

Source An error due to incorrect 0.18

Code logic in the source code

Config Configuration settings 0.68
were inconsistent

Component | A third party component was 0.62
incompatible or caused an error
A file was missing, or a recent 0.63
upgrade caused an error

Upgrade
The operating system failed to allocate 0.68

Permission | resources or open files

Server Incorrectly configured server 0.68

80

LookCost/MissCost

Previous work uses 0.023 from the domain of
bug triage
LookCost is typically a few minutes per test case

MissCost varies by domain (low where software
can be easily updated, but high where there are
high quality-of-service requirements)

At IBM in 2008

— LookCost is $25

— MissCost is $450 (during QA/testing)

— For H1, this results in a 48% reduction in cost
81

Future Work

« Explore ways to extend this work to other
technologies

— Asynchronous javascript

« Automated ways of running test suites without relying on
capture-replay

« Expand consumer-perceived fault severity to other
domains
— GUIs and human-computer interaction
» Add new domain-specific features to the model
Combine machine learning with brain imaging

— To train classifiers to identify patterns of thought

« Learn about the role of various brain structures in aging and
memory

82

