
1

An Exploration of Errors in Web
Applications in the Context
of Web Application Testing

PhD Dissertation Defense

Kinga Dobolyi

April 2, 2010

2

The shopping cart

3

The shopping cart

4

The shopping cart

5

What is going on

• Problem: faults in web applications cause
losses of revenue, and they are hard to test

• Approach: explore user-visible errors in web
applications to improve fault detection

• Solution: improve the state of the art in web
testing techniques through guidelines targeted at
high severity faults and automation and
precision in testing

6

Why do we care about web
application defects?

• Internet usage: 73% of people in the US in 2008
– Browsers are dominant application

– $204 billion in Internet retail sales annually

• Global online B2B transactions total several
$trillions annually

• One hour of downtime at Amazon.com cost $1.5
million dollars

• 70% of major online sites exhibit user-visible
failures
– 90% of bugs reported are user-visible

7

Why do we care about web
application defects?

• Customer loyalty is notoriously low

– Determined by the usability of the application

– Do not have to purchase or install software

– Have especially high reliability, security,
usability, and availability requirements

8

Web application Testing

• Most web applications are developed
without a formal process model

• Developers often deliver the system
without adequately testing it

– Technological complications

– Resource constraints

– Rate of change

9

Thesis statement

• Web-based applications have special
properties that can be harnessed to build
tools and models that improve the current
state of web application user-visible fault
detection, testing, and development.

– Tend to evolve and fail in predictable and
similar ways

– Human centric definition of acceptability

10

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

Current state of practice

11

12

Goals and approaches

• I propose to:

– Model errors in web-based applications

• Identify them more accurately

• Automate the process of comparing expected and
actual test case output

– Make web testing more cost-effective

• Devise a model of fault severity that will guide test
case design, selection, and prioritization

• Refute the current underlying assumption that all
faults are equally severe in fault-based testing

13

Main Contributions

• Reduce the cost of testing web-based
applications (H1, H2, and H7)
– Provide a fully automated, highly-precise

output comparator that uses special structure
of web-based application output to more
precisely identify errors

• Demonstrate that the assumption that
injected faults have the same severity is
false (H3)
– Using a large-scale human study

14

Main Contributions cont’d.

• Provide human-assisted and fully
automated models of fault severity (H4)

– Reduce to cost of testing by exposing high
severity faults

• Provide software engineering guidelines to
decrease severe faults (H5 and H6)

– Under the assumption of few resources during
development and testing

15

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

16

Hypothesis H1

• A highly-precise output comparator
– Structural and semantic features of XML\HTML output
– reduces the number of non-errors flagged by naïve

comparators
– the ratio of the cost of examining a potential bug to the cost of

missing an actual bug at or below a current state-of-the-art value
of 0.023.

• Model errors on a per-project basis
• Reduce false positives and false negatives
• Used during regression testing web applications

17

What is regression testing?

• Ensures that changes to the code do not
(re-)introduce defects

• Comparing two outputs:

– Expected output (previous, trusted version)

– Test case output

• Comparison often accomplished with
diff (a textual comparison tool)

• Retest-all versus reduced test suites

17

1818

Comparing test output

• Oracle comparators may have difficulty with web
application output

<P>The same table could be indented.

<TABLE border="1">

<p>The same table could be indented.</p>

<table border="1" summary="">

– Although diff is automated, lots of false positives
from diff-like tools

– Want highly precise comparators

19

A better oracle comparator

• Model differences

between test case

output pairs
– 16 surface features

• Tree-based

• Meaning-based

– Use linear

regression to train

the comparator

20

Hypothesis H1: experimental
setup

• Training and testing

on probable faults

across different program

versions

20

Training

Test

Case

OutputHuman

annotations

Web application at test

Oracle Comparator

Test

Case

Output

Results

Pass/

Fail?

20%

80%

21

Hypothesis H1: experimental
results

• Measure effort saved:
(TruePos + FalsePos) x LookCost + FalseNeg x MissCost is
less than |diff| x LookCost

Goal: below 0.023

LookCost = $x

MissCost = $44x

22

Hypothesis H1: summary

• Errors in web-based applications can be
successfully modeled due to the tree-
structured nature of XML/HTML output
– Reduce false positives vs diff

– LookCost to MissCost ratio below current
state-of-the-art value of 0.023 using the oracle
comparator

23

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

24

Hypothesis H2

• A highly-precise, fully-automatic oracle comparator
– based on pre-existing information from unrelated

applications

– fewer false positives than diff

– maintaining a ratio of the cost of examining a potential bug to the
cost of missing an actual bug at or below a current state-of-the-
art value of 0.023

• Train comparator on data from other, unrelated web-
based applications

• Use fault injection to improve the results when necessary

25

What is fault injection?

• Randomly mutate one line of source code
in the application, and re-run the entire
test suite

– It is assumed that any output that differs from
the expected output in this case is a fault

– Repeat until enough mutant outputs are
generated

26

Hypothesis H2 – experimental
setup

• Training Data

– 10 web-based

applications

– Pre-annotated

• Testing Data

– Never test and train on the

same data

100%

27

Hypothesis H2 – experimental
results

• F-score is the harmonic mean of

false positives and false negatives

0.0

0.0

0.0004

28

Hypothesis H2 – experimental
results

• Use fault seeding to reduce false
negatives for Gcc-Xml

– Add mutant output to training data set

29

Hypothesis H2: summary

• Unrelated web-based applications fail and
evolve in similar ways

– Fully automated

– Reduce false positives vs diff

– LookCost to MissCost ratio below current
state-of-the-art value of 0.023 using the oracle
comparator

30

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

31

Hypothesis H3

• Faults injected into web applications, using an
automated seeding process using mutation
operators, or using manual fault seeding, vary
in their underlying consumer-perceived
severities.
– Raw fault counts may not effective in comparing

competing testing approaches when considering
consumer retention

– Use a human study to measure severities

– Consumer-perceived severity different than developer
perceived severity

32

Hypothesis H3: Human study setup

• Each fault presented as a scenario triple:

– current screenshot

– scenario description

– next screenshot

32

3333

Hypothesis H3: Human study
results

• Large scale human study

– 400 real-world faults, 400 injected faults, 100
non-faults from 17 real-world web applications

– 386 subjects

– Over 12,000 votes (at least 12 per fault)

34

Hypothesis H3: summary

• Not all failures in web applications have
the same consumer-perceived severity

– Both injected and manual faults vary in their
severity levels

35

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

36

Hypothesis H4

• An automated model of consumer-
perceived fault severity can be
constructed that agrees with human
severity judgments at least as often as
humans agree with each other,
evaluated using the Spearman’s Ranking
Correlation Coefficient (SRCC)

– Can be used to prioritize faults

3737

Hypothesis H4: background

• Consumer perceived fault severity is poorly
understood

– Do not rely on individual human judgments of fault
severity, as these can be inaccurate

• Want to make testing more efficient by targeting
consumer perceived fault severity

– Agree with humans at least as often as they agree
with each other

3838

Hypothesis H4: Modeling fault
severity

• Build a model of consumer-perceived fault
severity

– Using 17 boolean surface features of faults

• Stack traces, missing images, cosmetic errors, SQL code,
authentication, etc.

– A human-assisted model that uses human
annotations of rendered browser output

– A fully automated model that examines pairs of HTML
output

39

Hypothesis H4 – experimental
results

• Both models are better than humans on
average at correctly predicting fault
severity

0.84

0.70

0.76

0.51

0.51

0.78

40

Hypothesis H4: summary

• Faults in web applications can be modeled
according to their consumer-perceived
severities

– Agrees with average human judgments of
severity more often than humans agree with
each other

– Fully automated

41

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

42

Hypothesis H5

• There exists a statistically significant
correlation (SRCC > 0.60) between
severe faults in web applications and
various software engineering aspects of
web application development

– Can be used when there are few to no
resources for testing

4343

Hypothesis H5: experimental setup

• Analyze the data from the large-scale
human study to look for correlation
between high severity faults and

– The type of web application

– The visual presentation of the defect

– The source of the defect in the code

4444

Hypothesis H5: application types

• As a baseline, little to no correlation
between the type of application or the
programming languages used and severe
faults

4545

Hypothesis H5: fault visualization
• Keep the appearance of the page the same

• Opt for popups over server generated error messages or
stack traces

4646

Hypothesis H5: fault causes

• Many classes of faults are associated with high severity
– Even a naïve test suite can detect many such faults

47

Hypothesis H5: summary

• Severe faults correspond to specific
software engineering aspects during web
application development

– Statistically significant correlation

48

Outline
• Thesis statement

• Hypotheses H1 through H7
1. Faults in tree-structured HTML output can be

modeled

2. Web applications fail in similar ways

3. Not all faults are equally severe

4. Faults can be modeled by severity

5. Severe faults correspond to software engineering
techniques

6. Reduced test suites can preserve severe fault
exposure

7. Automated tools to detect faults rarely miss severe
faults

• Summary

49

Hypothesis H7

• At most 1% of the false negatives
produced by the highly-precise, fully-
automated oracle comparator correspond
to severe faults

– Would we want to use this tool in the real
world?

50

Hypothesis H7: approach

• Combine automated comparator with fault
severity model

• Evaluate automated approach on 3 real-
world, popular PHP benchmarks

– Known (seeded faults)

– Heavy use of non-deterministic output

– Measure fault severity of missed faults

5151

Hypothesis H7: experimental setup
• Train the oracle comparator

as before

– On data from unrelated web

applications

– Use automatically seeded faults as

additional training data

– Use a clean run of the test suite

as additional training data

5252

Hypothesis H7: experimental
results

• Correctly identified 70% of non-faults
– diff would get 0%

• Correctly identified 99% of severe faults

• Requires no manual annotation or training

53

Hypothesis H7: summary

• Automated tools that detect failures rarely
miss severe faults

– The highly-precise, fully-automated oracle
comparator missed only 1% of severe faults
on average

5454

Summary

• Web-based applications have special properties
that can be harnessed to build tools and models
that improve the current state of web application
fault detection, testing, and development

– First to provide a fully automated oracle comparator

– First to provide a fully automated model of fault
severity

– Software engineering guidelines to reduce fault
severity

• Strong results on real-world web applications

55

Conclusion

• Problem: faults in web applications cause
losses of revenue, and they are hard to test

• Approach: explore user-visible errors in web
applications to improve fault detection

• Solution: improve the state of the art in web
testing techniques through guidelines targeted at
high severity faults and automation and
precision in testing

56

Questions?

57

Further reading
• H1: highly-precise comparator:

– Elizabeth Soechting, Kinga Dobolyi and Westley Weimer. Syntactic Regression
Testing for Tree-Structured Output. Web Systems Evolution, September 2009.
(invited to special section in the International Journal on Software Tools for
Technology Transfer)

• H2: automated comparator:
– Kinga Dobolyi and Westley Weimer. Harnessing Web-based Application

Similarities to Aid in Regression Testing. International Symposium on
Software Reliability Engineering, November 2009.

• H3 and H4: fault severity models:
– Kinga Dobolyi and Westley Weimer. Modeling Consumer-Perceived Web

Application Fault Severities for Testing. Submitted, International Symposium
on Software Testing and Analysis

• H5 and H6: guidelines for reducing fault severity:
– Kinga Dobolyi and Westley Weimer. Addressing High Severity Faults in Web

Application Testing. The IASTED International Conference on Software
Engineering, February 2010.

• H7: highly-precise automated comparator on challenging webapps:
– Kinga Dobolyi, Elizabeth Soechting, and Westley Weimer. Harnessing Web-

based Application Similarities to Aid in Automated Regression Testing.
Invited paper; submitted, International Journal on Software Tools for Technology
Transfer

58

Web Failure

• “the inability to obtain and deliver
information, such as documents or
computational results, requested by web
users.” – Ma and Tian

59

Manual Fault Seeding for web
applications

• Five categories (as in Sprenkle et al.):

– Database

– Logic

– Form

– Appearance

– Link

60

Why is web testing hard?

• Interfaces are difficult to identify
– Depends on user inputs and data not accessible through web

forms
– Difficult to interact with application so that all forms are exercised
– Interfaces cannot be extracted by a simple local analysis or

spider-like tools

• Control flow depends on individual usage patterns
– Subsequent actions depend on previous user input

• Heterogenous components make modeling and static
analysis difficult
– Static analysis hard for dynamic langugaes such as PHP which

enables creation of code and overriding methods on the fly
– Def-use chains need to be extended across client/server

boundaries

61

How are GUIs tested?

• None (most common)

• Bypassing GUI that requires major
changes to the architecture

• Manual tools that provide little automation

• Capture-replay

62

GUI testing and web applications

• GUI and web application similarities

– Are event-based systems operating on state

– Difficult to create oracles for verbose output

• GUI and web application differences [Memon]

– GUIs produce deterministic graphical output

– Web applications have synchronization/timing
constraints among objects

– Web applications are tightly coupled with back end
code (i.e. their content is dynamically created using a
database)

63

Hypothesis H6

• There exist test suite reduction
strategies that expose at least 90% of
the severe faults found via corresponding
retest-all approaches for web applications

– Identify testing techniques to maximize return
on investment by targeting high-severity faults

64

Hypothesis H6 – experimental
setup

• Measure fault severity preservation of test
suite reduction approaches
– 90 manually seeded faults in 3 PHP

benchmarks

– 3x50 user sessions collected from volunteers

– Implement 3 testing strategies:
• Retest-all (baseline)

• HGS: Harrold-Gupta-Soffa

• Concept: Sprenkle et al.

– Define testing requirements as URLs visited

65

Hypothesis H6 – experimental
results

• HGS and

Concept continue

to be effective

when considering

fault severity

66

Hypothesis H6: summary

• Test suites can be reduced in size while
preserving severe fault exposure

– Reduced test suites exposed at least 90% of
the severe faults

67

HGS test suite reduction

• Test cases are associated with the requirement
they meet

• The number of test cases that cover a
requirement is the requirement’s cardinality

• Add a test case to the reduced set, marking the
covered requirements
– Select next test case to add that

covers the most unmarked

requirements (i.e. the lowest

requirement cardinality)

68

Concept test suite reduction

• Test cases are associated with the
requirement they meet (a URL)

• Build a concept lattice

– Edges of lattice are partial ordering of concept
nodes

69

Web-based application

• A web-based application is different from a
web application in that web-based
applications may output XML code that
does not necessarily end up rendered by a
browser (i.e. such as web services that
communicate through XML)

70

Training Benchmarks

• For automated oracle comparators

71

SMART global results

72

SMART per-project results

73

Web application benchmarks

74

2-way ANOVA for human study

75

Fault type comparison

76

Developer survey results

77

Boolean fault
surface features

78

ANOVAs for fault severity models

79

Fault visualizations

80

Fault localizations

LookCost/MissCost

• Previous work uses 0.023 from the domain of
bug triage

• LookCost is typically a few minutes per test case

• MissCost varies by domain (low where software
can be easily updated, but high where there are
high quality-of-service requirements)

• At IBM in 2008

– LookCost is $25

– MissCost is $450 (during QA/testing)

– For H1, this results in a 48% reduction in cost
81

Future Work

• Explore ways to extend this work to other
technologies
– Asynchronous javascript

• Automated ways of running test suites without relying on
capture-replay

• Expand consumer-perceived fault severity to other
domains
– GUIs and human-computer interaction

• Add new domain-specific features to the model

• Combine machine learning with brain imaging
– To train classifiers to identify patterns of thought

• Learn about the role of various brain structures in aging and
memory

82

