
1

Changing Java’s Semantics for
Handling Null Pointer Exceptions

Masters Thesis Presentation

Kinga Dobolyi

2

Exceptions
• Linux on Air Algerie Airbus A330

3

Linux on Air Algerie Airbus A330

4

Exceptions

• How bad is this

exception?

• What would you do,

 as a designer?

5

Exceptions
• What about this one?

“The data contained a zero where it shouldn’t have…”

“crashing the entire
network and causing the
ship to lose control of its
propulsion system”

6

Exceptions

• What if we allowed the program to
continue?

7

Exceptions

8

Exceptions

• Increase availability

• Perhaps the program can continue

• Want exceptions to

map into a

 total function

 (all input space is

covered)

9

Exceptions

• NullPointerExceptions (NPEs) in Java

10

Overview

• Introduction

• NPE Background and motivation

• Proposed Technique
• Error Handling and Recovery Policies

• Experimental Results

• Related Work

• Conclusion

11

Introduction
• We want to prevent NPEs
• Create a total function

–For valid dereferences
–For invalid dereferences

12

Introduction

• APPEND:
– Analysis of potential NPE sites
– Insertion of error-handling code

• Compile time

• Recovery policies

• In object code
– Reduces complexity

13

Background

• NPEs:
– Most common error in Java programs [Cielecki

2006]

– Frequent and catastrophic

– Make programs unsafe
– Top 10 web application security risks [Security

Advisor Portal 2003]

14

Background

• Why are we not preventing them?

– Conceptual errors

– Unchecked vs checked exceptions

– Manually impractical

15

Null Checking Analysis

• Not systematic

• Clutters code

16

Do Programmers
Put In Null Checks?

• 90% of null

checking

not taking

place

17

Problems with NPEs

• Many sources implies multiple catch
blocks

• Breakdown of encapsulation and
information hiding

• Some programming idioms make static
analysis unattractive

18

Goals

• Prevent all NPEs
– Continued execution
– Total function

• Automatic

• Transparent
– Low overhead
– Space, speed

19

Proposed Technique

• Analysis
– Locate potential NPEs

• Transformation
– Insert null check as a guard
– Use user-specified recovery policy

20

Proposed Technique

• Input
– Source code or byte code (unannotated)
– Global recovery policy (default)

– Context specific recovery policies (optional)

• Output
– Transformed source code or bytecode

– Guaranteed* free from NPEs

21

Example
• Before

• After

22

Example
• Before

• After

23

Finding Potential NPEs

• Tradeoff

• Conservative flow-sensitive
intraprocedural dataflow analysis
– Constructor calls

– Global field accesses (i.e., System.out)
– Static function calls
– Array accesses (i.e., p[i])

24

Soundness

• Does not change correct execution
– Assumes: Programs do not rely on NPEs

• Correctness of exceptional execution
– Assumes: correct user-defined recovery

policies

25

Error Handling Transformations

• Call default constructor

• Skip statements

• User defined recovery actions

26

User-defined recovery policy

• First class object
– Manipulated and executed during compilation

• applicable
• apply

Input: The program context C and an error location L.
if logging.applicable(C,L) then

C,L ← logging.apply(C,L)

return (C,L)

27

User defined recovery policies

• Composable
– Global policy
– Context-specific policy

• Target object
• Class context
• Method

• Data Structure

Consistency

28

User defined recovery policy

29

User defined Data Structure
Consistency

Input: The program context C and an error location L.

if other_policy.applicable(C,L) then

C,L ← other_policy.apply(C,L)

end if

for all database writes W(x) reached by L do

C,L ← replace W(x) by “if invariant(x) then
W(x) else throw new DatabaseException()”

end for

return C,L

30

Experimental Results

• Effectiveness
– Preventing NPEs in sample code
– Preventing NPEs in Java Standard Library

– Runtime overhead
– Class file size

31

Experimental Results

• Used default policy, which composes:
– Skip
– Default constructor (available 65% of the time)

if constructor.applicable(C,L) then
C,L ← constructor.apply(C,L)

else if skip.applicable(C,L) then
C,L ← skip.apply(C,L)

return C,L

32

Experimental Results: Example

• Error in URL library class
• System.out.println(v1.indexOf(

new URL(“file”, null,
 “C:\\jdk1.1.6\\src\\test” +
i + “.txt”)));

33

Experimental Results

• Average slowdown 1.3%

34

Experimental Results
• Increase in null checking:

35

Experimental Results

• Growth in byte code size = 22%

36

Related Work

• FindBugs (Pugh)

• Acceptability oriented and failure oblivious
computing (Rinard)

• Soft computations

• AOP

37

Summary

• We want to prevent NPEs
• Create a total function

–For valid dereferences
–For invalid dereferences

38

Conclusion

• APPEND:
– Analysis of potential NPE sites
– Insertion of error-handling code

• Compile time

• Recovery policies

• In object code
– Reduces complexity

• Low overhead

