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Abstract

We envision a world where no exceptions are raised; instead, language semantics are changed

so that operations are total functions. Either an operation executes normally or tailored recovery

code is applied where exceptions would have been raised. As an initial step and evaluation of this

idea, we propose to transform programs so that null pointer dereferences are handled automatically

without a large runtime overhead. We increase robustness by replacing code that raises null pointer

exceptions with error-handling code, allowing the program to continue execution. Our technique

first finds potential null pointer dereferences and then automatically transforms programs to insert

null checks and error-handling code. These transformations are guided by composable, context-

sensitive recovery policies. Error-handling code may, for example, create default objects of the

appropriate types, or restore data structure invariants. If no null pointers would be dereferenced, the

transformed program behaves just as the original.

We applied our transformation in experiments involving multiple benchmarks, the Java Stan-

dard Library, and externally reported null pointer exceptions. Our technique was able to handle

the reported exceptions and allow the programs to continue to do useful work, with an average

execution time overhead of less than 1% and an average bytecode space overhead of 22%.
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Chapter 1

Introduction

We envision a world where no exceptions are raised; instead, language semantics are changed

so that operations are total functions. Either an operation executes normally or tailored recovery

code is applied where exceptions would have been raised. As an initial step and evaluation of this

idea, we propose to transform programs so that null pointer dereferences are handled automatically

without a large runtime overhead. We introduce APPEND, an automated approach to preventing

and handling null pointer exceptions in Java programs.

Removing null pointer exceptions is an important first step on the road to dependable total

functions in Java, by having specific and well-defined code to execute for both valid and invalid

pointer dereferences. Consider the example of a system failure on the USS Yorktown in September

1997:

A system failure on the USS Yorktown last September temporarily paralyzed the

cruiser, leaving it stalled in port for the remainder of a weekend...The source of the

problem on the Yorktown was that bad data was fed into an application running on one

of the 16 computers on the LAN. The data contained a zero where it shouldn’t have, and

when the software attempted to divide by zero, a buffer overrun occurred – crashing

the entire network and causing the ship to lose control of its propulsion system. [1]

Preventing the divide-by-zero that caused the massive failure that lead the ship to be “dead in

the water” [1] would have been preferable. Although this example showcases the potential conse-
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Chapter 1. Introduction 2

quences of an uncaught divide-by-zero exception, null pointer exceptions can be just as severe. A

total function is one that is well-defined for all potential inputs, possibly using specific recovery

actions to handle problems. Having total functions for pointer dereference and division would help

to prevent such errors.

Unfortunately, a manual implementation of such functionality is rarely practical. Checking

for null pointers by hand is tedious and error-prone [24, 52], especially when pointer values are

created by external components or are part of a chain of object references. Though developers

do sometimes check for some null pointer dereferences manually, there is no reason this checking

cannot be automatically and systematically extended to all pointer dereferences in a program.

1.1 Summary of Technique

APPEND is a two-step transformation on Java code applied at compile time, to prevent runtime

null pointer exceptions. First, the program is analyzed to locate possible null pointer derefer-

ences, replacing the human observations with static analysis. Then, APPEND inserts null checks

and error-handling code. The error-handling code is specified at compile-time via composable,

context-sensitive recovery policies. Recovery policies describe how the program should behave

when a null pointer exception is prevented, so that a total function is created for both valid and in-

valid pointer dereferences. Generated handling code might, for example, create a default object of

an appropriate type to replace the null value, skip instructions, perform logging, restore invariants,

or some combination of the above. This approach is desirable in web services or dynamic web

content, where users interpret the final results with respect to an acceptability envelope [38] and

high availability is of paramount importance.

Because program behavior is preserved when no null pointer exceptions are thrown, this ap-

proach can be applied to any Java program. APPEND’s goal is to transform programs so that null

pointer exceptions are avoided and programs can continue executing without incurring a high run-

time cost in space or speed. An added benefit with using APPEND is that the checking and recovery

actions can be implemented in the object files, rather than the source, thereby reducing code com-
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plexity and size, as explained in Chapter 4.



Chapter 2

Background

Null pointer exception management is a logical starting point for changing Java’s semantics for ex-

ception handling, because of the simplicity and regularity and null pointer exceptions. Null pointer

exceptions, while conceptually simple, remain prevalent in practice. They have been reported as

the most common error in Java programs [11]. Null pointer dereferences are not only frequent [48],

but also catastrophic [49] and are “a very serious threat to the safety of programs” [11]. Many

classes of null pointer exceptions can be found automatically by static analyses [25], and they have

been reported as one of the top ten causes of common web application security risks [3]. Address-

ing such risks with fault-tolerance techniques is a promising avenue. For example, techniques that

mask memory errors have successfully eliminated security vulnerabilities in servers [40].

Though Java already provides an infrastructure for exceptions, the current state of the language

is only a partial solution. Java makes a clear distinction between checked and unchecked exceptions.

The former are included in method type signatures and must be addressed by the programmer; the

latter may be ignored without compiler complaint. Unchecked exceptions should also be docu-

mented and properly handled by the language, in a systematic and universal manner. Java treats

null pointer exceptions as unchecked by default, while APPEND’s approach to null pointer preven-

tion is similar to the way Java treats checked exceptions: an undesirable situation or behavior is

identified by the programmer, and some error handling code is generated.

One reason null pointer exceptions are not treated as checked by Java is that there are many

4



Chapter 2. Background 5

potential sources of null pointer dereferences and different recovery situations would have to be

embedded in multiple local catch blocks explicitly: a time-consuming and error-prone task. First,

it would be difficult to identify, for each null pointer exception that propagated upwards, what kind

of recovery code could be applied, without knowing context information. Secondly, Java’s current

exception handling mechanisms also open up the possibility of a breakdown of encapsulation and

information hiding, as implementation details from lower levels of scope are raised to the top level

of the program. A solution to null pointer exceptions that is able to prevent or mask them in a way

that is both reasonable and accessible to the programmer has yet to be implemented.

Despite their relative simplicity, null pointer dereferences remain a problem in software because

they tend to be markers of misuse or misunderstanding of various software components. Creating

a generic detection or solution to their existence would be analogous to being able to identify

conceptual errors in code. While programming idioms have been examined as conceptual errors

[24], generalizing a static analysis tool to catch all potential null pointer dereferences would mean

that every object dereference would have to be considered. As a result, not all defect reports from

static analysis tools are addressed [24,51]. Programs ship with known bugs [32], and resources may

not be available to fix null pointer dereferences.

Fixing null pointer exceptions is also difficult because some programming idioms make static

null pointer analyses unattractive. For example, many programs simplify database interaction by

creating and populating objects with field values based on columns in database tables (e.g., [5, 9,

26]). The validity or nullity of a reference to such an object depends on what is stored in the database

at run-time. Conservative static analyses typically flag all such uses as potential null dereferences,

but some reports may be viewed as spurious false positives if there are external invariants requiring

the presence of certain objects. For these specific types of examples, in particular, it might be

possible to patch invalid null objects with default values. Later in this thesis we will explore specific

instances where APPEND’s approach to null pointer handling, even with default values, is preferable

to other static analyses and recovery methods.

APPEND is a program transformation that changes Java’s null pointer exception handling by

automatically inserting null checks and error-handling code. No program annotations are required,
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and developers need not wade through defect reports. Programs are modified according to com-

posable recovery policies. Recovery policies are executed at compile-time and, depending on the

context, recovery code is inserted that is then executed at run-time if the null checks fail. Recov-

ery policies are conceptually related to theorem prover tactics and tacticals or to certain classes of

aspect-oriented programming. If no null values are dereferenced at run-time, the transformed pro-

gram behaves just as the original program. If the original program would dereference a null value,

the transformed program instead executes the policy-dictated error-handling code, such as creating

a default value on the fly or not calculating that expression. Previous research has suggested that

programs might successfully continue even with discarded instructions (e.g., [39]); we present and

measure a concrete, low-level, annotation-free version of such a system, and extend it to allow for

user-specified actions.

The idea behind this approach is that null pointer dereferences are undesirable, especially in

circumstances where they are involved in non-critical computations where the program is forced to

crash if one is encountered. If we had a way of preventing the program from ceasing execution,

while logging and performing some sort of recovery code instead of raising an exception, we hy-

pothesize that there are many applications where this behavior would be preferred. Therefore, it

becomes possible to check every pointer dereference in the code for nullness, and to include recov-

ery code for every such instance. We argue that this is a practical and preferable way to deal with

null pointer exceptions in Java.

Because we intend to check every pointer dereference for nullness, we could have chosen to

take advantage of the existing null checking of the Java virtual machine. Given the low overhead of

our tool (which we will describe in Chapter 6), we chose to work on the application level instead,

to remain portable and not have to rely on a single modified JVM instantiation.

The transformation can be implemented directly atop existing program transformation frame-

works and dovetails easily with standard development processes. It can be applied to individual

source or class files, entire programs, and separate libraries, in any combination. The main con-

tributions of this thesis are a presentation of our technique (Chapter 4, including our definition of

soundness in Section 4.3), our notion of recovery policies (Chapter 5), and experimental evidence
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(Chapter 6) to support the claim that our approach can handle null pointer exceptions in practice

with minimal execution time overhead and low code size overhead (Section 6.4). We begin with an

assessment of the amount of null checking currently taking place in some benchmark examples.

2.1 Null Checking Analysis

Before explaining our program transformation, we will explore null pointer checking in terms of

code coverage. By analyzing the number of pointer dereferences, we can come up with an estimate

for an upper bound on the number of null checks needed to make all dereferences safe. In addition,

we want to examine the amount of null checking already in place by the programmer.

The following code snippet, taken from JBPM, shows a common paradigm used to prevent null

pointer dereferences:

1 if ( (action!=null)

2 && (action.getActionDelegation()!=null)

3 && (action.getActionDelegation().getClassName()!=null)) {

4 buffer.append(",");

5 buffer.append(action.getActionDelegation().getClassName());

6 }

The short-circuit if statement is responsible for testing the variable action and the results of its

nested accessor functions to check for any null values before they may be dereferenced. Ideally null

checking should occur at value introduction and creation, rather than at value use, but in practice

it is often very difficult, if not impossible, to know in advance where nulls might be introduced.

For programs and libraries created by multiple developers, or for values obtained from databases,

checking for nullness on use is a standard defensive programming practice.

While the embedded testing of code with null checking is a step in the right direction, its current

application in code development is not optimal for two reasons. First, null checking is generally

not done systematically to the point where all possible null dereferences are checked, and second,

the null checking clutters the code. Ideally, one would want to check all possible values for null

dereference, and not clutter the code with the checks. APPEND proposes to achieve both of these
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goals with an automated checking at runtime: we propose to obtain the same checking coverage

shown in the example above without the explicit three-line if statement.

The extent to which manual null checking lacks completeness can be estimated by examining

the occurrence of function call chains in Java code. We use function call chain to refer to the

invocation of a method on an object that may or may not be null; for example:

person.getAddress( )

or

person.getPhoneNumber( ).getAreaCode( )

In the second example, both person and person.getPhoneNumber must be non-null for the code

to work correctly, but the nullness of person.getPhoneNumber cannot be checked until person is

verified to be non-null. The height of a function call chain is the number of consecutive function

calls in the expression; the first example has a height of one and the second has a height of two.

We view compound expressions such as:

person.getAddress(var.getName( ))

as multiple separate chains — in this case, two chains each of height one.

For perfect defensive null-checking coverage, a call chain of height X requires X separate null

checks. We studied the number and height of call chains and null checks present in existing Java

programs; Figure 2.1 summarizes the results.

We examined random files from Java benchmark applications (iReport, jbpm, mondrain, neogia,

scheduler, squirrel) and noted the number of call chains and the number of null checks associated

with those call chains. Of the 463 null checks required for full defensive code coverage, only

15% were actually present. This observation argues for a systematic approach to inserting null

checks and the relevant cleanup code. In addition, if all 463 null checks were inserted and each

check required one line of code, null checks would account for 13% of the code around the call

chains, thus dramatically increasing clutter. The results of our study strongly motivate two key

desired properties for APPEND: that it automatically and systematically address all null-pointer

dereferences, and that it allow programmers to specify error-handling code without local clutter.
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Bench- Call Chains Required Programmer LOC Required
mark checks checks as % checks as %

(total) of total required of LOC
1 36 36 0% 241 15%
2 0 1 100% 284 0%
3 10 14 0% 86 12%
4 14 21 33% 315 4%
5 97 98 0% 207 47%
6 8 12 33% 128 6%
7 9 13 31% 101 9%
8 43 60 23% 319 14%
9 1 1 0% 273 0%
10 12 21 14% 137 13%
11 34 42 12% 230 16%
12 0 1 100% 229 0%
13 4 11 55% 223 2%
14 14 33 55% 217 7%
15 39 61 0% 185 33%
16 13 19 32% 206 9%
17 0 0 100% 171 0%
18 18 19 0% 94 20%
TOTAL 352 463 15% 3646 13%

Figure 2.1: Measurements of null checking in benchmark samples. Call Chains gives the actual
number of call chains based on object dereferences in the code. Required checks (total) lists the
number of null checks required for full defensive programming coverage of those chains; note
that this number can be greater than the number of chains when chain height exceeds one. Pro-
grammer checks as % of total required gives the percentage of null checks required that were
already added by the programmer. The LOC is the lines of code in each file. The Required checks
as % LOC column indicates how much of the code around the call chain logic would have to
be devoted to null checking to obtain full coverage. The benchmark files used were: 1. Proxy-
Connection.java , 2. ColumnDisplayDefinition.java, 3. SOSCrypt.java, 4. SOSCommandSched-
uler.java, 5. CommunityServices.java, 6. CategoryContentWrapper.java, 7. ReportHelper.java,
8. PaymentWorker.java, 9. Enumeration.java, 10. Converter.java, 11. CacheMemberReader.java,
12. Task.java, 13. Timer.java, 14. VariableContainter.java, 15. CrosstabColumnDragged.java, 16.
SyntaxDocument.java, 17. Measure.java, and 18. Holiday.java



Chapter 3

Motivating Examples

In this chapter we walk through the application of our technique to a simplified example and to

a publicly reported defect. We illustrate the process taken by our automatic transformation and

highlight the difficulties in manually handling null pointer exceptions.

In practice it is common to perform null pointer checks before dereferencing an object. Unfor-

tunately, manually inserting null pointer checks is tedious and error-prone. Null pointers can arise

from program defects or violated assumptions, but are perhaps more insidious when they result

from external sources or components. For example, many database APIs that convert table entries

into objects for ease of programmer manipulation may return null objects if the requested entity is

not in the database. Runtime dependency on such external systems can significantly reduce the ef-

fectiveness of testing in finding potential null pointer dereferences [35,45]. The following example

code illustrates this situation:

1 Person prs = database.getPerson(personID);

2 println("Name: " + prs.getName());

3 println("Zipcode: " + prs.getAddr().getZip());

In the example above, if the requested person is not in the database or if the database has been

corrupted, a null Person object will be returned. One standard fault-tolerance approach is to guard

statements with non-null predicates:

1 Person prs = database.getPerson(personID);

2 if (prs != null)

10
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3 println("Name: " + prs.getName());

4 if (prs != null && prs.getAddr() != null)

5 println("Zipcode: " + prs.getAddr().getZip());

This way, if a valid Person is returned, the information is printed out normally. If a null pointer

is returned, whether as a valid part of the program API or as an invalid record from the database,

the null pointer dereference will be prevented.

Note that even when a valid Person object is returned, the Address object within the Person

may be null, and must also be explicitly checked. While this example is for an object from a

database, any value that is dereferenced could be a null pointer, and should be checked to avoid a

null pointer exception (NPE). The number of NPEs encountered in practice and the research devoted

to preventing them is a testament to the lack of consistency of null pointer prevention [25]. At the

same time, manually placing checks in the code is not only time-consuming and error-prone, but

can also make the code difficult to read and increase code complexity.

One real-world example of problematic handling of NPEs comes from JTIDY, a tool for ana-

lyzing and transforming HTML. This example is taken from a bug report submitted by a user on a

public mailing list [37]. In the code below, the NPE occurs on line 36:

30 Doc xhtml = tidy.parseDOM(in, null);

31 // translate DOM for dom4j

32 DOMReader xmlReader = new DOMReader();

33 Document doc = xmlReader.read(xhtml);

34

35 Node table = doc.selectNode("/html/body");

36 System.err.println("table:" + table.asXML());

In some instances the table returned from selectNode is null, but it is always dereferenced

without being checked. In this case it would be advantageous to guard the deference with a null

pointer check. In Chapter 6 we show how APPEND is able to automatically prevent the NPE from

being raised in this example, allowing JTIDY to do other useful work even if the "/html/body"

Node cannot be retrieved.

As these examples show, recovery from null pointer exceptions can often be handled in an
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idiomatic way. For example, developers trying to display the fields of a partially initialized object

may be satisfied with displaying only the available fields. For such applications, preventing the

runtime NPE by either printing a null value or skipping the print statement is likely preferable

to crashing the program. The acceptability of such idiomatic behavior is determined by context,

however, which is why APPEND allows programmers to specify different recovery policies for

different program logic.

We must also consider situations in which it is not possible to recover from, or not known

how to recover from, a null pointer exception in a useful way. In such cases logging may be a

reasonable compromise: often times masking and reporting an error is preferable to crashing the

program; denials of service are avoided and the application continues to work at some degraded

level of service. Because it is impossible to know, in general, what kind of an effect masking

NPEs might have, APPEND supports recovery actions that are programmer-specified. This allows

programmers to customize recovery for NPEs to individual programs if additional knowledge or

invariants about program behavior are available. Programmers can also fall back on APPEND’s

default NPE prevention behavior, which we will describe in Section 4.2.



Chapter 4

Proposed Technique

Our goal is to prevent null pointer exceptions in Java programs in a way that avoids failures without

incurring a high cost. In doing so, we are taking the first step towards changing Java’s semantics

for exception handling to a total function, where specific code is executed for both normal and

exceptional cases. We specifically target areas where producing some output is better than having

the program crash. For example, an e-commerce application could lose customers and revenue

if it fails to display a webpage because of an NPE raised somewhere in the back end. Perhaps

the webpage was displaying product information from a database, and the database contained null

values as in the example in Chapter 3. Similarly, it would be undesirable for a vital system to crash

entirely due to an obscure NPE not along a critical path of execution (see Chapter 1). We propose

that the application prevent the NPEs, avoid crashing, and continue to do useful work.

APPEND addresses null pointer exceptions in an automatic manner by transforming programs.

To be practical, most such transformations cannot require user annotations and must not incur high

run-time overhead costs. We propose a source-to-source (or bytecode-to-bytecode) analysis and

transformation as part of the compilation process. For maximal ease-of-use the transformations can

be applied to bytecode object files, so as not to clutter source code with visible null checks. In

situations such as debugging, where having the source code and the bytecode align is of paramount

importance, the transformation can also be applied at the source level and the resulting code with

additional null checks can be compiled as normal. Although it may seem strange to have code

13
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that, from the developer’s perspective, is only added to the object file, passing a program through

APPEND’s transformation is analogous to double-bagging groceries; we are interested in maintain-

ing some liveness properties in cases where the program itself has broken, and the wrapper around

it prevents the errors from being visible. In addition, many other high-level language constructs,

such as the synchronized keyword in Java, result in under-the-hood code generation (e.g., lock

acquisition) that is not visible at the source level. As an example from one application area, when

combined with applications that use databases, an APPEND-transformed program is able to sepa-

rate the concerns of database information integrity with respect to null values into a separate shell

around the program.

There are two key steps in our technique. First, in the analysis phase, a set of potential null

pointer dereferences is determined. Second, in the transformation phase, a null check is inserted to

guard each such potential dereference. The transformation takes place according to a user-supplied

top-level recovery policy. The top-level recovery policy uses context and location information to

compose and query lower-level policies at compile-time. Each policy transforms the program and

inserts error-handling routines that are executed at run-time if the null checks fail. The analysis

and transformation are carried out on a standard intermediate representation. We use the SOOT

transformation and analysis framework in our prototype implementation [47].

Our technique takes as input an unannotated program, a global recovery policy, and optionally a

number of other context-specific recovery policies. After the all potential null pointer dereferences

are identified, the program is transformed according to the global recovery policy; a null check is

used to guard each potential null pointer dereference, and depending on what the recovery policy

states, recovery code is inserted for each null check in the case the check fails.

4.1 Finding Potential Null Pointers

The number of dereference sites we identify affects both the completeness and the overhead of our

approach. Flagging all pointer dereferences could lead to unacceptable levels of overhead from

inserted checks. Flagging too few dereferences may prevent actual NPEs from being guarded.
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For our purposes, the preference is to flag more pointer dereferences rather than less, because the

checking code will typically only be visible in the object file and the overhead will be low (see

Chapter 6). However, because our tool could be applied at the source-level directly, we must still

make an effort not to flag extraneous instances of dereferences where we know it is impossible that

a null value could exist at run-time.

For this reason, we employ a conservative flow-sensitive intraprocedural dataflow analysis to

statically determine if an expression is non-null. Expressions that are not known to be non-null

are flagged for transformation. Some types of assignments and object dereferences are assumed to

always be correct:

1. We do not flag expressions that our dataflow analysis determines can never be null.

2. We do not flag the results of constructors, such as new Person(), which, by Java convention,

return a valid object or raise an exception.

3. We do not flag global field accesses, such as System.out.

4. We do not flag static function calls.

5. We do not flag array accesses, such as p[i], and view array bounds check elimination as an

orthogonal research problem.

Any false negatives that would arise through the use of APPEND would result from the five assump-

tions made here. If perfect null-pointer dereference coverage is desired, those five cases can be

flagged and instrumented as well at the cost of additional code size and run-time overhead.

A more precise interprocedural analysis would result in lower overhead in transformed pro-

grams. However, analysis time is also important for our technique if we propose to use it as part of

the compile chain. Recent work has made context-sensitive flow-sensitive analyses more scalable

(e.g., [19]), but we chose a flow-sensitive intraprocedural analysis for performance and for pre-

dictability. Java programmers are already used to simple and predictable analyses, for example in

Java’s definite assignment rules, and understanding the transformation simplifies reasoning about
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and debugging the transformed code. Predictability in the analysis used by APPEND is also impor-

tant in situations where programmers are writing their own recovery policies and expect potential

NPEs to be flagged in a certain way.

4.2 Error Handling Transformations

Raising an exception or otherwise terminating the program represents the current state of affairs.

APPEND improves on the state of the art by inserting null checks guarding every dereference that

has been flagged as potentially null. However, we must also insert behavior in the case where the

check fails. The simplest solution would be to simply skip any offending statement that would have

thrown a NPE, and continue with execution. However, such a proposal could result in cascading

errors where the program is unable to recover in a meaningful manner. APPEND improves upon

this by taking specific actions when a NPE is prevented. Our technique is modular with respect to

user-defined recovery actions.

As a concrete example of an error-handling policy, we consider inserting well-typed default

values. If a null value would be dereferenced we replace it with a pointer to a default initialized

value of the appropriate type. We obtain such values by calling the default constructors for the

given class; this policy is only applicable if such a default constructor is available for the type under

consideration. Although the default object value is probably not what the programmer intended, it

may still allow useful work to be conducted. Consider the following pseudocode:

1 r6 = virtualinvoke r4.<java.util.Vector:

2 java.lang.String toString()>();

If the value of r4 may be null, then a check would be placed before this line of code to prevent

a null pointer dereference. If r4 is of type Vector, the transformed code would be:

1 if (r4 == null)

2 r4 = new Vector();

3 r6 = virtualinvoke r4.<java.lang.Vector:

4 java.lang.String toString()>();
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In the case of java.lang.Vector, a default constructor exists for the object, which is used if

r4 was null. In this manner r4 is sure to be non-null before it is dereferenced, thereby avoiding

the NPE. In addition, if r4 is subsequently referenced without any intervening assignments to it,

no additional checks are necessary. This eliminated the cascading-error effect for the object that

may have resulted if we only skip the offending statement. In this specific example of code, we

do not know what the value of r4 should have been: it may have been returned from some other

component or library. Regardless, after we apply APPEND’s recovery policy, we are able to use the

Vector object normally, adding values to it, resulting in useful work. It may have been the case that

r4 was supposed to be an empty Vector, instead of a null value, in which case APPEND’s recovery

actions have actually corrected the code. Although this interpretation is highly optimistic, with

some insight into program behavior by the developer, tailored recovery actions may exist that are

able to result in this kind of elegant masking and recovery from NPEs. In Chapter 5 we categorize

and describe possible recovery policies in more generality.

4.3 Soundness

We cannot sacrifice preserving correct program execution for the sake of a safety wrapper. Our

notion of soundness is that the transformed program should behave exactly as the original program

behaves in cases where the original program would not produce a null pointer exception. If a NPE

would be raised we apply the appropriate error-handling behavior. To implement this definition of

soundness, some assumptions about program behavior are necessary. First, we explicitly assume

that programs do not rely on NPEs for uses beyond signaling errors (e.g., programs do not use try

and catch with NPEs as non-local gotos). This assumption avoids the situation where APPEND’s

transformation inserts a null check and recovery code around an NPE that was meant to be caught

in a different part of the code. While it may be possible to detect or annotate such cases, we argue

that the use of NPEs in such a manner is generally bad programming practice and unlikely to be

encountered in the real world [52].

We further assume that the user-specified error-handling and recovery code will result in accept-
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able behavior. This expectation is riskier than the first one because we cannot know what kind of

Java programs APPEND will be applied to. A tradeoff exists between using APPEND and address-

ing all NPEs automatically, versus writing and directly or formally verifying that code is correct.

APPEND is an attractive alternate when the cost of verification is high (e.g., when the code base is

large, when annotations are not available, when high test coverage is costly, etc.) and it can be used

to supplement incomplete manually-added null-pointer checks.

Soundness is thus dependent on the user-specified error handling code. For example, in the

particular case of default constructors, we assume that referencing the default object will not have

unintended, permanent side effects beyond the scope of program execution, such as storing the re-

sult of a computation involving these default values back in a database. Such assumptions are com-

mon for domain-specific recovery actions [4, 31, 38, 40], but, admittedly, may result in unexpected

or unintended consequences. Although we cannot offer a foolproof solution for such a situation,

we believe that careful policy construction, combined with logging functionality will minimize the

risk of such unwanted situations, and will allow for directed debugging efforts in the rare instances

when any APPEND inserted recovery code is called.



Chapter 5

Error-Handling and Recovery Policies

Chapter 4 discussed how APPEND locates potential null pointer dereferences. In this chapter, we

describe a framework for user-specified, composable recovery policies that are applied at compile-

time to instrument the code with context-specific recovery actions. At a high level, a recovery

policy is meant to identify certain classes or idioms of null pointer dereferences, and assign specific

actions to each type of instance. At compile time, a location of a potential NPE in the source code

is matched with a NPE pattern or idiom, and appropriate recovery code is then applied.

A recovery policy is a first-class object that is manipulated and executed at compile-time and

adheres to a particular interface. Each recovery policy has a method applicable that takes as

input the program as a whole and the location of the potential NPE and outputs a boolean indicating

whether that policy can be applied to that location in that context. Here the context represents the

standard information that a compiler or source-to-source transformation would have available (e.g.,

class hierarchies, abstract syntax trees, control flow graphs) and the location gives the particular

statement or expression that contains the potential error. The applicable method is responsible

for mapping actual flagged potential NPEs to the NPE idioms defined in the policy. Each policy also

has an apply method that takes as input the program as a whole and the location of the potential

NPE and outputs a transformed program that has been adapted to follow the recovery policy at that

location. The apply method is responsible for inserting recovery code after a particular potential

NPE in the code has been identified as being of a certain pattern.

19
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Input: The program context C and an error location L.
1: if the dereferenced object at L has a policy P1
∧ P1.applicable(C,L) then

2: return P1.apply(C,L)
3: else if the context class at L in C has a policy P2
∧ P2.applicable(C,L) then

4: return P2.apply(C,L)
5: else if the context method at L in C has a policy P3
∧ P3.applicable(C,L) then

6: return P3.apply(C,L)
7: else
8: if logging.applicable(C,L) then
9: C,L← logging.apply(C,L)

10: end if
11: if constructor.applicable(C,L) then
12: C,L← constructor.apply(C,L)
13: end if
14: return (C,L)
15: end if

Figure 5.1: An example global recovery policy. This policy checks the dereferenced object and
the enclosing class for an overriding policy. If no such specific policy is found, it applies both the
logging and constructor policies.
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Figure 5.1 shows an example skeleton for a recovery policy. One example of a recovery policy

is the default constructor insertion described in Section 4.2, shown on lines 11–13. That policy is

applicable() when the type under consideration has a default constructor with no arguments. A

logging policy is another example (lines 8–10): its apply() method inserts calls to a logger and

it is applicable() whenever the enclosing context is not that logger class (i.e., to avoid infinite

recursion at run-time). As a final example, a particular skip policy’s apply() function elides

the problematic computation and it is applicable() if the location under consideration is not a

return statement, so as not to propagate likely design errors.

A recovery policy for a specific pattern of NPE can be global or it can be associated with a

particular class, both as a subject and as a context. For example, a global policy of “use a default

constructor” could insert a default constructor in every situation in the code where one exists for

a potential NPE. A local policy specific to a DatabaseObject class could specify that no default

object that was created by APPEND should ever be written back to the database. In this example,

the global and local policies can be used together through the applicable and apply methods.

Recovery policies can query and compose the actions of other recovery policies. Our notion

of composable recovery policies is inspired by the cooperating decision procedure and tactical

approach used in many automated theorem provers. In this context, decision procedures (or abstract

interpreters) for separate areas, such as linear arithmetic and uninterpreted function symbols, work

together on a common substrate to soundly decide queries that involve both of their domains [36].

In interactive theorem proving, proof obligations in the object language can be manipulated and

simplified by tactics (see e.g., [21, 23, 41]), programs written in a metalanguage. Tactics can be

composed using combining forms called tacticals, allowing users to express notions such as “repeat”

and “or else”. Just as a theorem prover tactic might embody a notion such as, “try to instantiate

universally-quantified hypotheses on in scope variables, and if that does not work try algebraic

simplification”, a recovery policy in our system might embody a notion such as, “try to instantiate

the default constructor for this object, and if that does not work try to log the error and continue.”
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5.1 Policy Granularity

The recovery policies must be robust enough to handle different combinations and priorities of

recovery actions. At a minimum, APPEND requires the user to provide a global recovery policy

or use the default ones furnished. The default policy uses default constructors wherever they are

available, or when they do not exist, the offending statement is not executed.

Individual classes and contexts can be annotated with specific recovery policies if desired. Ex-

ample pseudocode for the apply function of a global recovery policy is given in Figure 5.1. At

compile-time, during program analysis and transformation, we invoke global.apply() on each

potential null pointer dereference. The resulting modified code is the final result of our source-to-

source transformation. Because we do not change any user-provided null checking functionality

already implemented in the source code, APPEND will not override such null checks and recovery

instances because they will already by flagged as not-null by our static analysis. As mentioned ear-

lier, the only situation where APPEND’s transformation can interfere with “correct” code is when

NPEs are used in an unexpected way, in conjunction with try-catch blocks. If the program al-

ready contains null checks, APPEND’s static dataflow analysis (see Section 4.1) will not flag them

as potential instrumentation points.

The example global policy in Figure 5.1 gives priority to policies associated with the potentially-

null object and with the surrounding class, by checking for this case first in line 1. As an example

of the former, a particular application might require that all NPEs associated with GUI Widget

objects be handled by recreating the default widget set and redrawing the application, rather than

by creating a newly-constructed and unattached widget and operating on it.

An application might also associate a policy with a class context. In Figure 5.1, such a situation

is given lower priority than policies associated with the object itself, by performing this checking

at line 3. For example, in a UserLevelTransaction class, any null pointer error encountered

might be replaced by “throw new AbortException()” since the caller presumably knows how

to handle transactional semantics. Policies might also be specified at the method level, as shown

on line 5 in Figure 5.1; a particular method expected to return a value might make a best-effort



Chapter 5. Error-Handling and Recovery Policies 23

substitution and return. Sidiroglou et al. have examined various heuristics for determining an

appropriate return value for a non-void function [44]. In general, attempts that stop the execution

of a block or function when a NPE is prevented are variations of fail-stop computing at different

levels. It is important to note that in our system, the code for these halting actions is stored with the

policy and is present in the transformed code but not the program source code.

5.2 Data Structure Consistency

Previous sections have shown that skipping one or more statements that depend on the dereferenced

value may be reasonable in some circumstances (e.g., if the value is merely being printed). An or-

thogonal approach to such fail-stop options is to enforce data structure consistency. The program

may be in an unsafe state when the NPE is prevented and the transformed code is executed in-

stead. Local handling of errors may have unexpected effects on the rest of the program if important

invariants are not restored. For example, an object created by default in our constructor pol-

icy might be written to a database that expects post-processed, validated objects. In this situation,

logging alone of the execution of the recovery code may not be enough to satisfy the properties

of the application. Many proposals exist for using user-defined or computer-generated constraints

(e.g., [15,17,18]) on data structures in the program or database to enforce consistency. A simple re-

covery tactic to prevent cascading errors in such cases would be to prevent APPEND from persisting

any recovery-generated objects in the database.

If such constraints were provided as part of the policy, they could be used to transform the code

in such a way that the invariants are maintained. Figure 5.2 shows how a class-specific policy might

make additional changes to the code to enforce that only objects matching a particular invariant

were written to the database. A simple conservative dataflow analysis could be used to find all

of the database write statements that the potentially-null object might reach. Only those write

statements are then guarded with invariant checks. In practice such a policy would benefit from

dead-code elimination or other ways of preventing the insertion of duplicate checks.

The user may also be able to specify context-based, rather than object-based, recovery actions
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Input: The program context C and an error location L.
1: if other policy.applicable(C,L) then
2: C,L← other policy.apply(C,L)
3: end if
4: for all database writes W (x) reached by L do
5: C,L← replace W (x) by “if invariant(x) then W (x) else throw new DatabaseException()”
6: end for
7: return (C,L)

Figure 5.2: An example class-specific recovery policy that maintains an invariant. This policy
recovers from NPEs in objects that can be stored in a database. The “if invariant(x) . . . ” code is
added at compile-time and executed at run-time. The other policy represents any other policy
that might be composed with this one, such as the constructor policy from Chapter 5.

related to object consistency. Context at the class level, as opposed to task blocks as described by

Rinard [38], are a lower-level version of compartmentalization. For example, the corruption of an

object could imply, based on the policy, that no operations be performed with that object, such as

passing it as a parameter to a function. This would involve a context-sensitive disabling of execution

associated with the corrupt object at runtime.
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Experimental Results

Although source code complexity need not increase with our transformation, bytecode size, running

time and utility must be considered. To address these issues, we have conducted several experiments

that demonstrate APPEND’s:

• effectiveness at preventing NPEs in sample code

• effectiveness at preventing NPEs in the Java Standard Library

• effect on running time and class file size

To provide a baseline for measurement, our experiments used our default policies: if the

constructor policy from Section 4.2 is applicable (i.e., if the dereferenced object has a default

constructor), we apply it. Otherwise, if the skip policy from Chapter 5 is applicable (i.e., if the

statement under consideration is not a return), we apply it. Otherwise we do nothing. In our

experiments default constructors were unavailable 65% of the time, and thus this policy did involve

making compile-time decisions about which transformation to apply.

6.1 Example Transformation

Before illustrating how APPEND can be applied to error prevention and recovery situations, we will

walk through an example program transformation to show where null-checks are inserted.

25
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The following code is taken from AbstractDocumentOutputHandler.java of SKARINGA

version r3p7, a Java-XML binding API. The class contains three functions, one which appends the

namespace declarations from some XML schema and instance to the attributes of an element, and

two others that set and get properties contained in a private HashMap object. This code already

contains a null check on line 31 for Attributes attrs; we will show how APPEND does not

interfere with this functionality. On the other hand, the String name on line 44 could potentially

be null, as it is a parameter to the appendNamespaceDeclarations function, and is not checked

before being dereferenced.

Original Application Code
1 package com.skaringa.javaxml.handler;
2
3 import java.util.HashMap;
4 import java.util.Map;
5
6 import org.xml.sax.Attributes;
7
8 import com.skaringa.javaxml.impl.NSConstants;
9
10 /**
11 * An abstract base helper class for DocumentOutputHandlers.
12 */
13 public abstract class AbstractDocumentOutputHandler
14 implements DocumentOutputHandlerInterface {
15
16 private Map _propertyMap = new HashMap();
17
18 /**
19 * Append the namespace declarations form XML schema and instance
20 * to the attributes of an element.
21 * @param name The name of the element.
22 * @param attrs The attributes.
23 * @return The attributes extended with the namespace declarations.
24 */
25 protected final Attributes appendNamespaceDeclarations(
26 String name,
27 Attributes attrs) {
28
29 AttrImpl attrImpl;
30 if (attrs == null || attrs.getLength() == 0) {
31 attrImpl = new AttrImpl();
32 }
33 else {
34 attrImpl = new AttrImpl(attrs);
35 }
36
37 // decls for both schemas and instances
38 attrImpl.addAttribute(
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39 "",
40 "",
41 "xmlns:" + NSConstants.SCHEMA_NS_PREFIX,
42 "CDATA",
43 NSConstants.SCHEMA_NS_NAME);
44 if (!name.equals("xsd:schema")) {
45 // decls for instance only
46 attrImpl.addAttribute(
47 "",
48 "",
49 "xmlns:" + NSConstants.SCHEMA_INSTANCE_NS_PREFIX,
50 "CDATA",
51 NSConstants.SCHEMA_INSTANCE_NS_NAME);
52 }
53
54 return attrImpl;
55 }
56
57 /**
58 * Set the properties of this DocumentOutputHandler.
59 * @param propertyMap The properties.
60 */
61 public final void setProperties(Map propertyMap) {
62 _propertyMap = propertyMap;
63 }
64
65 /**
66 * Get the properties of this DocumentOutputHandler.
67 * @return The properties.
68 */
69 public final Map getProperties() {
70 return _propertyMap;
71 }
72 }

The following shows the raw disassembled bytecode code after the program has been trans-

formed by APPEND. The programmer-implemented null checking on line 30 of the original code

has remained unaffected in the APPEND version, and appears on line 22. The new null checking

functionality for the name variable from line 44 takes place on lines 34–37; first name, which cor-

responds to r1, is checked for null, and if this check fails, APPEND calls the default constructor for

the String class. After line 35, the name variable (r1) is guaranteed not to be null for the rest of

the program (unless it is re-assigned), and can be safely dereferenced.

Transformed Code
1 package com.skaringa.javaxml.handler;
2
3 import java.util.HashMap;
4 import org.xml.sax.Attributes;
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5 import java.util.Map;
6
7 public abstract class AbstractDocumentOutputHandler implements
8 com.skaringa.javaxml.handler.DocumentOutputHandlerInterface
9 {
10 private Map _propertyMap;
11
12 public AbstractDocumentOutputHandler()
13 {
14 _propertyMap = new HashMap();
15 }
16
17 protected final Attributes appendNamespaceDeclarations(String

r1, Attributes r2)
18 {
19 AttrImpl r3=null;
20 label_0:
21 {
22 if (r2 != null && r2.getLength() != 0)
23 {
24 r3 = new AttrImpl(r2);
25 break label_0;
26 }
27
28 r3 = new AttrImpl();
29 } //end label_0:
30
31
32 r3.addAttribute("", "", "xmlns:xsd", "CDATA",
33 "http://www.w3.org/2001/XMLSchema");
34 if (r1 == null)
35 {
36 r1 = new String();
37 }
38 if ( ! (r1.equals("xsd:schema")))
39 {
40 r3.addAttribute("", "", "xmlns:xsi", "CDATA", "
41 http://www.w3.org/2001/XMLSchema-instance");
42 }
43 return r3;
44 }
45
46 public final void setProperties(Map r1)
47 {
48 _propertyMap = r1;
49 }
50
51 public final Map getProperties()
52 {
53 return _propertyMap;
54 }
55 }

As a final note, the raw disassembled bytecode shown above is not meant to be read by devel-
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opers. We reveal the transformed code as source code only to demonstrate the changes APPEND is

making.

6.2 Examples from Application Programs

In this section we show how APPEND can be applied to real-world examples of NPEs. We obtained

NPE examples from bug repositories and program support forums. After locating a NPE example

and verifying that it could be reliably reproduced, we applied our transformation. We then executed

the resulting files, making sure that the NPE was no longer raised.

Returning to the JTIDY example described in Chapter 3, the output of the original program

raised an NPE on line 36 due to the following initialization of the table variable:

35 Node table = doc.selectNode("/html/body");

36 System.err.println("table:" + table.asXML());

After passing the test file through APPEND, we obtained this output from line 36:

table : null

Even though the selectNode function at line 35 returns a null, APPEND is able to prevent the

NPE while still allowing the println statement to execute.

The previous example showed how APPEND can prevent NPEs arising from unexpected or

unknown behavior of function calls. NPEs are common in practice, and we had no trouble locating

a second defect report [29] for JTIDY related to this code:

18 ObjectInputStream in = new ObjectInputStream(

19 new FileInputStream("doc.ser"));

20 Document newDoc = (Document)in.readObject();

21

22 newDoc.getRootElement().addElement("TEST");

Here, an NPE on line 22 is caused by behavior in other parts of the program; newDoc is not

properly initialized, and an element cannot be added to it as above. After running the code sample
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through APPEND, the NPE is no longer raised and the result is sensical. Again, APPEND is able to

handle the fault and allow execution to continue.

6.3 Java Standard Library Examples

APPEND can also help prevent NPEs in library files. An incremental benefit can be gained by trans-

forming standard libraries or untrusted third-party components, even if an organization is unwilling

to transform its primary codebase. This is important because often only bytecode is available for

third-party components, making it difficult to be sure what kind of guarantees can be made about

the external software. Rather than cluttering the in-house source code with checking functionality,

APPEND allows the external library itself to be transformed, even without source code.

We demonstrate this approach on a defect in the Java Standard Library, version 1.1.6 (Sun

Developer Network bug ID 4191214). The defect itself lies in the library’s URL class. The bug

report included sample code to elicit the NPE by accessing a Vector v1 of five URLs:

1 System.out.println(v1.indexOf( new

2 URL("file",null,"C:\\jdk1.1.6\\src\\test"

3 + i + ".txt")));

The uncaught exception in this example originated from the hostEqual method of the URL

class in the library, which was called form the equals method of URL, which was itself called by

the indexOf method of the Vector library class. After transforming the library with our technique,

the hostEqual function no longer raises an uncaught exception, and the overall output is a correct

printout of the indices of the URLs in the Vector. Interestingly, the fix suggested by the defect

reporter involves checking that the values passed in to hostEquals are not null before they are

dereferenced, which is exactly what APPEND implements.

These three examples in Section 6.2 and Section 6.3 show that APPEND is able to prevent real-

world NPEs at both the application and library levels, even with a simple recovery policy of calling

default constructors, or skipping statements when no default constructor is called. Experiments in

the next section show that converting all classes and libraries used incurs little overhead. Ideally,
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APPEND would be applied to the entire source package and all libraries, but as demonstrated, an

incremental benefit can be observed by transforming even a single file.

We conjecture that using APPEND could improve development efficiency by decreasing source

code complexity; instead of having the user patch their source code with manual null checks, they

could encapsulate recovery policies into a separate file and rely on APPEND to modify the bytecode

directly. In our experimental benchmark applications, only 5% of the null checks required by our

tool were already present in the source code. We obtained this number by counting the number of

null checks originally in the code, and comparing it to the total number of null checks after the code

was instrumented with APPEND. This result is in line with Figure 2.1, implying that around 90%

of potential null checking is not taking place.

To gain an idea of the number of extraneous null checks we produce, we randomly sampled

transformed files and looked for false positive null checks. A false positive null check occurs

when a human could easily verify that the value would never be null. For our three benchmark

applications (described in Chapter 6), we found that in the two larger applications, none of our

APPEND inserted null checks were obviously useless, while for the smallest application about 20%

of our checks could be considered false positives. The cost of false positive null checks is increased

bytecode size and increased runtime overhead. We will show in the next section that our overhead

is quite low; we thus conclude that our false positive rate is acceptable.

6.4 Performance and Overhead

Because APPEND inserts code into class files for null checking and recovery, to be usable it must

have only a minor impact on code size and execution time. Using two separate benchmark suites we

compared the running time and bytecode size of unmodified programs as well as programs subject

to our transformation. We measured the performance of both of our usage models: transforming

the library, and transforming the application.

To measure the impact of transforming the library, we converted classes in Java’s lang, net,

io and util packages with our prototype tool. We then ran the benchmark programs against the
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Figure 6.1: Runtime overhead on DaCapo, SpecJVM and application benchmarks. Each column is
separately normalized so that 1.0 is the unmodified execution time. Higher values indicate slow-
downs. The nine light columns on the left shown times for unmodified DaCapo and SpecJVM
benchmarks run against a transformed standard library. The three dark columns on the right are
transformed applications run against a transformed library. The error bars represent standard devi-
ations from twenty trials.

unmodified library and against our transformed library. We used the April 30, 2007 build of Apache

Harmony JRE, an independent implementation of the Java SE 5 JDK [2].

We used benchmark programs from the DaCapo [7] project, a benchmark suite intended for Java

that uses open source, real-world applications with non-trivial memory loads, as well as programs

from SPEC JVM98. Figure 6.1 summarizes the results, reporting the average of twenty trials (the

eight lighter bars on the left). Each program is separately normalized so that 1.0 is the runtime

with the unmodified library; higher numbers indicate slowdowns. In these experiments the average

slowdown was less than 1%.

We also measured the overhead of our technique when both the program and the library are

transformed. We selected three popular open source applications: JAVASCRIPTZIP version 1.0.3, a

web application optimizer; HTMLPARSER version 1.1, an HTML front-end; and SKARINGA ver-

sion r3p7, a Java-XML binding API. All three were run out-of-the-box using the standard library,

and those running times were compared to versions where both the applications and the library had
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Benchmark Null Checks Increase
Program Normal With APPEND

JAVASCRIPTZIP 9 9932 1100x
HTMLPARSER 170499 623361 3.66x

SKARINGA 371 1732 4.66x

Figure 6.2: Increase in the number of null checks in the final code by three benchmarks on their
indicative workloads. The null check columns give counts obtained by instrumenting both the
original program and the APPEND-modified program at the bytecode level to record null checks
before they are made.

been converted by APPEND. Figure 6.1 shows the average execution time for twenty trials of each

benchmark in rightmost dark gray bars, with an average slowdown for the three applications-plus-

libraries of less than 1%.

Though the average slowdown for our benchmarks was less than 1%, the number of null checks

inserted by APPEND and applied at runtime proved to be a substantial increase over the base amount

of checking performed by the unmodified programs. Figure 6.2 summarizes the number of null

checks that were inserted for three benchmarks at runtime. For the two larger benchmarks, there

was an average increase of three times the base amount in the number of null checks the code after

being transformed with APPEND, which did not contribute significantly to the runtime slowdown.

JAVASCRIPTZIP, the benchmark that showed the greatest runtime slowdown, performed over a

thousand times more null-checks when transformed with APPEND.

To ensure that the inserted null checks were actually being executed at run-time, we further

instrumented the programs to count the number of times our null checks were executed, versus the

number of times user-provided null checks were executed. Figure 6.3 shows the number of times

a null check was called by the program for both APPEND-inserted and user-inserted guards. In

each case the APPEND-transformed program executed at least five times as many null checks as the

original.

Despite the static and dynamic increase in null checks, the average runtime overhead for

APPEND-transformed code was only 1.3%. From these three experiments we can conclude both

that our transformation is actually affecting the program, in that many additional null-checks are
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Benchmark Executed Null Checks Normal as
Program Normal With APPEND % of Total

JAVASCRIPTZIP 0 19848 0%
HTMLPARSER 190384 1146002 14%

SKARINGA 296 1360 18%

Figure 6.3: Increase in the number of null checks executed at run-time by three benchmarks on their
indicative workloads. The null check columns give dynamic counts obtained by instrumenting both
the original program and the APPEND-modified program at the bytecode level to record null checks
executed during runtime.

Figure 6.4: Bytecode size changes for transformed programs and libraries. Each column is sep-
arately normalized so that the unmodified bytecode size is 1.0. Larger values indicate code size
increases. The “Java Standard Library” column indicates the java, util, lang and io components
of the Harmony Java 1.5 standard library.

performed, and also that the run-time cost of this checking is minimal.

On the other hand, class files subject to our transformation grew moderately. Figure 6.4 sum-

marizes the changes in bytecode size with each entry separately normalized to 1.0. The three pro-

grams and the standard library comprised 582 class files totaling 1663k before the transformation

and 2036k worth of class files after, for a total increase of 22%.
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Related Work

Our approach falls somewhere between error detection and fault recovery. In this chapter we con-

trast it to similar efforts to improve software quality.

Static analyses to find program defects have been the focus of much recent research [6, 10, 13,

16, 22, 30]. Tools such as FINDBUGS are able to detect possible null pointer dereferences, as well

as other defects, typically at the cost of false positives and false negatives. FINDBUGS matches

user code against a variety of patterns for potential bugs [24]. Creating a syntactic pattern for

generic null pointer dereference remains a challenge, and is not the focus of such work. Even with

specific tuning of the static analysis in FINDBUGS’ null pointer checking component [25], false

positive rates for null pointer analyses are often high for the reasons discussed in Chapter 1. Our

transformation approach avoids false alarms at the cost of program overhead; instead of attempting

to decide which pointer dereferences are likely to be errors, we treat all dereferences as potential

NPE sites, and always insert recovery code unless we know the dereference will definitely not be

null. The programmer is relieved of manually inspecting the code or defect warnings. Modulo the

assumptions in Chapter 4, our technique does not suffer from false negatives because each potential

null pointer dereference is guarded by a check. Our transformation is orthogonal to tools such as

FINDBUGS; instead of attempting to flag the logic errors in the code, we implement a safeguard

for all potential errors of one specific type. Our approach can instrument the program with logging

code to reveal where bugs have occurred after-the-fact, without allowing the NPE to ever manifest.

Checkpointing and transactions are common approaches to dealing with run-time errors. Borg
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et al. [8] describe a checkpointing system that allows unmodified programs to survive hardware

failures. Essentially, every system call is intercepted and logged. Others [34,42,43] provide similar

services. Lowell et al. [34] describe a checkpointing service for recovery from failure for general

applications with low overhead, on the order of less than 0.6% application slowdown. In Chapter 6,

we demonstrate that our checking has a comparably low overhead, although our approach deals

only with null pointer exceptions, not with all system faults. Shapiro et al. [43] also describe

a checkpointing based system for managing persistence, called EROS. Consistency is preserved

across memory writes through explicit checking during a snapshot operation. APPEND, like EROS,

can use a runtime mechanism transparent to the user to check for null pointer dereferences, and can

be combined with a recovery policy, as described in Section 5.2, to maintain database consistency

as well. APPEND can prevent the persistence of objects containing unexpected null pointers, or

default objects created by the tool, as the policy specifies.

In addition, such checkpointing and transaction oriented techniques address an orthogonal error

handling issue. In Borg et al.’s system, a buggy process that reads a null value from a database

on initialization will continue to fail no matter how often it is recovered unless something else

changes. Lowell et al. [33] formalize this point by noting that the desire to log and replay all events

actually conflicts with the ability to recover from all errors. Checkpointing systems are very good

at preventing hardware failures and quite poor at preventing software failures; Lowell et al. suggest

that 85–95% of application bugs cause crashes that would not be prevented by a failure-transparent

systems. Our technique addresses an important subset of such application bugs.

Demsky and Rinard [14] repair defects in key data structures at run-time. Their technique works

at the level of data structures and not at the level of program instructions, and it may be viewed

as addressing the orthogonal problem of restoring complex program invariants. For example, their

technique is well-suited to repairing the links in an inconsistent doubly-linked list, while ours might

create a default list or default object for a method that was expecting one but received a null instead.

In Section 5.2 we presented an example of a recovery policy in our system that maintains data

structure consistency and prevents invalid objects from being written to a database.

Rinard also proposes to use a metalanguage to partition computation into tasks [39]. If a soft-
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ware error or hardware fault is encountered, the task is discarded and execution continues. The

system allows users to bound the distortion of the output when tasks area discarded, which may

allow users to confidently accept results of computations that have encountered failures. Our work

provides no formal bound but also requires no task-division annotations.

Rinard explores acceptability-oriented and failure-oblivious computing [38, 40]. In the former,

systems are built to satisfy key properties rather than to be completely free of errors. Our approach

can be viewed in that framework as a way of applying resilient computing at the low level of

individual instructions with automatically-generated recovery actions and no explicit specifications.

Li and Yeung classify computations that have qualitative user-level interpreted results as soft

computations, where data corruptions may change the result of such computations but user’s in-

terpretation of the results need not change [31]. Rather than being numerically oriented, such

applications have a higher-level, subjective user interpretation. They report that 62% of dynamic

instructions in their benchmarks are part of soft computations. APPEND is well-suited to tackle

situations where availability, rather than data precision, is fundamental to usability.

Vo et al. describe XEPT, an instrumentation language that can be used to help detect, mask,

recover, and propagate exceptions from library functions when source code is not available [50].

Such functionality is especially useful when using software under proprietary control when original

developers are unable to fix bugs in the code. A list of functions to be intercepted, along with C-like

code to handle exceptions, is provided by the user and then instrumented through the tool. APPEND

can also be used in situations where the source code is not available directly, and in Chapter 6

we presented experimental results for a library-protection usage model that is similar to the XEPT

approach. APPEND provides protection from faulty library object code, and can also extend this

protection to any functions without the need to specify which functions to intercept.

Exception handling and error recovery have been studied by Fu et al. [20]. Because it is dif-

ficult to generate exceptional situations on demand, their approach focuses on white box testing

error of handling code by injecting faults. They use an analysis that “allows compiler-generated

instrumentation to guide the fault injection and to record the recovery code exercised” to create a

test coverage metric. Their technique applies to checked exceptions, where it achieves high cov-
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erage. By contrast, the null pointer exceptions addressed by our approach are usually unchecked

exceptions. As mentioned earlier, null pointer exceptions have been reported as the most common

error [11] in Java programs. APPEND is able to detect and recover from such exceptions without

the need for the user to directly manipulate source code.

Inasmuch as our notion of recovery policies involves program transformations that operate on

code at compile-time according to rules and contexts, it is tempting to phrase them in terms of

aspect-oriented programming (e.g., [27]). Transformations of the form foo(x); =⇒ if (x ==

null) { x = new Bar(); } foo(x); could be reasonably phrased using around advice in pop-

ular AOP systems, although it might require separate advice for each class Bar. However, transfor-

mations such as x = a.b.c; =⇒ if (a && a.b && a.b.c) { x = a.b.c; } cannot always be

conveniently phrased in commonly-available AOP systems. In addition, composing aspect mech-

anisms and understanding the semantics when multiple pieces of advice apply to the same bit of

code is still an active area of research (e.g., [28]). Our system is much more specialized than AOP,

but we claim it is more convenient for composing context-sensitive transformations that apply after

null checks fail.

Cristian constructs a unified view of programmed and default exception handling based on

automatic backward recovery [12]. Programmed exception handling is an example of a fault avoid-

ance technique, while default exception handling falls under the category of fault tolerance. Both

programmed and default exception handling can be designed to solve the same problems of mask-

ing, recovery, and signaling [12]. Recovery blocks [4] are one example of default exception han-

dling [12], and are a way of organizing programs to include tests for potential errors and recovery

actions if those errors are detected. The error detection takes the form of an acceptability check that

is explicitly inserted into the code. As long as the acceptability check fails, correct state is restored

and alternative code is tried. Recovery blocks are quite expressive, and many error-handling tech-

niques can be phrased in terms of them. The code transformation portion of our approach could

be simulated using recovery blocks by inlining the entire policy in to the program at each potential

null-pointer dereference. Instead, we evaluate the policy at compile-time with respect to the context

of the error and use the result to transform the code. This allows users to gain the advantages of
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composable and reusable policies without paying time and space overhead for inapplicable recovery

policies at run-time. Follow-up work (e.g., [46]) applies recovery blocks to algorithm-based fault

tolerance, providing additional examples of efficient ways of detecting and responding to errors

with the recovery block scheme.



Chapter 8

Conclusions

We aim to create a world where exceptions are not raised: instead, operations become total functions

where both valid and invalid inputs are mapped to specific and tailored actions. As a first step, we

presented APPEND, a technique for handling null pointer exceptions in Java programs. Checking

for null pointers by hand is tedious and error-prone. We analyze programs to locate possible null

pointer dereferences and then insert null checks and error-handling code. The handling code is

determined by composable recovery policies that are queried at compile-time and transform the

program to add context-sensitive error handling. Such prevention and handling of null pointer

exceptions is a first step towards changing Java’s semantics with respect to exceptional behavior.

In our experiments we were able to take externally reported null pointer exceptions and trans-

form programs, showing that our technique can do useful work at preventing and recovering from

null pointer exceptions. We also measured the overhead our transformation induces when applied

to programs and to standard libraries. Our approach supports incremental adoption, allowing files

and components to be transformed as desired, both at the bytecode level (e.g., for each of develop-

ment and code readability) and at the source code level (e.g., for debugging). Although many more

null checks were executed at run-time in programs subjected to our transformation, the average

execution time slowdown was less than 1% and the average class file size increase was 22%. We

believe that this technique can improve availability by allowing the program to continue to execute,

especially in scenarios where finding and fixing an entire class of bugs manually is not practical.
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