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We want to improve productivity and 
reduce cost in software development 
and maintenance. 
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The Human Aspect Matters 
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Metric Poorest Best Ratio 
Debugging Hours Algebra 170 6 28:1 

Debugging Hours Maze 26 1 26:1 

CPU Seconds Algebra 3075 370 8:1 

CPU Seconds Maze 541 50 11:1 

Code Writing Hours Algebra 111 7 16:1 

Code Writing Hours Maze 50 2 25:1 

Program Size Algebra 6137 1050 6:1 

Program Size Maze 3287 651 5:1 

Run Time Algebra 7.9 1.6 5:1 

Run Time Maze 8.0 0.6 13:1 

H. Sackman, W. J. Erikson and E. E. Grant. Exploratory Experimental Studies Comparing Online and Offline 
Programming Performance. Communications of the ACM, 1968. 

●  Early study of industrial developers found order-of-magnitude 
individual variations 
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●  How to measure cognitive processes? 
●  Conduct behavioral experiments 
●  “Stopwatch” and “Scoresheet” 
○  Time and accuracy 
○  What but not why 
●  Generalization, recommendation, transformation 

○  Overlook what is actually going on 
●  Miss information 

○  Limited research findings 
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Medical Imaging & Eye Tracking 

“Can we read your mind?” 
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Thesis Statement 

It is possible to meaningfully and objectively measure user cognition to 
understand the role of spatial ability, fundamental processes and 
stereotypical associations in certain software engineering activities by 
combining medical imaging and eye tracking.  



●  Many techniques: EEG, PET, fMRI, fNIRS, … 
●  Non-invasive 
●  fMRI and fNIRS 
○  Sampling the brain rapidly with high spatial resolution 
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CS: less than two dozens in SE 

 

 

14 

Challenges 



●  Many techniques: EEG, PET, fMRI, fNIRS, … 
●  Non-invasive 
●  fMRI and fNIRS 
○  Sampling the brain rapidly with high spatial resolution 
○  > 1500 publications in Psychology but relatively new to CS: less than a 

dozen in SE 
○  Streetlight effects? 

 

15 

Challenges 



●  Many techniques: EEG, PET, fMRI, fNIRS, … 
●  Non-invasive 
●  fMRI and fNIRS 
○  Sampling the brain rapidly with high spatial resolution 
○  > 1500 publications in Psychology but relatively new to CS: less than a 

dozen in SE 
○  Streetlight effects? 
●  Environment 

 

16 

Challenges 



●  Many techniques: EEG, PET, fMRI, fNIRS, … 
●  Non-invasive 
●  fMRI and fNIRS 
○  Sampling the brain rapidly with high spatial resolution 
○  > 1500 publications in Psychology but relatively new to CS: less than a 

dozen in SE 
○  Streetlight effects? 
●  Environment 
●  Contrast-based tasks 

 

 
17 

Challenges 
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●  Non-invasive 
●  fMRI and fNIRS 
○  Sampling the brain rapidly with high spatial resolution 
○  > 1500 publications in Psychology but relatively new to CS: less than a 

dozen in SE 
○  Streetlight effects? 
●  Environment 
●  Contrast-based tasks 
●  Experimental design 
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Challenges 



19 

Outline 
●  Introduction 
●  Investigating cognition in software engineering 

Understanding the neural representations of data structures 

 Comparing prose writing and code writing 

 Understanding bias in code reviews 

 ●  Career Plan 
●  Summary  



Neural Representations of Data Structures (ICSE’19) 

Is balancing AVL trees like playing arcade claw machines? 
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Hypothesis Time! 

Yes! 
Very similar! 

No! 
Very Different! 
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How do human brains represent data structures? Is it 
more like text or more like 3D objects? 
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How do human brains represent data structures? Is it 
more like text or more like 3D objects? 



Neural Representations of Data Structures (ICSE’19) 

●  Mental rotations 
●  The determination of spatial relationships between 

objects and the mental manipulation of spatially 
presented information 

●  Measured by mental rotation tasks: 3D objects 
●  Related to success in STEM 
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Spatial Ability 



Neural Representations of Data Structures (ICSE’19) 26 

About Medical Imaging 
●  fMRI and fNIRS 
●  BOLD signals 
●  Contrast design 
●  Rigorous data analysis: false positives 
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fMRI vs. fNIRS 
●  Functional Magnetic Resonance Imaging 

 
●  Functional Near-InfraRed Spectroscopy  

 

Measure brain activities by calculating the blood-oxygen level dependent (BOLD) signal 
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fMRI vs. fNIRS 
●  Functional Magnetic Resonance Imaging 

●  Magnets 
●  Strong penetration power 
●  Lying down in a magnetic tube: 

○  Cannot move 

●  Functional Near-InfraRed Spectroscopy  
●  Light  
●  Weak penetration power 
●  Wearing a specially-designed cap:  

○  More freedom of movement 
 

Measure brain activities by calculating the blood-oxygen level dependent (BOLD) signal 



Neural Representations of Data Structures (ICSE’19) 

●  Blood-Oxygen Level Dependent (BOLD) signal 
●  Blood flow and oxygen consumption as a proxy for brain activity 
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Neural Representations of Data Structures (ICSE’19) 

●  Blood-Oxygen Level Dependent (BOLD) signal 
●  Blood flow and oxygen consumption as a proxy for brain activity 
●  Activation model: hemodynamic response function (HRF) 
●  Stimulus, HRF, design matrix, noise 

●  Comprehensive quantitative model of BOLD signals 
○  General Linear Model (GLM) 
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What is BOLD signal? 



Neural Representations of Data Structures (ICSE’19) 

●  Brain activation does not work like this: 
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But it’s not so easy 
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Neural Representations of Data Structures (ICSE’19) 

●  The brain signals are noisy 
●  Signal changes are small 
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But it’s not so easy 
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Think in Terms of Contrasts! 



Neural Representations of Data Structures (ICSE’19) 

●  Controlled experimental design 
●  Task A = “balancing trees + nervous + …” 
●  Task B = “rotating 3D objects + nervous + ...” 
●  Contrast A > B: brain activations that vary between the tasks 
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Think in Terms of Contrasts! 
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Data Analysis 
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Data Analysis 

Preprocessing First-level 
Analysis 

●  Within individuals 
●  General Linear Models 

○  Robust weighted least squares (rWLS) 
○  For each experiment condition 
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Data Analysis 

Preprocessing First-level 
Analysis 

Contrast & 
Group-level 

Analysis 

●  Pairwise contrast 
○  Mean differences between conditions 
○  Group-level random effects analyses 

●  Second-level GLM 
○  Assess average activity across all subjects 
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Data Analysis 

Preprocessing First-level 
Analysis 

Contrast & 
Group-level 

Analysis 

●  Final results 
○  A statistical parametric map of t-values (t-map) 

describing clusters of significant activity for a given task-
related comparison 
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Data Analysis 
●  We need to be careful 

●  153,000 voxels or more 
●  Spurious correlations due to multiple comparison: false positives 
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Data Analysis 

●  False discovery rate (FDR) correction (q<0.05) 

Preprocessing First-level 
Analysis 

Contrast & 
Group-level 

Analysis 
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●  Two types of tasks 
●  Data structure manipulations 
●  Mental rotations: 3D objects 

●  fMRI and fNIRS: 1st time in SE 
●  Largest in SE: 76 participants 

Experimental Design 



Neural Representations of Data Structures (ICSE’19) 50 

●  70% of human participants believe there is no connection 
●  What is your answer? 

 

 

Data Structures vs. Spatial Ability 



Neural Representations of Data Structures (ICSE’19) 51 

●  Data structure manipulations use the same parts of the brain as 
rotating 3D objects in the real world (spatial ability) 
●  fMRI: more similarities than differences (p<0.01) 
●  fNIRS: activation in the same brain regions (p<0.01) 

Mental Rotation > Tree 

Data Structures vs. Spatial Ability 
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●  The brain works even harder for more difficult data structure tasks 
●  Difficulty measurement 

○  Mental rotations: angle of rotation 
○  Data structure: size 

●  fNIRS: no significant findings for the effect of task difficulty 

 

The Role of Task Difficulty 
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Summary: Data Structures vs. Spatial Ability 
●  Large human study: 76 participants 
●  fMRI vs. fNIRS 
●  Data structure manipulations and mental rotations use the 

same brain regions 
●  Task difficulty matters for data structures 
●  Medical imaging can discover more than self-reporting 
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Summary: Data Structures vs. Spatial Ability 
●  This work may inform:  

●  Pedagogy and training 
●  Technology transfer 
●  Programming expertise 
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Is writing code like writing English? 

 

Hypothesis Time! 

Yes! 
Very similar! 

No! 
Very Different! 



Comparing prose writing and code writing (ICSE’20) 

Are code writing and prose writing similar neural 
activities? Do I have to be good at English writing to 
become a good software developer? 
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Challenge: Typing in fMRI 
●  fMRI-safe bespoke keyboard 

●  QWERTY keyboard 

●  Allow typing and editing 
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Challenge: Typing in fMRI 
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●  QWERTY keyboard 

●  Allow typing and editing 
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●  Two-by-two contrast task design: 30 participants 

 

Experimental Design 

CODE PROSE 

FITB 

LR 

FITB:  
Fill in the Blank 

LR:  
Long Response 
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●  Code writing and prose writing are very distinct neural activities! 
(2.4<t<6.2) 
●  Code writing: top-down control, memory, planning, spatial ability 
●  Prose writing: language-related regions 

 
 

 

 

Summary: Prose Writing vs. Coding Writing 

Code  > Prose 
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●  Code writing and prose writing are very distinct neural activities! 
(2.4<t<6.2) 
●  Code writing: top-down control, memory, planning, spatial ability 
●  Prose writing: language-related regions 

●  Implications 
●  Training and pedagogy 
●  Broadening participation 
●  Writing proofs? 

 

 

 

Summary: Prose Writing vs. Coding Writing 

Code FITB  > Prose FITB Code LR  > Prose LR 

Code  > Prose 
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Understanding bias in code reviews (FSE’20) 
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Code Review 
●  Code review is critical for software development 

●  Systematic inspection, analysis, evaluation, and revision of code. 
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Code Review 
●  Code review is critical for software development 

●  Systematic inspection, analysis, evaluation, and revision of code. 

 

 

Code changes 

Commit message 
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Code Review 
●  Code review is critical for software development 

●  Systematic inspection, analysis, evaluation, and revision of code. 

 

 



Understanding bias in code reviews (FSE’20) 
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Do women and men review code in the same way? 
 
 

Hypothesis Time! 

Yes! 
Very similar! 

No! 
Very Different! 
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Is there bias on gender and identities in code review? 
How do we characterize the bias? 

 ● Systematically  ● Objectively  ● Rigorously  



Understanding bias in code reviews (FSE’20) 
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●  60 C/C++ pull requests from GitHub  

 

 

 

 

 

Experimental Design 

60 Pull Requests 
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●  60 C/C++ pull requests from GitHub  
●  Author images: Relabel the author information 

●  Chicago Face Database 

 

 

 

 

Experimental Design 
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20 Machine 

20 Men 

20 Women 
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Experimental Design 

Post Survey Recruitment Code 
Reviews Deception Debriefing 

●  Avoid social desirability bias 
●  37 Participants 
●  Post-survey questions 
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● We find universal biases in how all participants treat code reviews as a function of 
the reviewers’ gender and apparent author: 
●  Behavioral difference 
i.  All participants spend less time evaluating the Pull Requests of women 

(p<0.01) 
ii. All participants are less likely to accept the Pull Requests of machines 

(p<0.05) 
iii. Women reviewers spent less time on all Pull Requests (p<0.0001) 
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● We find universal biases in how all participants treat code reviews as a function of 
the reviewers’ gender and apparent author: 
●  Behavioral difference 
i.  All participants spend less time evaluating the Pull Requests of women 

(p<0.01) 
ii. All participants are less likely to accept the Pull Requests of machines 

(p<0.05) 
iii. Women reviewers spent less time on all Pull Requests (p<0.0001) 
●  Visual difference  
i.  Men and women reviewers employ different high-level problem-solving 

strategies (p<0.001) 
ii. Men fixated more frequently (p<0.001), while women spent significantly 

more time analyzing Pull Requests messages and author pictures. 
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● We find universal biases in how all participants treat code reviews as a function of 
the reviewers’ gender and apparent author: 
●  Neurological difference 
i.  It is possible to distinguish women and men conducting code review  
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● We find universal biases in how all participants treat code reviews as a function of 
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●  Neurological difference 
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Summary: Biases in Code Review 

90 

● We find universal biases in how all participants treat code reviews as a function of 
the reviewers’ gender and apparent author: 
●  Neurological difference 
i.  It is possible to distinguish women and men conducting code review  

● Participants’ self-reported perception in code review do not align with the 
objective observations. 
●  Do not realize the existence of difference on gender 
●  Bias against machines exists 

● Implications 
●  How should we design code review environment based on the differences? 
●  Should we avoid showing authors’ profiles? 
●  Is there any effective training to mitigate the biases? 
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