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What could go wrong? 
What is currently holding us back?
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● 62% have mental complaints
● 31% have mental ill-health
● <1% seeked for professional help

Leads to impairment in academic 
functioning and relationship!
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Break Down the Title
● How can we be more effective and efficient in programming? What are 

the cognitive processes of programming? What affects our decisions in 
programming?
● Traditional research solutions: Unreliable self-reporting
● Observed potential bias of non-functional factors 
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Lack a foundational understanding 
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Desired properties for this proposal
● Bring all the concerns together: 

● Objective measures
○ Not just self-reporting

● Foundational understanding of software activities
○ What are the cognitive processes of programming?

● Higher-level programming tasks
○ Data structures; code writing; code reviews

● Generalizability across different user groups
○ How is productivity mitigated by group difference
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Insights
● It is now possible to conduct studies that acquire objective data to 

understand the underlying cognitive processes of certain tasks
● Mobile crowdsensing (MCS); medical imaging; eye tracking

●  We can adapt scientific approaches and concepts from other 
domains to assist our investigation and understanding of certain 
tasks
● Social anxiety; spatial ability; creative writing

● It is now possible to study historically-subjective factors by designing 
rigorous controlled experiments
● Contrast-based experiments
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Thesis Statement

It is possible to meaningfully and objectively measure user cognition to 
understand the mental status, role of spatial ability, fundamental processes 
and stereotypical associations in certain software engineering activities by 
combining mobile crowdsensing (MCS), medical imaging, and eye tracking. 
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Understanding the neural representations of data 
structures

Comparing prose writing and code writing

Understanding bias in code reviews

Monitoring mental health using mobile crowdsensing



Monitoring Mental Health Using Mobile Crowdsensing (MCS)

● Can we monitor humans’ mental health status 
objectively via their everyday behaviors in a natural 
setting?
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Monitoring Mental Health Using Mobile Crowdsensing

● Sensus: Cross-platform, general MCS mobile application 
for human-subject studies

● A MCS-based framework: understanding the 
relationship between human behaviors and mental health 
status
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1. Target heterogeneous mobile infrastructures
2. Support a wide range of MCS-based human studies
3. Eliminate the need for programming background 
4. Rely on readily-available mobile devices and cloud 

storage
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Architecture of Sensus: High-Level Design
● High-level design of Sensus

● Cloud storage
○ Amazon AWS S3 

● Users
○ Researchers (study designers)
○ Participants

● Protocols
○ Sensing plans

● Probes
● Surveys
● Customized scheduling

○ JSON file 
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Sensus: An Example Case
● A Sensus protocol example (iOS)
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● Sensus can be used in real-world scalable 
human-subjects studies
● Release Sensus
● Conduct real-world studies using Sensus

● Sensus is easy for researchers without engineering 
background to use 
● Interview researchers who used Sensus but without engineering 

backgrounds

40Component 1: Monitoring Mental Health

      Sensus: Metrics 



Sensus: Preliminary Results
● Apple App Store
● Google Play Store: 500+
● > 200 subjects in research studies

41

*Sensus development website:  https://predictive-technology-laboratory.github.io/sensus/index.html
*For more design details, please refer to our paper:  Haoyi Xiong, Yu Huang, Laura E Barnes, and Matthew S Gerber. 
Sensus: a Cross-Platform, General-Purpose System for Mobile Crowdsensing in Human-Subject Studies. In Proceedings 
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp '16, pages 415–426.
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Sensus: Preliminary Results
● Apple App Store
● Google Play Store: 500+
● > 200 subjects in research studies
● Feedback from the Psychologists (2 studies)

● Easy to use, experience is intuitive
● Does not require extra engineering knowledge as long as you know how 

to use a smartphone
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Sensus: Preliminary Results
● Apple App Store
● Google Play Store: 500+
● > 200 subjects in research studies
● Feedback from the Psychologists (2 studies)

● Easy to use, intuitive experience
● Does not require extra engineering knowledge as long as you know how 

to use a smartphone
● Able to get the data they want and obtain meaningful results
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Sensus: Preliminary Results
● Apple App Store
● Google Play Store: 500+
● > 200 subjects in research studies
● Feedback from the Psychologists (2 studies)

● Easy to use, intuitive experience
● Does not require extra engineering knowledge as long as you know how 

to use a smartphone
● Able to get the data they want and obtain meaningful results
● A desktop or web-based protocol design tool would be useful
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*Sensus development website:  https://predictive-technology-laboratory.github.io/sensus/index.html
*For more design details, please refer to our paper:  Haoyi Xiong, Yu Huang, Laura E Barnes, and Matthew S Gerber. 
Sensus: a Cross-Platform, General-Purpose System for Mobile Crowdsensing in Human-Subject Studies. In Proceedings 
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Monitoring Mental Health Using Mobile Crowdsensing

● Recall: Can we monitor humans’ mental health status 
objectively via their everyday behaviors in a natural 
setting?
● We already have an MCS mobile application: Sensus
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Monitoring Mental Health Using Mobile Crowdsensing

● Sensus: Cross-platform, general MCS mobile application 
for human-subjects studies

● A MCS-based framework: understanding the 
relationship between human behaviors and mental health 
status
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Fine-grained human behaviors 
vs. Mental health status
● Objective measures from Sensus

○ GPS: mobility patterns with 
semantics

○ Accelerometer (3-axis): 
micro-level motions

○ Smartphone metadata: call and 
text logs 

48Component 1: Monitoring Mental Health



A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Fine-grained human behaviors 
vs. Mental health status
● Objective measures from Sensus

○ GPS: mobility patterns with 
semantics

○ Accelerometer (3-axis): 
micro-level motions

○ Smartphone metadata: call and 
text logs 

● Social anxiety levels: SIAS score (0-80)
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Semantics of locations
● (42.2930177, -83.718566) => School
● Point of Interest (POI) information obtained from Foursquare
● Clustering spatially and temporally
● Categories of location semantics

50

(42.2930177, -83.718566)

{
Education.
Bob and Betty Beyster Building. 
Department of Computer Science 
and Engineering.
University of Michigan.

                                                             }
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Semantics of locations
● Micro-level behaviors (behavioral dynamics)

● Linear dynamic system (LDS)

51

Control System

Observer systemMotion stimuli 
caused by social 

anxiety
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Semantics of locations
● Micro-level behaviors (behavioral dynamics)

● Linear dynamic system (LDS)
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Smartphone Accelerometer Data 

System State

Motion Stimuli
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Smartphone Accelerometer Data

System State

Motion Stimuli
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Semantics of locations
● Micro-level behaviors (behavioral dynamics)

● Linear dynamic system (LDS)
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Smartphone Accelerometer Data

System State

Motion Stimuli
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Semantics of locations
● Micro-level behaviors (behavioral dynamics)

● Linear dynamic system (LDS)
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Smartphone Accelerometer Data

System State

Motion Stimuli Dimension 
Reduction

Y(3xT)             U(1xT)
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● The architecture of the MCS-based framework
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A MCS-based Framework: Understanding Behaviors and Mental Health Status

● Feature extraction
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A MCS-based Framework: Metrics

● In real-world human-subjects studies, we can objectively 
measure humans’ behaviors in a natural setting

● From the objectively collected data, we can extract 
meaningful features

● We can find features that have a significant correlation 
with mental health status (p<0.05)
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A MCS-based Framework: Preliminary Results

● Human study of 52 participants
● Sensus
● Duration:  14 days
● SIAS: mean = 35.02, std = 12.10

● Correlations between behavioral dynamics and social anxiety levels under 
different social contexts
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● Correlations between behavioral dynamics and social anxiety levels under 
different social contexts

65

*Refer to the paper for more details: Jiaqi Gong, Yu Huang, Philip I Chow, Karl Fua, Matthew Gerber, Bethany 
Teachman, Laura Barnes. Understanding Behavioral Dynamics of Social Anxiety Among College Students Through 
Smartphone Sensors.Information Fusion, 49:57–68, September 2019. 
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https://www.sciencedirect.com/science/article/pii/S1566253517307352
https://www.sciencedirect.com/science/article/pii/S1566253517307352


Monitoring Mental Health Using Mobile Crowdsensing

● Recall: Can we monitor humans’ mental health status 
objectively via their everyday behaviors in a natural 
setting?

                    Yes, we can.
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Proposal Overview: Four Components

Monitoring mental health using mobile crowdsensing

67Proposal Outline

Understanding the neural representations of data 
structures

Comparing prose writing and code writing

Understanding bias in code reviews



Understanding the Neural Representations of Data Structure Manipulations

● How do human brains represent data structures? Is it 
more like text or more like 3D objects?
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Understanding the Neural Representations of Data Structure Manipulations

● Spatial ability: Mental rotations
● The determination of spatial relationships between 

objects and the mental manipulation of spatially 
presented information

● Measured by mental rotation tasks: 3D objects
● Related to success in STEM
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Understanding the Neural Representations of Data Structure Manipulations

71

● fMRI vs. fNIRS
● Measure brain activities by calculating the 

blood-oxygen level dependent (BOLD) signal

● Functional Magnetic Resonance Imaging
● Magnets
● Strong penetration power
● Lying down in a magnetic tube: cannot move

● Functional Near-InfraRed Spectroscopy 
● Light 
● Weak penetration power
● Wearing a specially-designed cap: more freedom 

of movement

Component 2: Neural Representations of Data Structures



Understanding the Neural Representations of Data Structure Manipulations
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● Experimental design: 2 tasks
● Data structure manipulations

○ List/Array operations
○ Tree operations

● Mental rotations: 3D objects
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● Experimental design: 2 tasks
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○ List/Array operations
○ Tree operations

● Mental rotations: 3D objects
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Understanding the Neural Representations of Data Structure Manipulations
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● Data analysis: we need to be careful
● Spurious correlations due to multiple comparison
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Understanding the Neural Representations of Data Structure Manipulations
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● Data analysis: we need to be careful
● fMRI and fNIRS use the same high-level 3-step analysis 

approach
● False discovery rate correction for multiple comparisons (FDR)
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Understanding the Neural Representations of Data Structure Manipulations
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● Data analysis: we need to be careful
● fMRI and fNIRS use the same high-level 3-step analysis 

approach
● False discovery rate correction for multiple comparisons (FDR)

Component 2: Neural Representations of Data Structures

Preprocessing



Understanding the Neural Representations of Data Structure Manipulations
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● Data analysis: we need to be careful
● fMRI and fNIRS use the same high-level 3-step analysis 

approach
● False discovery rate correction for multiple comparisons (FDR)
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Understanding the Neural Representations of Data Structure Manipulations

78

● Data analysis: we need to be careful
● fMRI and fNIRS use the same high-level 3-step analysis 

approach
● False discovery rate correction for multiple comparisons (FDR)

Component 2: Neural Representations of Data Structures

Preprocessing First-level 
Analysis

Contrast & 
Group-level 

analysis



Neural Representations of Data Structures: Metrics
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● Following the best practices in medical imaging, we can 
find significant relationship between data structure 
manipulations and spatial ability (p<0.01).

● We can find significant relationships regarding the 
difficulty levels of tasks.
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80

● Experiment setup and data
● 76 participants: 70 valid

○ fMRI: 30
○ fNIRS: 40
○ Two hours for each participant: 90 stimuli, qualitative post-survey

De-identified data is public: https://web.eecs.umich.edu/weimerw/fmri.html

Component 2: Neural Representations of Data Structures

Neural Representations of Data Structures: Preliminary Results

https://web.eecs.umich.edu/weimerw/fmri.html


Neural Representations of Data Structures: Preliminary Results

81

● Data structure manipulations involve spatial ability
● fMRI: more similarities than differences (p<0.01)
● fNIRS: activation in the same brain regions (p<0.01)

Mental Rotation vs. Tree

Component 2: Neural Representations of Data Structures



Neural Representations of Data Structures: Preliminary Results
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● The brain works even harder for more difficult data structure tasks
● Difficulty measurement

○ Mental rotations: angle of rotation
○ Data structure: size

Component 2: Neural Representations of Data Structures



Neural Representations of Data Structures: Preliminary Results

83Component 2: Neural Representations of Data Structures

● The brain works even harder for more difficult data 
structure tasks
● Difficulty measurement

○ Mental rotations: angle of rotation
○ Data structure: size

● fMRI: the rate of extra work in your brain is higher for data structure 
tasks than it is for mental rotation tasks

● fNIRS: no significant findings for the effect of task difficulty  



Neural Representations of Data Structures: Preliminary Results

84

● How Do Self-reporting and Neuroimaging Compare?
● Self-reporting may not be reliable
● Medical imaging found mental rotation and data structure tasks are very 

similar
● 70% of human participants believe there is no connection!
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Understanding the Neural Representations of Data Structure Manipulations

● Recall: How do human brains represent data 
structures? Is it more like text or more like 3D objects?
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Data structure manipulations and mental 
rotations (spatial ability) involve very similar 
brain regions.
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Understanding the neural representations of data 
structures

Comparing prose writing and code writing

Understanding bias in code reviews



Comparing Code Writing and Prose Writing
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● Are code writing and prose writing similar neural 
activities? Do I have to be good at English writing to 
become a good software developer?



Comparing Code Writing and Prose Writing

88

● fMRI: penetration power
● Challenges

●  fMRI-safe bespoke keyboard
○ QWERTY keyboard
○ Allow typing and editing

● Design writing stimuli
○ Prose writing
○ Code writing

Component 3: Comparing Code Writing and Prose Writing
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Comparing Code Writing and Prose Writing
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● Challenge: Stimuli design
● Two categories of tasks for code writing and prose writing
● Fill in the blank (FITB)

Component 3: Comparing Code Writing and Prose Writing
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Comparing Code Writing and Prose Writing
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● Challenge: Stimuli design
● Two categories of tasks for code writing and prose writing
● Fill in the blank (FITB)
● Long response (LR)

Component 3: Comparing Code Writing and Prose Writing

Prose - LR Code - LR



Comparing Code Writing and Prose Writing

92

● Experimental design: 2 categories of tasks for code writing and prose 
writing

● Code writing tasks: Turing’s Craft
● Prose writing tasks: SAT

Component 3: Comparing Code Writing and Prose Writing

https://www.turingscraft.com/


Code Writing vs. Prose Writing: Metrics
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● We can have a bespoke QWERTY keyboard that can 
safely work in fMRI machine

● We can find significant relationship between code writing 
and prose writing (p<0.01)
● General relationship
● Relationship between different types of tasks (i.e., FITB and LR)

Component 3: Comparing Code Writing and Prose Writing



Code Writing vs. Prose Writing: Preliminary Results

94

● IRB approved
● Bespoke keyboard

● Finished deployment and passed safety tests
● Data collection is done

● 30 participants
○ Two hours for each participant: 52 stimuli
○ For both code writing and prose writing:

● FITB: 17
● LR: 9

Component 3: Comparing Code Writing and Prose Writing



Proposal Overview: Four Components

Monitoring mental health using mobile crowdsensing
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Understanding the neural representations of data 
structures

Comparing prose writing and code writing

Understanding bias in code reviews



Understanding Bias in Code Reviews
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● Code reviews
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● Code reviews
● The systematic inspection, analysis, 

evaluation, and revision of code.
● The latent defect discovery rate of formal 

code review can be 60%-65%.

● Bias in code reviews
● Code source

○ Gender
○ Automated software repair tools



Understanding Bias in Code Reviews

100Component 4: Bias in Code Reviews

● How does author information affect software 
developers’ decision making in code reviews? 

● Do software developers have gender bias in code 
reviews?

● Do software developers have bias against 
machine-generated code patches?



Understanding Bias in Code Reviews

101

● Neural activities in code reviews: fMRI
● Visual focus in code reviews: eye tracking

● Fixations and saccades
● Attention over different Area of Interests (AOI)

○ Comment 
○ Code changes
○ Author information 

Component 4: Bias in Code Reviews



Understanding Bias in Code Reviews

102

● Stimuli design
● Pull requests from real world open source C and C++ projects (e.g., 

GitHub)
● Relabel the author information 

○ Pictures from Chicago Face Database
● Controlling age, race, attractiveness and facial expressions

○ Avatar picture to represent automated software repair tools

Component 4: Bias in Code Reviews



Understanding Bias in Code Reviews
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● Stimuli design
● Pull requests from real world open source projects (C and C++) (e.g., 

GitHub)
● Relabel the author information 

○ Pictures from Chicago Face Database
● Controlling age, race, attractiveness and facial expressions

○ Avatar picture to represent automated software repair tools
● We will not tell the participants about the relabeling and the purpose of 

investigating the author bias in code reviews.
○ Avoid social desirability bias

Component 4: Bias in Code Reviews



Understanding Bias in Code Reviews
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● Stimuli design
● Simulating a real-world code review interface

Component 4: Bias in Code Reviews

Commit message



Understanding Bias in Code Reviews
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● Stimuli design
● Simulating a real-world code review interface

Component 4: Bias in Code Reviews

Code changes



Understanding Bias in Code Reviews
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● Stimuli design
● Simulating a real-world code review interface

Component 4: Bias in Code Reviews

Author image



Bias in Code Reviews: Metrics
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● We are able to involve author deception in the stimuli design (IRB 
permission)

● We are able to recruit approximately gender-balanced group of participants  
● We are able to obtain significant relationship between the brain activities of 

code reviews with different author information (p<0.01)
● We are able to observe significant similarities or differences of the visual 

focus and strategies for code reviews with different author information 
(p<0.01)

Component 4: Bias in Code Reviews



Bias in Code Reviews: Preliminary Results
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● Stimuli design is done
● Two sets of stimuli: 60 stimuli each

○ Randomly assign author pictures into three groups
● 20 men 
● 20 women
● 20 machine

○ Relabel each set with different code-author combinations
● Control code quality

● IRB approved
● The fMRI lab has a built-in eye tracker
● fMRI lab pilot grant to support this study

Component 4: Bias in Code Reviews
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●



Publications: Supporting this Proposal
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1. Distilling Neural Representations of Data Structure Manipulation using fMRI and fNIRS.  Yu Huang, Xinyu Liu, Ryan Krueger, Tyler 
Santander, Xiaosu Hu, Kevin Leach, Westley Weimer. 41st ACM/IEEE International Conference on Software Engineering (ICSE 2019). 
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Symptoms. Philip Chow, Wesley Bonelli, Yu Huang, Karl Fua, Bethany A Teachman, and Laura E Barnes. In Proceedings of the 2016 
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Proceedings of the 2017 ACM International Symposium on Wearable Computers, UbiComp '17, pages 749–753. 
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ICs. Yu Huang, Aatmesh Shrivastava, Laura E Barnes, and Benton H Calhoun. Journal of Low Power Electronics and Applications, 
6(3):11, 2016.

13. M-SEQ: Early Detection of Anxiety and Depression via Temporal Orders of Diagnoses in Electronic Health Data. Jinghe Zhang, 
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15. Optimizing Energy Efficient Low Swing Interconnect for Sub-Threshold FPGAs. He Qi, Oluseyi Ayorinde, Yu Huang, and Benton            
Calhoun. In Field Programmable Logic and Applications (FPL), 2015 25th International Conference on, pages 1–4. IEEE, 2015.

16.  Using Island-Style Bi-directional Intra-CLB Routing in Low-Power FPGAs. Oluseyi Ayorinde, He Qi, Yu Huang, and Benton H 
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Broader Impact
● All the medical imaging and behavioral data will be de-identified and 

released publicly
● Sensus has been released and can be used in a wide range of human- 

subject studies
● Our research findings can help psychologists monitor mental health status 

and help computer science educators develop efficient training strategies
● Our studies provide guidelines for future study design and implementation in 

the community

113



Proposal Summary: Four Components
● Monitoring mental health using mobile crowdsensing

● Sensus: Cross-platform, general MCS mobile application for 
human-subject studies

● Understanding human behaviors and mental health status via MCS
● Understanding the neural representation of data structures
● Comparing prose writing and code writing
● Understanding bias in code reviews
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