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“Understanding understanding”
Cognition: Mental processes involved in comprehension and 
gaining knowledge
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Cognition and Pedagogy
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“Computational Logic”

Computers do not think like humans do!

Future industry professionals and academics 
need to be trained for computational logic 
reasoning 

Logical reasoning in CS forms a core 
component of undergraduate CS curricula

Introductory CS courses structured around 
cultivating creative thinking and problem 
solving using logical reasoning
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Defining “Logic”
Digital logic

(e.g., hardware designs)
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Defining “Logic”
Digital logic

(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)
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Defining “Logic”
Digital logic

(e.g., hardware designs)

Mathematical logic
(e.g., proofs about algorithms)

Programming logic
(e.g., manipulating data structures)
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Desired Properties of a Solution
(1) Non-intrusive Methodology

instead of 
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Desired Properties of a Solution
(2) Objective Measures
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instead of 



Desired Properties of a Solution
(3) Context-specific Models

vs. vs.
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Desired Properties of a Solution
(4) Incoming Preparation or Expertise
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?



Insights
We can implement objective, non-intrusive measures in a CS context to 
obtain correlations.

We can use medical devices in a CS context to investigate causality.

We can employ advanced statistical rigor in CS to account for student 
background and context.
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Insights: Explained
We can implement objective, non-intrusive measures in a CS context to 
obtain correlations.
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Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS 
context to obtain correlations.
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Insights: Explained
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context to obtain correlations.

We can use medical devices in a CS context to investigate causality.
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Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS 
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and 
transcranial magnetic stimulation (TMS) in a CS context to investigate 
causality.

16



Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS 
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and 
transcranial magnetic stimulation (TMS) in a CS context to investigate 
causality.
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Insights: Explained
We can implement novel debugging algorithms and eye-tracking in a CS 
context to obtain correlations.

We can use functional magnetic resonance imaging (fMRI) and 
transcranial magnetic stimulation (TMS) in a CS context to investigate 
causality.

We can employ advanced statistical rigor in CS to account for student 
incoming preparation effects on task outcomes.
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Thesis Statement

It is possible to use objective measures to obtain 
context-specific mathematical models of the cognitive 

processes underlying logical reasoning, and these models 
can accurately explain student behavior.
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It is possible to use functional, physiological, and medical 
measures to obtain context-specific mathematical models of the 

cognitive processes underlying logical reasoning, and these 
models can accurately explain student behavior.

If we can construct an accurate model for the cognitive processes 
associated with computational reasoning tasks, educators may be 
able to use that understanding to investigate how to better teach 
logical reasoning to students.
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Thesis Statement: Explained



Proposal Overview
Three components:
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Proposal Overview
Three components:

Using automated program repair for hardware as a debugging 
assistant for designers
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Proposal Overview
Three components:

Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms
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Proposal Overview
Three components:

Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using TMS to codify the relationship between spatial reasoning and 
programming
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Automated Program Repair for 
Hardware as a Debugging Assistant

Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?
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Automated Program Repair (APR)

Faulty software 
program w/ 

deterministic bug(s)

Test suite w/ at least 
one failing test

Fault 
localization

Patch

Validation

Repaired 
program

No Repairs 
Found

OR
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Hardware Designs
● Digital specifications for electronic 

devices, computer systems, or 
integrated circuits
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Hardware Designs
● Digital specifications for electronic 

devices, computer systems, or 
integrated circuits

● Typically written using hardware 
description languages (HDLs) like 
Verilog and VHDL module counter ( input clk, 

    input rstn, 
    output reg[3:0] 
out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule
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Hardware Designs
● Digital specifications for electronic 

devices, computer systems, or 
integrated circuits

● Typically written using hardware 
description languages (HDLs) like 
Verilog and VHDL

● Correspond to the “stage 0” of the 
hardware design process

module counter ( input clk, 
    input rstn, 
    output reg[3:0] 
out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule
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Software vs. Hardware

One key difference: serial execution vs. parallelism
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module counter ( input clk, 
    input rstn, 
    output reg[3:0] out); 

always @ (posedge clk) begin 
if (! rstn) out <= 0; 
else out <= out + 1; 

end endmodule

animals = [“cat”, “dog”, “cat”]
cat_counter = 0
for animal in animals:

if animal == “cat”:
cat_counter += 1

print(cat_counter)

Serial Python code Parallel Verilog code



APR for Hardware?

Problem: Existing techniques from software APR cannot be directly 
applied to hardware designs!

How do we bridge the gap between software APR and 
hardware designs?
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Introducing: CirFix
CirFix: A hardware-design focused automated repair algorithm based on 
genetic programming

● First-of-its kind APR tool for hardware designs
● Novel dataflow-based fault localization approach for hardware 
● Novel approach to guide the search for repairs using the existing 

hardware design process 
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● Preliminary results in ASPLOS’22 and TSE’23



More details in the proposal text!
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RQ1: What fraction of defects can CirFix actually repair? 

Problem: No publicly-available benchmarks for hardware defects that 
are indicative of real industrial defects and corresponds to a wide range 
of project sizes (largely due to IP constraints)!

How do we evaluate CirFix?

RQ1: Experiments and Metrics
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RQ1: Experiments and Metrics
Problem: No publicly-available benchmarks for hardware defects that 
are indicative of real industrial defects and corresponds to a wide range 
of project sizes (largely due to IP constraints)!

Constructed a benchmark suite of 32 different hardware defects to 
evaluate CirFix
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RQ1: Experiments and Metrics
Problem: No publicly-available benchmarks for hardware defects that 
are indicative of real industrial defects and corresponds to a wide range 
of project sizes (largely due to IP constraints)!

Constructed a benchmark suite of 32 different hardware defects to 
evaluate CirFix

● Corresponds to 6 introductory-level circuit designs and 5 
off-the-shelf (larger, industrial) designs

● Includes 19 “easy” defects and 13 “hard” defects

We make our benchmark suite publicly available for future researchers 
to evaluate hardware repair approaches!
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RQ1: Preliminary Results
RQ1: What fraction of defects can CirFix actually repair? 

● Ran five resource-constrained, independent CirFix trials for each 
defect, stopping when a plausible repair (i.e., a repair passing all 
tests) was found

● CirFix found 21/32 (65.6%) plausible repairs, with 16/32 (50%) 
deemed to be correct (i.e., high quality) upon manual inspection

● Repair rate comparable to strong results from software-based APR 
(e.g., GenProg at 52.5%, Angelix at 34.1%)
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RQs 2-3: Experiments and Metrics
RQ2: Does the CirFix fault localization improve designers’ objective 
performances?
RQ3: In what contexts do designers find CirFix helpful?

Problem: Need to have real designers use CirFix as a debugging assistant 
to evaluate its efficacy!

How do we meaningfully evaluate real designers using 
CirFix?
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RQs 2-3: Controlled Human Study
● Conducted under IRB HUM00199335
● n = 41 participants in the study

● Participants asked to identify and fix defects from the CirFix 
benchmark, each accompanied with no debugging hints, partial 
debugging hints, or full debugging hints
○ Partial hints: highlighting variables implicated by CirFix
○ Full hints: highlighting lines of code implicated by CirFix

● Participants also asked to rate the accuracy and helpfulness of 
debugging hints (where applicable)

● Designer performance assessed by evaluating F-scores (F
1
) and time 

taken to complete each debugging task
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RQs 2-3: Controlled Human Study

40

Example stimulus



RQs 2: Results
RQ2: Does the CirFix fault localization improve designers’ objective 
performances?

● No statistically significant difference in time taken to localize faults 
with annotations (p = 0.41, Student t-test)

● F-score for participants higher for full hints vs. partial hints vs. no 
hints (F

1
 = 0.67, F

1
 = 0.33, F

1
 = 0.29)

○ Trend was not statistically significant (p = 0.12)

● Difference in F-scores for experts vs. novices when given debugging 
hints (F

1
 = 0.37, F

1
 = 0.17)

○ Statistically significant with large effect size (p = 0.04, d = 0.54)
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RQs 2: Results
RQ2: Does the CirFix fault localization improve designers’ objective 
performances?

● F-score for participants higher for full hints vs. partial hints vs. no hints 
(F

1
 = 0.67, F

1
 = 0.33, F

1
 = 0.29)

○ Trend was not statistically significant (p = 0.12)

● Difference in F-scores for experts vs. novices when given debugging 
hints (F

1
 = 0.37, F

1
 = 0.17)

○ Statistically significant with large effect size (p = 0.04, d = 0.54)
 
⇒ CirFix can be useful as a hardware debugger!

42



RQs 3: Results
RQ3: In what contexts do designers find CirFix helpful?

● Full debugging hints on intro-level designs rated as significantly 
more helpful than those on larger, off-the-shelf designs (p = 0.01, d = 
0.7; p = 0.002, d = 1.05; large effect size)

⇒ CirFix can be more beneficial as a debugging assistant in a 
pedagogical context!
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CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?
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CirFix: Wrapping it Up

Can we build a state-of-the-art automated repair tool for 
hardware designs (i.e., digital logic), and use it as a debugging 
assistant for designers?

Yes, we can!
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Proposal Overview
Three components:

Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using TMS to codify the relationship between spatial reasoning and 
programming
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Eye-Tracking for Computer Science 
Formalisms

Can we use objective measures to investigate how students 
read and understand computer science formalisms (i.e., 
mathematical logic)?
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Formalism Comprehension

Educators put a lot of emphasis on training students for 
logical algorithmic reasoning (i.e., mathematical logic)

Many CS programs require majors to take several courses 
focusing on formal reasoning (e.g., discrete math, theory, 
algorithm analysis)

Yet, undergraduate CS theory courses tend to have poor 
student outcomes and satisfaction 
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Formalism Comprehension

49

Are students learning and retaining effective strategies for 
reasoning about computer science formalisms?



Formalism Comprehension

50

Are students learning and retaining effective strategies for 
reasoning about computer science formalisms?

Sadly, not as much as we would like. :-(



Enter: Eye-Tracking

● Objective measure for participant problem 
solving strategies

● Cheap and non-invasive

● Approximates dynamics of visual attention (e.g., 
where participants focus, and for how long)

● Serves as a proxy for cognitive load (i.e., strain on 
working memory) and task difficulty
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Formalism Comprehension: 
Experiments and Metrics
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Formalism Comprehension: 
Experiments and Metrics
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Pre-defined Areas 
of Interest (AOIs)



Formalism Comprehension: 
Experiments and Metrics
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Fixation



Formalism Comprehension: 
Experiments and Metrics
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Saccade



Formalism Comprehension: 
Experiments and Metrics
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Attention 
Switching



Formalism Comprehension: 
Controlled Human Study
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● Conducted under IRB HUM00204278
● n = 34 participants in the study

● Participants shown a series of algorithmic proofs from an 
undergraduate textbook, each with an associated figure and possible 
logical / arithmetic mistake

● Participants asked to identify the presence of mistakes in each proof

● Individual performance assessed by evaluating response accuracy 
and time, response strategy assessed by evaluating gaze data

● Preliminary results in ICSE’23



RQ1: Experiments and Metrics
RQ1: What is the effect of incoming preparation on student outcomes 
for formalism comprehension?

Problem: Incoming preparation is hard to measure!

How do we determine if someone is more- or 
less-prepared for formal reasoning?
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RQ1: Experiments and Metrics
Problem: Incoming preparation is hard to measure!

Use both coursework count and performance as a proxy for preparation

● Coursework count: The number of CS theory courses covering 
formalisms a participant has completed with passing grades or is 
currently enrolled in

● Performance: Whether or not a participant correctly identifies the 
mistake in a pre-screening proof from an undergraduate textbook

Participants who have course count > the median value and pass the 
pre-screening classified as more-prepared (16/34 participants)
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RQ1: Preliminary Results
RQ1: What is the effect of incoming preparation on student outcomes for 
formalism comprehension?

● No statistically significant difference in response times and 
accuracies between more- and less-prepared participants (p = 0.93,     
p = 0.96; two-tailed Mann-Whitney U-test) 

● No correlation between # theory courses and response accuracy 
(Pearson’s r = 0.036, p = 0.84)

⇒ Students with more incoming preparation perform no better on 
formalism comprehension tasks, on average, than students with lower 
incoming preparation!
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RQ1: Preliminary Results
RQ1: What is the effect of incoming preparation on student outcomes for 
formalism comprehension?

● More-prepared students fixate longer on the proof text (p = 0.005), 
correct answer (p = 0.038), and distractor choices (p = 0.03)

⇒ Students with more incoming preparation may be better trained to 
read the proof and answer choices more thoroughly, yet do not achieve 
better outcomes than students with less preparation!
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RQ2: Preliminary Results
RQ2: How do student performance self-reports align with more empirical 
task outcomes? 

● No correlation between 
○ Response accuracy and self-reported expertise with formalisms 

(Kendall’s τ test, τ = 0.21, p = 0.18)
○ Response accuracy and self-perceived task difficulty (τ = 0.14,      p 

= 0.35)
○ Response accuracy and self-perceived proof readability (τ = -0.14, 

p = 0.32)

⇒ Students may not be accurate at self-reporting their experience or 
familiarity with formalism comprehension tasks!
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RQ3: Preliminary Results
RQ3: What distinguishes higher-performing students from lower 
performing ones?

Participants with above median response accuracy classified as 
higher-performing (15/34 participants)

● Higher-performing participants more likely to spot mistakes in 
inductive proofs (ꭓ2 test, p = 0.01)

● Higher-performing participants more likely to spot mistakes in 
proofs for recursive algorithms (p = 0.006)

⇒ Lower-performing students may benefit from more practice with 
inductive proofs and recursive algorithms.
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RQ3: Preliminary Results
● Higher-performing participants display more attention switching 

behavior, i.e., frequently go back and forth between AOIs (p = 0.002)
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RQ3: Preliminary Results
● Higher-performing participants display more attention switching 

behavior, i.e., frequently go back and forth between AOIs (p = 0.002)

⇒ Students may benefit from teaching materials that facilitate perusal 
with ease (e.g., without requiring multiple page flips).
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Formalism Comprehension: 
Wrapping it Up

Can we use objective measures to investigate how students read 
and understand computer science formalisms (i.e., mathematical 
logic)?
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Formalism Comprehension: 
Wrapping it Up

Can we use objective measures to investigate how students read 
and understand computer science formalisms (i.e., mathematical 
logic)?

Yes, we can!
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Proposal Overview
Three components:

Using automated program repair for hardware as a debugging 
assistant for designers

Using eye-tracking to understand cognition for computer science 
formalisms

Using TMS to codify the relationship between spatial reasoning and 
programming
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TMS for Programming

Does disrupting brain regions associated with spatial reasoning 
impact a programmer’s ability to reason about code (i.e., 
programming logic)?
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Programming and Spatial Reasoning
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Programming and Spatial Reasoning
Brain activity for spatial reasoning correlates with that for programming 
tasks
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Programming and Spatial Reasoning
Brain activity for spatial reasoning correlates with that for programming 
tasks
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73

Is brain activity for spatial reasoning causally related to that 
for programming tasks?

Programming and Spatial Reasoning



Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for 

depression, smoking cessation, OCD, etc.
● Well-established research tool
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Enter: Transcranial Magnetic Stimulation

● Safe and non-invasive
● Clinically used as a treatment for 

depression, smoking cessation, OCD, etc.
● Well-established research tool

● Time-efficient way to investigate causal 
relationships (e.g., compared to 
longitudinal studies)
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How does TMS work?

TMS pulses produce a magnetic field 
around the TMS coil
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How does TMS work?

TMS pulses produce a magnetic field 
around the TMS coil

The magnetic field induces a current in the 
neurons of the brain region of interest

The induced current excites or inhibits 
brain activity in the region
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How does TMS work?

TMS pulses produce a magnetic field 
around the TMS coil

The magnetic field induces a current in the 
neurons of the brain region of interest

The induced current excites or inhibits 
brain activity in the region
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By altering activity in certain brain regions, we can investigate causal 
relationships between tasks and brain activity!



Localization for TMS

Problem: Identifying the location for TMS coil 
placement is a challenging task (e.g., due to 
anatomical differences in individual brains)

How do identify and precisely target brain 
regions for TMS treatment?
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Localization for TMS
Problem: Identifying the precise location for TMS coil placement is a 
challenging task

Solution: High-resolution, per-participant brain scans with 
widely-accepted, anatomical landmark-based localization approaches 
from the scientific community
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TMS for Programming: Experiments 
and Metrics
● Two phase experimental process: fMRI session to obtain anatomical 

brain scan, followed by 2-4 TMS sessions (each on a different day)

● Each TMS session can correspond to treatment or control conditions
○ Treatment conditions: supplementary motor area (SMA) or 

primary motor cortex (M1), both responsible for motor actions 
and associated with spatial reasoning

○ Control condition: cranial vertex region, not associated with 
spatial reasoning 
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TMS for Programming: Brain Regions
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M1

Vertex

SMA / pre-motor



TMS for Programming: Protocol 

● Per-participant active motor threshold (AMT) to obtain the “lowest 
stimulation intensity” that still influences brain activity

● Each TMS session conducted using an off-the-shelf, widely-used 
continuous theta-burst stimulation (cTBS) protocol
○ 3 pulses of stimulation at 50 Hz, repeated every 200ms, for a 

total of 600 pulses in 40 seconds
○ cTBS applied at 80% AMT to comply with commonly-accepted 

safety standards
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TMS for Programming: Stimuli Design
Data structure manipulation (including arrays, linked lists, trees)
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Mental rotation
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TMS for Programming: Stimuli Design



Code comprehension (including tracing code, analyzing complexity)
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TMS for Programming: Stimuli Design



TMS for Programming: Experiments 
and Metrics

● After each cTBS session, participants work on study stimuli in front 
of a regular computer (i.e., in a more ecologically valid setting)
○ 35 minutes of study stimuli

● Participant performance will be evaluated by looking at changes in 
response times and accuracies as a result of TMS treatment
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TMS for Programming: RQs

Three RQs:

● Does disrupting brain regions associated with spatial reasoning 
affect a programmer’s ability to correctly reason about code?

● Does disrupting brain regions associated with spatial reasoning 
affect the time taken for a programmer to reason about code?

● How does demographic information (e.g., incoming preparation or 
expertise) mediate the effect of TMS on task outcomes?
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● Internal grant of $17,000 from the University of Michigan Functional 
MRI Lab

● IRB approval (HUM00216195)
● Stimuli design
● TMS safety training
● Research access to fMRI and TMS equipment

89

TMS for Programming: Project Status



TMS for Programming: Project Status

● Participant recruitment 
● Data analyses
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● Internal grant of $17,000 from the University of Michigan Functional 
MRI Lab

● IRB approval (HUM00216195)
● Stimuli design
● TMS safety training
● Research access to fMRI and TMS equipment



TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning 
impact a programmer’s ability to reason about code (i.e., 
programming logic)?
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TMS for Programming: Wrapping it Up

Does disrupting brain regions associated with spatial reasoning 
impact a programmer’s ability to reason about code (i.e., 
programming logic)?

???
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Ph.D. Timeline
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Huang, Hammad Ahmad, Stephanie Forrest, Westley Weimer. GI Workshop @ ICSE 
(2021).
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Other Publications
1. LOGI: An Empirical Model of Heat-Induced Disk Drive Data Loss and its 

Implications on Data Recovery. Hammad Ahmad, Colton Holoday, Ian Bertram, 
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Broader Impact

Mentorship

96

● Undergraduate involvement in research activities (particularly from 
groups underrepresented in CS)
○ Mentored four undergraduate / non-traditional students on 

research activities included in this proposal
○ Written text for an NSF REU proposal (that was funded for $8000 

total) to fully support an additional undergraduate student 



Broader Impact

● Recommendations for educators and suggestions for pedagogical 
intervention studies 
○ Approached by an educator at the University of Michigan to 

deploy a hardware debugging assistant in a classroom setting
○ Approached by an educator at the University of Washington to 

use preliminary eye-tracking results for undergraduate theory 
 

● Accounting for incoming preparation in proposed research
○ Results and suggestions from our research can be applied to a 

wider variety of student groups with varying levels of 
preparation for the CS major
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Pedagogy



Proposal Summary
● Three components:

○ Using automated program repair for hardware as a debugging assistant 
for designers

○ Using eye-tracking to understand cognition for computer science 
formalisms

○ Using TMS to codify the relationship between spatial reasoning and 
programming
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Proposal Summary
● Three components:

○ Using automated program repair for hardware as a debugging assistant 
for designers

○ Using eye-tracking to understand cognition for computer science 
formalisms

○ Using TMS to codify the relationship between spatial reasoning and 
programming

● Thesis statement:
○ We can use objective measures to obtain mathematical models of 

logical cognition, and these models can accurately explain student 
behavior.

○ Obtaining such an understanding may impact how educators better 
teach logical reasoning to students.
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