Optimizing Tradeoffs of
Non-Functional Properties in
Software

Jonathan Dorn
July 20, 2017

OPTIONS

GAMEPLAY CAMERA CONTROLS @ AUDIO CHAT

WINDOW SETTINGS ADVANCED SETTINGS
RESOLUTION 1680 x 1050 8:5 TEXTURE DETAIL |High Quality
WINDOWMODE |Fullscreen WORLD DETAIL High Quality
VERTICAL SYNC HIGH QUALITY SHADERS (¢
AMBIENT OCCLUSION
DEPTH OF FIELD
BLOOM
BASIC SETTINGS LIGHT SHAFTS
ANTIALIAS [FXAA High B LENS FLARES
RENDER QUALITY DYNAMIC SHADOWS

RENDER DETAIL | FAAA Low MOTION BLUR

MAX FPS Amatten 62.00 WEATHER EFFECTS

FXAA High

BACK DEFAULT

Implementation Combinations

A

Visual Inaccuracies

>

Computation Complexity

Implementation Combinations

A

Visual Inaccuracies

Computation Complexity

Implementation Combinations

A

Visual Inaccuracies

Computation Complexity

Thesis

Search-based software engineering techniques
applying local software transformations can
automatically and effectively explore tradeoffs
between a variety of measurable non-functional
properties in existing software artifacts with

indicative workloads across application domains.

6

Non-Functional Properties

- Not “what” a program does, but “how well.”

- “More” or “less;” “higher” or “lower.”

- Characterize implementations by how much of
a property they posses.

- Often interact via tradeoffs.
- E.g., performance vs. maintainability.

e
Optimization Philosophy

Program Transformations Program Properties
- Un-annotated source * Retain functionality.
code.

* Improvement

- “Raw” C, Java, assembly. .
correlated with human

- Local transformations. perception.
- E.g., change one function . .
call or one line. - Estimate properties

- Likely to be independent. automatically.

-
Insights

- Adapt program repair.

- Evolutionary search:
Modify an existing “nearly correct” implementation.

- Regression testing:.
Only consider programs that retain functionality.
- Adapt profile-guided optimization.

* Indicative workloads:
Short runs can indicate important opportunities.

Search-Based Optimization Framework

{
Input | Evolutionary search l q

S

= =5 =5

(

il
|

Independent local

l Regression testing l transformations

l Indicative workloads l 7'

Search-Based Optimization Framework

Input

il

Evaluation

=

Search q

)

Transformation

_/

Outline

Overview

Application Domains
Graphics: Run Time and Visual Quality
Data Centers: Output Accuracy and Energy Use
Unit Tests: Readability and Test Coverage

Concluding Thoughts

12

Outline

Overview

Application Domains
Graphics: Run Time and Visual Quality
Data Centers: Output Accuracy and Energy Use
Unit Tests: Readability and Test Coverage

Concluding Thoughts

13

Computer Generated Imagery

- Video games topped
S90B in 2015.*

 Diagnostic imaging
projected to top SBOB by g
2021 .%* S

- Applications demand:

N

- High-quality visuals. ’*“
- Interactive performance.

* http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
** http://www.marketsandmarkets.com/PressReleases/diagnostic-imaging-market.asp

14

Aliasing Example

Credit “Moire pattern of bricks” by Colin M.L. Burnett, via Wikimedia Commons, licensed under CC BY-SA 3.0.

15

Project Overview

- Goal:

- Reduce aliasing (= improve
visual quality) and retain

interactive run times. (Floor> Gloor w

- Approach:

- Replace expressions that
cause aliasing with non-
aliasing expressions.

16

Search-Based Optimization Framework

Search q

Input

il

[]
]
]
|
]
[|
‘-
L 4 .‘

2
0.”

Evaluation

=z

Transformation

_/

Aliasing

- Caused when samples (pixels) are widely
spaced relative to details.

>

Intensity

18

Aliasing

- Caused when samples (pixels) are widely
spaced relative to details.

- Reduce spacing (e.g., add more pixels = expensive!).

>

Intensity

19

Aliasing

- Caused when samples (pixels) are widely
spaced relative to details.

- Reduce spacing (e.g., add more pixels = expensive!).
- Remove details (e.g., smoothing or “band-limiting”).

>

Intensity

20

Nyquist Limit

Formally, aliasing is defined in terms of the
Fourier transform of the image function.

] i

Nyquist-Shannon Sampling Theorem: Aliasing
occurs when the image has frequencies greater
than or equal to half the sampling frequency.

Band-limiting retains frequencies within a desired
band.

21

Nyquist Limit

Formally, aliasing is defined in terms of the
Fourier transform of the image function.

] |

Nyquist-Shannon Sampling Theorem: Aliasing
occurs when the image has frequencies greater
than or equal to half the sampling frequency.

Band-limiting retains frequencies within a desired
band.

22

Convolution Theorem

 Product of Fourier transforms of fand g is
equal to the Fourier transform of the
convolution of fand g:

Flf * gl
f*g—/ flo — ')gla') do

23

Band-Limiting

- Convolve the image with a filter before
sampling.

flaw = | O; flo - a)g(a!,w) da

PR 1. =1- T L J——

— Pixel Dimensions: 14.6M

Width: | 2608 | [pixels 3]]@

Height: | 1952 | [pixels 3|

— Document Size:

Width: [10.867 | | inches ¢]

Height:|8.133 | | inches 3]
Resolution: | 240 | | pixels/inch 3 |
@Scale Styles
(™ Constrain Proportions
gResam ple Im

_| Bicubic (best for smooth gradients) v

24

Band-Limiting

- Convolve the image with a filter before
sampling.

flaw = | O; flo - a)g(a!,w) da

— Pixel Dimensions: 14.6M

Width: | 2608 | [pixels |].

- Convolving shader programs. o . - -

— Document Size:

- Insight: compose band-limited

Width: [10.867 | [inches s]
SU b_components Height:|8.133 | | inches :)
Resolution: | 240 | [pixels/inch t]
@Scale Styles
(™ Constrain Proportions

@ Resample lm

_| Bicubic (best for smooth gradients) v

25

Our Band-Limiting Transformation °

f() Flx,w)
x x
x *w?
1 X sin(2 D
fract,(x) 5 ngl sm(n:ltnx) e’
fract,(x) % (fmct2 (x—i— %) + Lx—i— %J — fract® (Y
fracts (2 s (=)) =21 ()
where f’ (1) = 31> + 2fract’ (1) — 3fract® (t) + fract(t) —t
* ~
|x]| xerfw—\/E +w 2
|x] x— f?c;t(x, w)
[x] ﬂ/o-o\r(x, w)+1
cosx cosxe” T

saturate(x)
sinx
step(a,x)

trunc(x)

1 x x—1 2/ _ 2 _Ga=1?
— | xerf —(x—1)erf +w\/i<e wr —e 22 >+1
2(wv?2 () w2 T

W2

sinxe” 2

(1 +erf fv_/;)

x,w) — step(x,w) + 1

N —

_—
floor

—~

- Table of band-limited
built-in functions.

- One-time manual effort.
- See appendix.

» Transformation:

- Replace function call
with band-limited
function call.

26

Search-Based Optimization Framework"

Input

il

Genetic Algorithm

Search q

r— Replace with
— band-limited
function

Transformation

Evaluation

Output

27

Evaluation

-Benchmarks: 11 programs used in previous
work on antialiasing.

- Compare against 16x supersampling.

* Metrics:
« Error relative to 2000x supersampling.
* Run time.

28

Results: Checkerboard

Target Image

29

Results: Checkerboard

Target Image

No Antialiasing 16x Supersampling Our Approach

grrEmmesTeTans

.

—

Error heatmap
L2 in RGB

30

Results: Checkerboard

Target Image No Antialiasing 16x Supersampling Our Approach
S e |

4x faster than super-sampling.

2x less L? (RGB) error than supersampling.

31

Results: Brick and Wood

Target Image No Antialiasing 16x Supersampling Our Approach

5x faster, 3x more L2 error than supersampling.

6x faster, 2x less L2 error than supersampling. -

Runtime Results

W Super-Sampling ™ Qur Approach

N
o

=
(0¢]
|

e

=

(©))]
|

Normalized Runtim

e S

O N B OO 00O O N DB
|

33

Error Results

W Super-Sampling ™ Qur Approach

Normalized Error
o
(Oa]

34

Aliasing Reduction Summary

- Developed anti-aliasing approach for programes.

- Derived and published band-limited expression for
common programming language primitives.

- Added new Pareto non-dominated points to
the design space.

- In many cases, we dominate existing approach.
- Pacific Graphics 2015.

35

Outline

Overview

Application Domains
Graphics: Run Time and Visual Quality
Data Centers: Output Accuracy and Energy Use
Unit Tests: Readability and Test Coverage

Concluding Thoughts

36

Data Center Energy Use

120

100
given year

— electricity use in a

Percentages of US

o0
o

S
o

Electricity Use
(billion kWh/year)
(@)

o

20 -

2000

Reproduced from [Koomey 2011]

2005

2.78%

2010

M Infrastructure

W Communications
M Storage

M High-end servers
M Mid-range servers

M Volume servers

37

Approximate Computing Applications™

- “Correct” answer is unknown or not well
defined.

- Recommendation systems. amazon
- Search systemes.
- Prediction systemes. @ SpOtlfy
facebook
Balé'bEE hUlU

pandora

CNETELIX Google YAHOO! &

38

Project Overview

- Goal:

- Reduce energy retaining
human-acceptable output.

- Approach:

Error

- Optimize energy use and
output error.

- ldentify largest energy

reduction below error — —
threshold. — -

39

Search-Based Optimization Framework

Input

il

‘.
* f’t
u o
\
0.‘.

Evaluation

Search

.

Q

Transformation

_/

Measuring Program Energy

CONSIDERATIONS

- Performance / response
time
- Precision and accuracy
* Disaggregation
- Workload setup and cleanup

- Daemon processes

- System configuration
- Core allocation
- Device sleep

MECHANISMS

41

Measuring Program Energy

CONSIDERATIONS

- Performance / response
time
- Precision and accuracy
Disaggregation
Workload setup and cleanup

Daemon processes

System configuration
Core allocation
Device sleep

MECHANISMS

42

Measuring Program Energy

CONSIDERATIONS

- Performance / response
time

- Precision and accuracy

Disaggregation
Workload setup and cleanup

Daemon processes

System configuration
Core allocation

Device sleep

MECHANISMS

- Simulation
- gem>b

- Power model

- Intel Power Gadget
« Mac Activity Monitor

* Physical
- Commodity energy meter

» Phasor Measurement Unit
« Custom-built

43

Measuring Program Energy

CONSIDERATIONS

- Performance / respons
time

- Precision and accuracy

Disaggregation
Workload setup and cleanup

Daemon processes

System configuration
Core allocation

Device sleep

MECHANISMS

o.g.e.m5

- Power model

- Intel Power Gadget
« Mac Activity Monitor

* Physical
- Commodity energy meter

» Phasor Measurement Unit
« Custom-built

44

CONSIDERATIONS MECHANISMS
- Performance / response S o5 |
time .
. .. - Rowermmodel
Precision and accu Inaccurate
Disaggregation " tntelPe :
Workload setup and cleanup * MacAetviby |
Daemon processes . PhySiCa|

System configuration

Core allocation

- Commodity energy meter

» Phasor Measurement Unit

Device sleep - Custom-built

45

CONSIDERATIONS MECHANISMS
- Performance / response * Straulation
time © gems
- Precision and accu Inaccurate m Powerrmodel
Disaggregation - intel-Power-Gadget

Workload setup and cleanup

Daemon processe
System configREeELNR{E Il

Core allocation

* Physical

» Phasor Measurement Unit

Device sleep - Custom-built

46

CONSIDERATIONS MECHANISMS
- Performance / response * Straulation
time © gems
- Precision and accu Inaccurate m Powerrmodel
Disaggregation - intel-Power-Gadget

Workload setup and cleanup

Daemon processe
System configREeELNR{E Il

Core allocation

sl Cost prohibitive - Custom-built

47

Fast and Accurate Physical Energy
Measurement

Sampling rate:
Internal: 1200 Hz
External: 10-20 Hz

Variance < 1W on
100W load.

$100 per system
monitored.

438

Search-Based Optimization Framework

Genetic Algorithm

Input Search

D g)2

Insert, Delete,

.,

Energy & Error

& Swap

Transformation

Evaluation

e

Evaluation

- Benchmarks: PARSEC suite, large data center
applications.

- Compare against “loop perforation.”

* Metrics:
- Energy use.
- Error (application-specific, relative to original).

50

Data Center Benchmarks (PARSEC)

Application Domain | __Error Metric _

blackscholes
bodytrack
ferret
fluidanimate
fregmine
swaptions
Vips

X264

Financial analysis
Computer vision
Similarity search
Animation

Data mining
Financial analysis
Media processing

Media processing

RMSE

RMSE

Kendall’s T
Hamming Distance
RMSE

RMSE

Image Similarity

Image Similarity

51

Data Center Benchmarks

Application Domain | _Error Metric _

blackscholes Financial analysis RMSE

bodytrack Computer vision RMSE

ferret Similarity search Kendall’s T
fluidanimate Animation Hamming Distance
fregmine Data mining RMSE

swaptions Financial analysis RMSE

Vips Media processing Image Similarity
X264 Media processing Image Similarity
blender 3D renderer Image Similarity
libav Media processing Image Similarity

52

Data Center Benchmarks

Application Domain | _Error Metric _

blackscholes Financial analysis RMSE

bodytrack Computer vision RMSE

ferret Similarity search Kendall’s T
fluidanimate Animation Hamming Distance
fregmine Data mining RMSE

swaptions JUERAEIEREWSE Order of magnitude larger.
vVips Media processing Evaluate scalability.

mage Similarity

X264 Media processing

blender 3D renderer Image Similarity

libav Media processing Image Similarity

53

Acceptable Error

- Highly subjective and domain-specific.

- Protocol:
- Noticeable distortion on casual viewing (blender,
bodytrack, libav, vips, x264).
- All values within 5% of original (blackscholes,
fregmine, swaptions).
- At least half of search results in common (ferret).
- No acceptable error (fluidanimate).

54

Energy Reduction Results (%)
| Benchmark | NoError | Acceptable Error

blackscholes 92 92
bodytrack 0 59
ferret 0 30
fluidanimate 0

fregmine 8

swaptions 39 68
Vips 21 29
X264 0 65
blender 1 10

libav 3 92
55

PARSEC Results

—e— Qur technique

—&— Loop perforation

bodytrack

Error

Joules

ferret
10% -+ —m
— @ -
S 5% -
S
=
0% -

Joules

56

PARSEC Results

—e— Qur technique —=— Loop perforation

swaptions x264
15 4 0.2% - B
— 10 4 — l
o ©)
& = 0.1% -
€2 =
5 _
0] —e—o 0.0% - ® .I—-—*_.
0 10 20 30 0 20 40
Joules Joules

57

Can You Spot the Difference?

58

Can You Spot the Difference?

65%3"?ower energy

59

Energy Optimization Summary

- Designed and built cost-effective energy meter.
- Sub-second accuracy.
- HW and SW designs are open-source.

-41% average energy reduction with human-
acceptable error.

- Submitted to TSE (Reviewed and revised).

60

I
Q

Outline

Overview

Application Domains
Graphics: Run Time and Visual Quality
Data Centers: Output Accuracy and Energy Use
Unit Tests: Readability and Test Coverage

Concluding Thoughts

61

Expensive Testing Failures

- Mars Spirit Rover (S1B).

- Almost lost mission due to
filesystem bug.*

- Knight Capital trading glitch (5440M).

- Development software released into production.

- Inadequate testing costs the US over S60B.***

* Glenn Reeves and Tracy Neilson. “The mars rover spirit FLASH anomaly.” IEEE Aerospace Conference, 2005.
** https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
*** RTI Health, Social, and Economics Research. “The Economic Impacts of Inadequate Infrastructure for
Software Testing.” NIST, 2002.

62

I
Q

Test Coverage

- Approximate measure of test suite quality.
- Lines, branches, conditions, etc.
- Mutation testing.

- Many standards and organizations mandate
particular thresholds.

- DO-178B (avionics software)
- ANSI/IEEE Std 1008-1987 (software unit testing)

63

I
Q

Developer Time in IDEs

Production Code Test Code

Reading

Reading

Adapted from [Beller, et al. 2015]
64

N
Q

Project Overview

Test Case

package org.apache.commons.cli;

import static org.junit.Assert.*;

- Goal:
import org.junit.Test;

- Generate readable, high- Prct i e mmeun S NP A
coverage test suites. public class Option ESTest |

@Test
public void test0() throws Throwable {

° ApproaCh: Option option0 = new Option((String) null, " “);

// Undeclared exceptionl
try {

1. Model test readability. int. iat0 = optiond.getzd();

fail("Expecting exception: NullPointerException®);

2. Optimize coverage and } catch(ullpointerexception o) {
/7
readability. // no message in exception (getMessage() returned null
//
. . }
3. Validate with human)

study.)

65

Search-Based Optimization Framework Q

A Q
~ ==

‘.
0”‘
u o
\

oy Transformation

Evaluation \/

66

e
Readability Models Q

- Extract features from source code.

- E.g., average line length,
total unique identifiers.

public void testi() throws Throwable |
LongAdder longAdder0 = new LongAdder():;
longAdder0.reset ();
assertEquals (0, longAdder0.shortValue()):

- Conduct human study to

collect ratings. s T
cle . (J(2)(3](e] (8]
- Java familiarity quiz.
B——Q
.

* Linear regression model.

67

-
Generating Test Suites Q

- Extend EVOSUITE test suite generator for Java.

- Optimizes coverage objectives via evolutionary
search.

CharRange charRange® = CharRange.isNot(’#’);
Character character@ = Character.valueOf(’#’);
CharRange charRangel =
CharRange.isNotIn(’\"’, (char) charactero);
char char@ = charRangel.getStart(); assertEquals(’\"’, charo);

boolean boolean@ = charRange@.contains(’\"’);
assertTrue(booleano);

68

N
Q

Generating Test Suites

- Extend EVOSUITE test suite generator for Java.

- Optimizes coverage objectives via evolutionary
search.

- Extend fitness function with readability model.

69

Q

Generating Test Suites

Extend EVOSUITE test suite generator for Java

Optimizes coverage objectives via evolutionary
search.

- ¢ netion it il ol

EvOSUITE uses redundant instructions for diversity.
Converted to additional coverage in later generations.

Redundant instructions reduce readability.
Redundancy eliminated before being exploited.

70

I
Q

Generating Test Suites

- Extend EVOSUITE test suite generator for Java

- Optimizes coverage objectives via evolutionary
search.

£ 6 o etion wit] il ol

- Optimize coverage, then readability.
- Two-phase optimization.
- Transformation should maintain coverage.

71

I
Q

Readability Transformation

* Transformation:

- Replace RHS of assignment with same-type
expression.

- Remove dead code.

Foo foo = new Foo();

Bar bar = new Bar(“Some parameter”, 17);
foo.setBar(bar);
assertTrue(foo.isBar());

. 2

Foo foo = new Foo();

Bar bar = new Bar();
foo.setBar(bar);
assertTrue(foo.isBar());

72

I
Q

Readability Transformation

* Transformation:

- Replace RHS of assignment with same-type
expression.

- Remove dead code.

Foo foo = new Foo();

Bar bar = new Bar(“Some parameter”, 17);
foo.setBar(bar);
assertTrue(foo.isBar());

. 2

Foo foo = new Foo();

(3)

foo.setBar(null);
assertTrue(foo.isBar());

73

Search-Basec

2-stages: Genetic

Algorithm & Hill
Climbing

Input

Readability Metric

& Coverage

Evaluation \/

Q

Replace with
same-type
expression.

Transformation

Framework G‘

I
Q

Evaluation

- Benchmarks: 30 Java classes taken from 10
open-source projects.

- Fitness metrics (for search):

- Coverage.
- Readability metric.

- Real-world validation:
- Human ratings of readability.
- Human understanding of generated tests.

75

Head-to-Head Comparison

Test Case A

package org.apache.commons.cli;

import static org.junit.Assert.*;

import org.junit.Test;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Option;

public class CommandLine_ ESTest (

#Test

public void test(() throws Throwable |
CommandLine commandLine0 = new CommandLine/():
boolean boolean? = commandLine0.hasOption(” VW
String string0 = commandLine0.getOptionValue('
Option option0 = new Option((String) null, "1V
commandLined . addoption(option0);
booclean booleanl ~ commandLine0.hasOption(”I1VW|
assertFalee(booleanl =~ booleand);
assertTrue(booleanl);

package org.apache.commons.cli;

import static org.junit.Assert.*;

import org.junit.Test;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Option;

public class CommandLine_ ESTest (

fTest

public void test0() throws Throwable |
CommandLine commandLine0 = new CommandLine():
Option option0 = new Option("", false, "");
commandLinel . addoption(optionl);
booclean boolean(= commandLine0.hasOption('-")
assertTrue (booleano);

Test A

TestB

76

I
Q

Human Preference Results

100

~N
o

Average: 69%

% Preferring Optimized Tests
N (Op|
o o

77

e
Test Understanding

package org.apache.commons.cli;

import static org.junit.Assert.*;
import org.junit.Test;
import org.apache.commons.cli.Option;

public class Option_ESTest {

@Test
public void test0() throws Throwable {
Option option0 = new Option((String) null, " ");
// Undeclared exception!
try {
int int0 = option0.getld();
fail ("Expecting exception: NullPointerException”);

} catch(NullPointerException e) {
/I’
// no message in exception (getMessage() returned null
//

78

I
Q

Test Understanding Results

Time to Answer

/.7z:><f

N/

Minutes

O L N W »H U1 O J

Avg
~-Not Optimized ~*Optimized

79

Readable Test Suite Summary Q

- Developed effective readability model for tests.

- Algorithm to optimize readability and
coverage.

- Empirical evaluation of test readability on
human performance.

- Distinguished Paper at ESEC-FSE 2015.

80

Outline

Overview

Application Domains
Graphics: Run Time and Visual Quality
Data Centers: Output Accuracy and Energy Use
Unit Tests: Readability and Test Coverage

Concluding Thoughts

81

Contributions

Representations, transformations, and search strategies
for optimizing non-functional properties.

Empirical evaluations of evolutionary optimization of
non-functional properties in three application domains.

First project to automatically band-limit procedural
shaders.

Derivations for band-limiting shading language
primitives.

Demonstration of optimizations enabled by relaxing
requirement of bitwise output equivalence.
Demonstration of impact of readability of maintenance
activities.

82

Jonathan Dorn, Jeremy Lacomis, Westley Weimer, Stephanie Forrest.
Automatically Exploring Tradeoffs Between Software Output Fidelity and
Energy Costs. Transactions on Software Engineering. (Reviewed and revised)

Jonathan Dorn, Connelly Barnes, Jason Lawrence, Westley Weimer. Towards
Automatic Band-Limited Procedural Shaders. Pacific Graphics. 2015.

Ermira Daka, Jose Campos, Gordon Fraser, Jonathan Dorn, Westley Weimer.

Modeling Readability to Improve Unit Tests. Foundations of Software
Engineering. 2015. ACM SIGSOFT Distinguished Paper Award.

Ermira Daka, Jose Campos, Jonathan Dorn, Gordon Fraser, Westley Weimer.
Generating Readable Unit Tests for Guava. Symposium on Search Based
Software Engineering. 2015.

Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, Westley
Weimer. Post-compiler Software Optimization for Reducing Energy.

Architectural Support for Programming Languages and Operating Systems.
2014.

Chris Gregg, Jonathan Dorn, Kim Hazelwood, Kevin Skadron. Fine-Grained
Resource Sharing for Concurrent GPGPU Kernels. 4th USENIX Workshop on
Hot Topics in Parallelism. 2012.

83

Optimizing Tradeofts of Non-Functional
Properties in Software

Test Case

package org.apache.commons.cli

st
import static org.junit.Assert.*

import org.junit.Test

import org.apache.commons.cli.Option

public class Option_ESTest

» @Test
public void t s Throwable

Option option0 new Option((String) null

% error
\

int int0 option0.getid

catch(NullPointerException e

Results: Brick and Wood

Target Image No Antialiasing 16x Supersampling Our Approach

5x faster, 3x more L2 error than supersampling.

6x faster, 2x less L2 error than supersampling. 26

Results: Noisel and Noise2

Target Image No Antialiasing 16x Supersampling Our Approach

7x faster, same L2 error as supersampling.

6x faster, sane L% error as supersampling.

87

Results: Circles2 and Perlin

Target Image No Antialiasing 16x Supersampling Our Approach

18x faster, 2x more L% error than supersampling.

88

Assembly Optimization Example

.L23:
cmpl %rl13d, 40(%rsp)
movqg 16(%rsp), %r9
movsd %xmm@, (%r9)

je .L9

call Z12CumNormalInvd

89

Assembly Optimization Example

.L23: < Top of one unrolling of inner loop

cmpl %rl3d, 40(%rsp) <— Loop condition check

movqg 16(%rsp), %r9
movsd %xmmo, (%r9)

je L9 < Jumps out of loop

call Z12CumNormalInvd

90

Assembly Optimization Example

.L23:

cmpl %rl13d, 40(%rsp)

<— Resets condition flags

movqg 16(%rsp), %r9
movsd %xmmo, (%r9)

je L9 < Always exits loop!

call Z12CumNormalInvd

91

Assembly Optimization Example

.L23:

* No change in

cmpl %rl3d, 40(%rsp) i
observed behavior.

xorl %eax, %eax
movqg 16(%rsp), %r9
movsd %xmmo, (%r9)
je .L9

- Skipped iterations
increase precision.

- Fixed number of digits
call _Z12CumNormalInvd in output.

92

Energy and Runtime

“Energy M Runtime

blackscholes
bodytrack

fe
fluidanimate

freqmine

swaptions
Vips

X264

-20% 0% 20% 40% 60% 80% 100%
Energy Reduction

93

Feature Predictive Power

Max line length

Total identifier length
Avg identifier length
Total constructor calls
Total line length

Max identifier length
Total unique identifiers
Total identifiers

Total distinct methods
Token entropy

Total floats

Max nulls

Avg string length
Total numbers

Avg loops

Avg nulls

Identifier ratio

Has exceptions

Total assertions

Avg branches

Max characters

Avg arithmetic operators
Method ratio

Has assertions

0 0.1 0.2 0.3 0.4 0.5
94

