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Abstract—We present a generalizable formal model of soft-
ware readability based on a human study of 5000 participants.
Readability is fundamental to maintenance, but remains poorly
understood. Previous models focused on symbol counts of small
code snippets. By contrast, we approach code as read on screens
by humans and propose to analyze visual, spatial and linguistic
features, including structural patterns, sizes of code blocks, and
verbal identifier content. We construct a readability metric based
on these notions and show that it agrees with human judgments
as well as they agree with each other and better than previous
work. We identify universal features of readability and language-
or experience-specific ones. Our metric also correlates with an
external notion of defect density. We address multiple program-
ming languages and different length samples, and evaluate using
an order of magnitude more participants than previous work, all
suggesting our model is more likely to generalize.

I. INTRODUCTION

Modern software developers spend more time maintaining
and evolving existing software than writing new code [1], [2],
[3]. Software readability, a fundamental notion related to the
comprehension of text, is critical to software maintenance:
reading code is a necessary first step toward maintaining it.

Much research, both recent and established, has argued that
readability plays a large role in software maintenance. A well-
known example is Knuth, who viewed readability as essential
to his notion of Literate Programming [4]. He argued that a
program should be viewed as “a piece of literature, addressed
to human beings” and that a readable program is “more robust,
more portable, [and] more easily maintained”. Haneef argued
in favor of a development group dedicated to readability and
documentation: “without established and consistent guidelines
for readability, individual reviewers may not be able to help
much” [5]. Knight and Myers argued that a source-level
check for readability improves portability, maintainability and
reusability and should thus be a first-class phase of software
inspection [6]. Basili et al. showed that inspections guided
by reading techniques are better at revealing defects [7]. An
entire development phase aimed at improving readability was
proposed by Elshoff and Marcotty, who observed that many
commercial programs were unnecessarily difficult to read [8].
More recently, a 2012 survey of over 100 developers and
managers at Microsoft by Buse and Zimmermann found that
90% of responders desire readability as a software analytic
feature, placing it among the top three in their survey [9].

Readability metrics are well-established in the domain of
non-software natural language. Metrics such as the Automated

Readability Index [10] and Flesch-Kincaid Grade Level [11]
are commonly used in commercial software and policies.
All are based on a few simple measurements, such as the
lengths of words and sentences. For example, Flesch-Kincaid
is integrated into popular editors such as Microsoft Word and
has become a government standard, with the US Department
of Defense requiring internal and external documents to have
a Flesch readability grade of 10 or below (DOD MIL-M-
38784B). In the domain of software, formal metrics for
readability are well-established in particular domains such as
hypertext [12].

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse et
al. [13] and refined by Posnett et al. [14]. Such models are
not coding standards (cf. [15]) but are based on combinations
of surface-level syntactic features such as operator counts or
line lengths, aim to agree with human judgments, and have
been found to correlate with external notions of software
quality [16]. Such software readability models do not attempt
to describe programmatic complexity (cf. [17]), which derives
from system requirements and algorithms, but instead focus
on readability as a controllable accidental complexity [18].

Despite the advantages of a formal notion of software
readability, previous readability metrics do not adequately gen-
eralize. They are based on small (typically 7-line) snippets of
code from a single programming language, are tied to shallow
surface features that do not account for visual presentation
or linguistic meaning, and derive from the judgments of a
relatively small number of students [13], [14]. We propose a
readability model that addresses all of these concerns while
remaining lightweight and applicable.

Intuitively, the effectiveness of syntax highlighting sug-
gests that visual or geometric formatting significantly impacts
code readability. Similarly, the prevalence of variable naming
standards (e.g., underscores, camel case, Hungarian notation)
suggests that meaningful linguistic information is captured by
identifiers. We thus propose the first incorporation of geomet-
ric, pattern-based and linguistic aspects and features into an
automated readability metric. For example, code in which the
“=” operators in a sequence of assignment statements “line
up” vertically on the screen may be viewed as more readable,
as may code in which identifiers contain English synonyms
or code in which comments form a colored rectangular block.
We propose to incorporate such features into our model of
readability.



In addition, we target multiple languages with potentially
distinct notions of readability: Java, a verbose object-oriented
baseline; Python, which eschews curly braces but enforces
indentation; and CUDA, a C-and-assembly derived language
for programming GPUs. We consider varying amounts of code,
from the small snippets of previous work to samples represent-
ing an entire 50-line screen. Finally, we base our model on the
judgments of over 5,000 different human annotators, of which
1,800 have industry experience.

The contributions of this paper are as follows:
• We present a formal descriptive model of software read-

ability based on syntactic notions as well as novel features
related to the visual and linguistic presentation of code
in modern software development. (Section III)

• We perform a human study involving over 5,000 humans,
three programming languages, and 360 code samples,
each up to 50 lines long (larger than previous work
in all cases, an order of magnitude larger in some).
(Section IV) Our metric correlates with human judgments
of readability 2.3 times better than does previous work.
(Section V-A)

• We demonstrate that our readability metric correlates with
defect density, an external notion of software quality. Less
readable code is more likely to contain analysis-reported
defects by a factor of 2.2. (Section V-C)

• Using our large dataset, we analyze the commonali-
ties and differences in readability judgments across lan-
guages, human experience levels, and programming back-
grounds. For example, we find that student judgments of
readability are explained by concerns like the use of oper-
ators and numeric literals, while industry experience leads
to judgments that place a higher priority on whitespace.
In addition, while we find that line length is important to
the readability of programs in the aggregate, other factors
such as the extent of operator usage often play a larger
role within individual languages. (Section V-D)

II. MOTIVATION

In this section we motivate the need for visual, spatial
and linguistic features in a readability model, as well as
detailing a lack of generality in previous models. Consider
the partial Python code in Figure 1. It features well-aligned
procedure bodies, a visibly-patterned structure with similarly-
shaped blocks of text, and the frequent use of English-language
words inside identifier names (e.g., “children” serves as both
a field name and as part of a method name). In our human
study, two-thirds of participants viewing the full code rated
it as readable (i.e., a 4 or 5 on a 5-point scale). Intuitively,
the regular visual structure and selection of identifiers seem to
contribute to this judgment.

However, previous attempts to model readability are unable
to capture that intuition. The readability tool of Buse et al. [13]
gives the entire code a score of 0% (the lowest possible). This
occurs even though the code in question is interspersed with
blank lines (the most powerful positive feature in the Buse
model) and contains relatively few long lines or identifiers

1
2 def handleBlockQuote(node):
3 result = BlockQuoteDitem(node.nodeName)
4 result.children = processChildren(node)
5 return result
6
7 def handleList(node):
8 result = ListDitem(node.nodeName)
9 result.children = processChildren(node)
10 return result
11
12 def handleListItem(node):
13 result = ListItemDitem(node.nodeName)
14 result.children = processChildren(node)
15 return result
16
17 def handleTable(node):
18 result = TableDitem(node.nodeName)
19 # Ignore table contents that are not tr
20 result.children = [x

Fig. 1: Sample code from the Python Docutils package (lines
after 20 omitted for space). Two-thirds of human annotators
rated this code as quite readable (4 or 5 on a 5-point scale).
By contrast, the Buse readability tool rates it 0% readability,
its lowest possible score.

(the two most negative features). Work by Posnett et al. [14]
has previously demonstrated that the Buse model does not
generalize to samples much larger than about seven lines. In
addition, this example helps to demonstrate that it fails to
capture visual and linguistic regularity.

As another example of this line of reasoning, consider the
sample CUDA code in Figure 2. In our human study, two-
thirds of human annotators rated the code as unreadable (i.e.,
a 1 or 2 out of 5). A naı̈ve counting suggests that it is
heavily commented: 61% of its characters appear in comments.
However, a closer inspection indicates the comments follow
a less-desired pattern: one comment contains another (line 1)
and the majority of the comments serve to remove code rather
than to explicate it (it may not be immediately clear if any of
the three comments describe the current behavior of the code).

The Buse metric does not match our human annotators’
judgments and gives this sample a high 94% readability
score (out of 100%). Even though this sample is seven lines
long, the desired length for the Buse metric, its results are
still unintuitive: it counts the number of comments without
considering the spatial structure (i.e., the long, thin and nested
comments on line 1 and 2). Similarly, it counts the number
of identifiers without regard for their length or content. This
code sample features a clear identifier naming convention, but
the first non-comment identifier starts with “et”, which is not
obviously an English word.

We desire a formal descriptive metric of software readability
that more closely matches human intuitions and generalizes
to handle visual and linguistic features, longer code samples,
and multiple programming languages. In the next section
we describe our model, building on previous purely-syntactic
approaches and extending them with richer semantic features.



1 //float *attenuationIntegralPlaneArray_d; //stores partial integral on planes parallel to the camera
2 //CUDA_SAFE_CALL(cudaMalloc((void **)&attenuationIntegralPlaneArray_d, img->dim[1]*img->dim[3]*sizeof(float)));
3
4 et_line_integral_attenuated_gpu_kernel <<<G1,B1>>> (*d_activity, *d_attenuation, currentCamPointer);
5
6 CUDA_SAFE_CALL(cudaThreadSynchronize());
7 }

Fig. 2: Sample CUDA code from the NiftyRec project. Two-thirds of human annotators rated this code as unreadable (1 or 2
on a 5-point scale). By contrast, the Buse readability metric gives it a high 94% readability score.

III. READABILITY MODEL

While readability is widely regarded as critical to code
quality and maintainability [1], [2], [3], [5], [8], [17], [19],
[20], [21], it is not clear how such a potentially subjective
notion should be modeled formally [22]. Buse et al. first pro-
posed a model based on a large number of shallow syntactical
features [16], while Posnett et al. proposed an improved model
based on a much smaller number of features [14].

Following previous work, we define readability as a map-
ping from a code sample (some number of contiguous lines)
to a continuous score domain. We base our mapping on a
weighted logistic combination of numerical features derived
from the code sample. Unlike previous work, we design and
include features that capture structural patterns, visual percep-
tion, alignments, and natural language notions, in addition to
punctuation and syntax.

Since our model takes into account the spatial structure
and natural language content of various tokens, we require a
lexer definition for each subject language (i.e., a list of regular
expressions and associated tokens). For languages where token
types may depend on context (e.g., “identifier” vs. “type name”
in C-like languages), we treat all such tokens as identifiers.
This approach allows our metric to capture more semantic
richness than pure character counting, but without requiring
formal parsing (and thus we can still analyze “ill-formed”
code fragments). This is in contrast to previous metrics [13],
[14], which count punctuation characters without considering
language rules. Similarly, our metric requires a dictionary for
the natural languages used in the code development (cf. the
spelling checker in a modern IDE).

In this section we describe our features in general. In the
next section we describe our human study and how we learn
the relative weights of these features.

a) Structural Pattern Features: We propose several types
of visual features for modeling readability. The first measures
the frequency of changes in characteristics such as indentation
from line to line in the source code. Intuitively, code that
smoothly transitions into and out of indentation blocks and that
is more consistent in the size of nested blocks or commented
regions may provide a comfortable visual framework for
the programmer. In some cases, such a regular framework
would foster a more rapid understanding of the structure and
semantics of the code. Consider Figure 1: the regular shapes
of the function bodies may help the reader to understand that
the functions have similar meanings.

1 const int tid=blockIdx.x*blockDim.x+threadIdx.x;
2 if(tid < c_VoxelNumber){
3 int3 imageSize = c_ImageDim;
4
5 short z=(int)(tid/((imageSize.x)*(imageSize.y))
6
7 int radius = (windowSize-1)/2;
8 int index = tid - imageSize.x*imageSize.y*radiu
9 z -= radius;
10
11 float4 finalValue = make_float4(0.0f, 0.0f, 0.0
12
13 for(int i=0; i<windowSize; i++){
14 if(-1<z && z<imageSize.z){
15 float4 gradientValue = tex1Dfetch(gradi
16 float windowValue = tex1Dfetch(convolut
17 finalValue.x += gradientValue.x * windo
18 finalValue.y += gradientValue.y * windo
19 finalValue.z += gradientValue.z * windo
20 }
21 index += imageSize.x*imageSize.y;
22 z++;
23 }
24
25 smoothedImage[tid] = finalValue;
26 }
27 return;
28 }

Fig. 3: Sample CUDA code from the NiftyRec project (long
lines have been truncated for space). The indentation pattern
in this sample may be reasonably reconstructed using just the
first 5 components of the discrete Fourier transform.

We extend our intuition that certain aspects of readable
code should change in a regular pattern from one line to the
next to other line-based metrics. For example, line length, the
nesting of function calls, and the use of whitespace are also
relevant. We codify this intuition mathematically: we measure
the line length frequency by measuring the values for each
line of code and taking the discrete Fourier transform (DFT)
of that signal [23]. The DFT computes the coefficients to
reconstruct a signal using a Fourier series, and can be thought
of as capturing the frequency distribution of the signal. It is
commonly used in image processing (e.g., [24]) but has not,
to the best of our knowledge, been previously used to help
tease apart software readability. For each line-based metric, we
compute both the bandwidth of the signal and the amplitudes
of the primary frequencies; these indicate the significance of
rapid changes in the feature as well the broader pattern.

To make this discussion concrete, consider Figure 6a, which
shows the measured indentation of the code sample in Fig-
ure 1. The amplitudes of the coefficients of the corresponding
DFT are shown in the solid curve in Figure 6b. In determining



1 class class_attribute(PythonStructural, Element): pass
2 class expression_value(PythonStructural, Element): pass
3 class attribute(PythonStructural, Element): pass
4
5 # Structural Support Elements
6 # ---------------------------
7
8 class parameter_list(PythonStructural, Element): pass
9 class parameter_tuple(PythonStructural, Element): pass
10 class parameter_default(PythonStructural, TextElement):
11 class import_group(PythonStructural, TextElement): pass
12 class import_from(PythonStructural, TextElement): pass
13 class import_name(PythonStructural, TextElement): pass
14 class import_alias(PythonStructural, TextElement): pass
15 class docstring(PythonStructural, Element): pass
16
17 # =================
18 # Inline Elements
19 # =================
20
21 # These elements cannot become references until the sec
22 # pass. Initially, we’ll use "reference" or "name".
23
24 class object_name(PythonStructural, TextElement): pass
25 class parameter_list(PythonStructural, TextElement): pa
26 class parameter(PythonStructural, TextElement): pass
27 class parameter_default(PythonStructural, TextElement):
28 class class_attribute(PythonStructural, TextElement): p
29 class attribute_tuple(PythonStructural, TextElement): p

Fig. 4: Sample Python code from the Docutils project (long
lines have been truncated for space). The three relatively wide
comment blocks in this snippet can be adequately represented
with low frequencies, resulting in a smaller bandwidth in the
X direction.

the bandwidth, we are interested in how much fine-tuning of
high-frequency components is needed to describe the original
signal. That is, how wide is the range of frequencies containing
most of the information in the signal? We would like to select
a bandwidth such that the amplitudes for these frequencies are
sufficient to reconstruct a good approximation of the original
signal, as shown in the dashed reconstruction in Figure 6a.

Since the DFT is even-symmetric and periodic, we can
define the range [−f, f ] to be this range of frequencies;
the bandwidth is therefore 2f + 1. Finding the bandwidth
reduces to finding an appropriate value for f . In many signal
processing applications, the signal bandwidth is often taken to
be the range of frequencies over which the amplitude is above
−3 dB relative to the maximum amplitude [25]. However, due
to the extreme amplitude of the first DFT coefficient for the
code features we are analyzing, this rule typically results in a
bandwidth of 1, corresponding to the range [0, 0]. This single
coefficient permits the reconstruction of a sine wave; however,
a sine wave typically does not fit the measured code features
very well. Instead, we compute the bandwidth by finding the
highest frequency f for which the amplitude is greater than
standard deviation of the amplitudes. Empirically, we have
found that this tends to provide good approximations of the
original signal, as shown in Figure 6a and Figure 6c.

b) Visual Perception Features: The intuition for this set
of features is that source code is often rendered on-screen
for a programmer to view, that is, as a matrix of colored
characters and whitespace. We propose to model the effects of

1 deltaW += vd[threadIdx.x] * hd[threadI
2 }
3
4 // update weights
5 if (i < I && j < J) {
6 deltaW /= samples;
7
8 int w = j * I + i;
9
10 cudafloat learningRate = UpdateLearnin
11 UpdateWeight(learningRate, momentum, d
12 }
13
14 if(i < I && threadIdx.y == 0) {
15 errors[i] = error;
16
17 // Update a
18 if (j == 0) {
19 deltaA /= samples;
20
21 cudafloat learningRate = Updat
22 UpdateWeight(learningRate, mom
23 }
24 }
25
26 // Update b
27 if (i == 0 && j < J) {
28 deltaB /= samples;

Fig. 5: Sample CUDA code from the GPUMLib project (long
lines have been truncated for space). The three comments are
small relative to the rest of the code; the longest line is 135
characters long. Adequately representing these short comments
in the DFT requires a significant number of high-frequency
adjustments, resulting in a larger bandwidth in the X direction.

syntax highlighting, which is commonly used but not univer-
sally standardized, by assigning different symbolic colors to
characters that make up different sorts of tokens. To the extent
that syntax highlighting positively impacts code readability, we
would expect that visually large regions of same-color text will
be less readable than text containing changes in color, since
such same-color text is essentially not highlighted (i.e., the
extra perceptual channel provided by color is not being used
to make the code more easily understandable).

We extract two main types of features from this symboli-
cally colored text. The first groups the characters in the code
snippet according to their assigned color and computes the
total character count for each such group. This effectively com-
putes the total area highlighted with each color in the syntax
highlighted text. Our metric measures the ratios between the
areas occupied by each pair of colors. For example, consider
Figure 2. The top two lines consist of commented code, to
which we assign one symbolic color. Lines 4 and 6 consist
primarily of identifiers, which we assign another color. Our
metric computes the ratio of the number of characters in the
comments to the number of characters involved in identifiers
names; in this case, there are almost twice as many characters
in the comments as in the identifiers. We also compute the
fraction of the total text that is highlighted with each color,
for example, in Figure 2, 61% of the text is in the comments.

Our second visual feature takes the two-dimensional discrete
Fourier transform of the image formed by the colored char-
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(a) Indentation for code in Figure 1 (solid) and DFT-based
reconstruction (dashed).
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(b) DFT for indentation in Figure 1.
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(c) Indentation for code in Figure 3 (solid) and DFT-based
reconstruction (dashed).
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(d) DFT for indentation in Figure 3.

Fig. 6: Indentation and corresponding DFT of selected code samples. The dashed curves in (a) and (c) describe the signal
reconstructed by setting the DFT amplitudes outside the central band to zero and taking the inverse DFT of the result. To show
more of the detail of the transform, (b) and (d) show only the lower half of the frequency domain, since the Fourier transform
is even-symmetric and periodic. The vertical dashed lines indicates the bandwidth of the signal; most of the information needed
to reconstruct the signal lies between this line and its reflection around 0.



acters. Conceptually, this is akin to “standing back” from the
monitor or otherwise zooming out until the individual letters
are not visible but the blocks of color are, and then measuring
the relative noise or regularity of the resulting view. In this
case, we measure the average bandwidth of the transformed
signal in the horizontal and vertical directions.

Consider the code samples in Figure 4 and Figure 5. Both
samples contain three comments, but the comments in the
first are long relative to line length in the sample while the
comments in the second are relatively very short. In terms
of the DFT, we expect the shorter comments in the second
sample to require more high frequency adjustment to represent
than the longer comments, resulting in a larger bandwidth.
We represent this mathematically by constructing matrices
in which each cell corresponding to a comment character
contains a 1 while all other cells contain a 0, then taking
the two-dimensional DFT of the matrices. The results of
this computation are shown in Figure 7. The central peak
of Figure 7a is much narrower in the X direction than the
central peak of Figure 7b, providing a visual intuition for the
bandwidths of the respective signals. In the case of these two
code samples, the computed bandwidth in the X direction is
four times larger for Figure 5 than for Figure 4.

c) Alignment Features: We observe that humans often
“line up” the syntactic elements of source code to make similar
structure clear. For example, in a sequence of assignment
statements the “=” operators and right-hand-side expressions
are often placed in the same respective columns. To capture
this intuition we again consider the source code as a matrix
of characters to find regions in which tokens of the same
type occurring on consecutive lines of code are aligned to the
same column. Specifically, we look for a pattern consisting
of more than two lines of source code in which a transition
between whitespace and a particular token type or between
two particular token types occurs at the same column in every
such line. Note that it is possible for a single line to be part of
more than one such pattern. For example, in the case described
above where “=” operators and the right-hand-side expressions
of consecutive assignments are aligned, our metric recognizes
two alignment patterns, one for the operators and another for
the expressions. We count the number and extent of these
regions and include both as features in our model.

d) Natural Language Features: In addition to these
visual features, we investigate the effect of the content of
identifiers on readability. Using and producing natural lan-
guage is viewed as increasingly important for understanding
or documenting code (e.g., [26]). For readability, we look
for identifiers in which the prefix or suffix is a recognizable
English word. We also look for identifiers with underscore-
separated terms and identifiers written in camel case. In both
cases, we record the fraction of identifiers in which the terms
are English words.

e) Shallow Syntax Features: Following previous
work [13], we incorporate some syntactic features, such as
counts of various punctuation characters, into our model.
Beside their demonstrated explanatory power, these features

provide a baseline against which to evaluate the relative
explanatory power of our new features. That is, if we find
that simple syntactic features predict most of a human’s
readability judgment, this would provide evidence against the
utility of our proposed features. The syntactic features we
use include line length, the count of distinct identifiers, and
the frequency of keywords, numeric literals, and operators in
the code sample.

f) Formal Descriptive Model: Since we have many inter-
acting features that may be positively or negatively associated
with readability, we must select a subset of features on which
to base the model. We then construct our metric using logistic
regression to learn the relative weights of the features. Note
that unlike linear least-squares regression, which minimizes
error, logistic regression finds parameters that maximize the
likelihood of observing the sample values. We use the results
of a large human study, detailed in the next section, to provide
suitable sample values.

We use the wrapper selection approach [27] to identify a
small subset of features that effectively describes the sample
values. The wrapper approach trains a classifier on each subset
of features it evaluates, ranking the subsets according to the
accuracy of the trained classifier. For our overall readability
metric, this approach identified 7 key features. This contrasts
with the 25 features used by Buse et al. [13]. In some exper-
iments we learn metrics for particular languages or subsets
of users, in which case as few as four key features may
be identified (see Section V-D). In all cases we use slightly
more than the three features identified in Posnett et al.’s final
metric [14].

IV. HUMAN STUDY

We conducted an IRB-approved web-based survey of over
5000 humans to determine ground-truth readability ratings for
360 examples of the languages in our study. Study participants
were each shown twenty samples and asked to rate them on
a 1–5 Likert scale from very unreadable (1) to very readable
(5). The examples shown to an individual participant were
randomized so that each participant saw distinct samples of
varying lengths taken from Java, Python, and CUDA. We
applied basic syntax highlighting to each example, assigning
colors to token types as described in Section III. Participants
could go back to review and change their answers to previous
samples at any time before the end of the survey. After rating
the code samples, participants were asked questions about their
experience with programming in general and specifically with
the programming languages used.

A. Sample Selection

All snippets used in our survey were drawn from open-
source projects in the SourceForge repository. We used that
website’s search function to identify projects tagged as primar-
ily using each of the languages in the study. We then selected
the first 10 projects from the list of recently updated projects
for each language (as of March 15, 2012). In cases where a
project was incorrectly tagged and contained no source code in
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(b) 2D DFT for comments in Figure 5.

Fig. 7: Amplitudes of the two-dimensional DFTs of the comments in two code samples. The DFT in (a) has fewer data points
in the X direction because of the shorter lines in the code sample it represents. Note that the X-direction width of the central
mound is greater in (b) than in (a). The corresponding bandwidths reflect this; the average bandwidth in (b) is over 4x larger
than the bandwidth in (a).

the desired language, we skipped the project and selected the
next in the list of search results. The projects used as sources
of code samples are found in Table I. Overall, thirty projects
spanning three languages and totaling over seven million lines
of code were selected as sources for sample code.

For each language, we extracted short, medium, and long
samples, corresponding to roughly 10, 30, and 50 lines each.
For each language and length bound, we chose 40 samples
uniformly at random from all available lines in source files
anywhere in the project ending in the correct extension. We did
not require the samples to contain grammatically well-formed
definitions; instead, each sample could begin or end in the
middle of a block or multi-line statement, so as to simulate the
user experience of viewing a window of an arbitrary portion
of code. The three languages, three sample lengths, and 40
samples of each yielded a total of 360 samples for our survey.

B. Survey Participants

We initially announced the survey to the members of a mas-
sively on-line class at Udacity, an on-line education provider
similar to edX or Coursera.1 The students were informed of
the purpose of the survey and that no identifying information
would be collected. The survey request was also posted by
participants to the programming forum of reddit, a popular
social news website,2 and thus attracted participants from

1http://www.udacity.com/overview/Course/cs262
2http://www.reddit.com/r/programming/comments/tr5da/please

participate in the university of virginias/

throughout a much wider, and more professional, community.
Ultimately, 5468 participants attempted the survey and

provided at least one readability judgment. Of those, 2870
completed all 20 samples and 2681 provided answers to the
final experience questions. Table II summarizes the partic-
ipants’ experience levels. The extensive breadth and depth
of participation in our survey helps to ensure the generality
of our model. For example, even if attention is restricted
solely to participants with at least five years of industrial
experience, our survey contains almost an order of magnitude
more participants (1091) than the entirety of the participants
used in previous work (i.e., 110 undergraduate and 10 graduate
students [13]).

For a survey this large, small threats to validity can have
a magnified effect. One potential concern was ballot stuffing
(i.e., multiple submissions from the same IP address). Our
logs and random samples indicate at most 2.9% of judgments
may have resulted from such mischief. Similarly, a UI bug
prevented some users of the Opera browser from submitting
their experience answers after submitting their readability
ratings. We estimate that at most 2.3% of all users were
affected.

To put the size of this survey in perspective, a recent paper
examined 3000 papers over the last ten years of six major
software engineering conferences and found that most user
evaluations involve 6–30 participants and that “over 45 partic-
ipants” is “very large” [28, Fig. 11]. In fact, that work observed
0 user evaluations involving 46+ participants that included



TABLE I: Sources for code samples used in the on-line survey.

Project Language LOC

BarraCUDA Fast Short Read Aligner CUDA 4671
Cryptohaze CUDA 9656
CUDASW++ CUDA 12255
GPU Autocorrelator CUDA 1891
GPUMLib CUDA 6385
libCudaOptimize CUDA 2163
NiftyRec CUDA 4262
Nifty Reg CUDA 5677
Vocale CUDA 5797
VolTK CUDA 16

CUDA total 52773

Angry IP Scanner Java 20289
Azuerus/Vuze Java 896621
FreeMind Java 108332
Liferay Portal Java 5340077
PDF Split and Merge Java 18963
SAP NetWeaver Server Java 41385
SQuirreL SQL Client Java 659723
Sweet Home 3D Java 110597
TightVNC Java 12418
Webmin Java 9401

Java total 7217806

Docutils Python 178200
Firebird Python 36471
GNS3 Python 214256
Inkscape Python 19878
MySQL for Python Python 5098
Pidgin Python 1087
qBittorrent Python 4299
Scribus Python 38382
Task Coach Python 157750
Ubuntuzilla Python 1651

Python total 657072
total 7927651

TABLE II: Survey participant self-reported experience.

Category Median (yrs) > 1yr > 5yr > 10yr

Overall 8 2598 1972 1242
Java 2 1896 646 247
CUDA 0 181 8 2
Python 1 1655 253 59
School 3 2118 522 28
Industry 3 1808 1091 655

both students and practitioners, making this evaluation novel
in that regard.

No users were excluded from participating in the survey.
All votes from all users are included in the analyses below,
except where otherwise noted (e.g., when comparing industrial
to academic participants, the relevant slices of the dataset are
used). Our raw, anonymous study data is publicly available.3

V. STUDY AND EXPERIMENTAL RESULTS

In this section we empirically evaluate our readability metric
with respect to the human judgments from our survey and with

3http://dijkstra.cs.virginia.edu/projects/readability/results.zip

0 1000 2000 3000 4000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Annotators (sorted)

S
pe

ar
m

an
 c

or
re

la
tio

n 
w

ith
 m

ea
n avg: 0.512

median: 0.551

our metric: 0.724

Buse metric: 0.309

Fig. 8: Agreement with the average score for each code
sample. Our metric agrees with the human ground truth at
least as well as the human median and human mean agree
with it (0.724 vs. 0.551 and 0.512). Previous work does less
well. This figure excludes annotators who only rated one or
two samples, since the Spearman correlation for those users
would not be meaningful.

respect to external indicators of software quality. In particular,
we address four research questions:

1) Does our metric predict human judgments? That is, does
our metric agree with humans at least as well as they
agree with each other?

2) How much do our novel features (visual, structural,
linguistic, etc.) contribute to the success of our metric?

3) Does our metric agree with tool-reported defect density,
an external notion of software quality?

4) Can our model illuminate readability differences be-
tween various groups (e.g., industrial vs. academic) or
various languages (e.g., Python vs. Java)?

We now consider each research question in turn.

A. Agreement with Humans

In this subsection, we evaluate the ability of our metric to
predict human judgments of readability. Because readability
is subjective, humans are not in perfect agreement with each
other. Using our large number of human judgments, we
consider the average judgment for each sample to be its
ground-truth readability. We can then compute inter-annotator
agreement. We measure our metric’s agreement with the
ground truth and compare that to the average and median
human agreement with the ground truth.



Figure 8 shows the Spearman correlation between the rat-
ings given by each survey participant and the ground-truth
ratings for all samples in the survey. Spearman correlation
recognizes the similarity between the ordering of elements.
Note that our metric has a significantly higher correlation with
the ground truth than do the average or median user: that is,
our metric agrees with humans at least as well as they agree
with each other. Our metric also correlates with humans 2.3
times better than does the Buse metric as published [13], which
produces ratings that have a much lower correlation with the
ground-truth score. We conclude that our metric agrees well
with user perceptions for large and small samples from a
variety of projects in three languages.

One potential threat to the validity of such an experiment
is overfitting (i.e., learning a metric that is too complex
with respect to the data). The concern is essentially that
the metric may learn the training data rather than learning
generalizable features of the problem. One common technique
used to measure the danger of overfitting is N -fold cross
validation [29], in which the training set is divided into N
groups and each group is held out as testing data for a
metric learned on the N − 1 remaining groups. If the metric
performance under cross-validation were different, that would
suggest that the metric failed to learn general rules that apply
to the held-out groups. We carried out 10-fold cross validation
and found the performance change was approximately 1.2%.
This, coupled with our use of at most twelve features in a
logistic model, gives us confidence that the metric is learning
general readability characteristics that allow it to effectively
predict unseen data.

B. Visual and Linguistic Features

In this subsection we explain a portion of our metric’s
success in terms of the features introduced in Section III.
We fold part of this evaluation into a direct comparison with
previous work by retraining the Buse metric (which includes
only shallow syntactic features) using our dataset.

Figure 9 depicts the performance of our metric and the
retrained Buse metric for several interesting subsets of the data
in our survey. Performance is calculated using the F-measure,
the harmonic mean of precision and recall, a common metric
in the domain of information retrieval [30]. Here precision is
the ratio of the number of snippets that both humans and our
metric rate as “more readable” (i.e., greater than the median
ground-truth score) over the total number our metric rates
more readable. Recall is the ratio of the snippets that both
rate more readable over the total humans rate more readable.
Our use of the F-measure to evaluate the performance of
a readability metric follows similar uses in previous work
(e.g., [13, Fig.9]).

In all cases, a metric using our visual and linguistic features
outperforms a metric trained on the same data but not using
such features. Over all available samples, the difference in
performance was 5%. Given the established power of syntactic
features for modeling readability, we thus conclude that our
new features contribute significantly to the success of our
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Fig. 9: Comparison of the performance of our metric against a
metric based on the syntactic features proposed by Buse et al.
but retrained on our larger datasets. Our metric outperforms
the retrained Buse metric by 5% overall and by 16–26% on
particular languages.

metric. The gap in performance is greatest when particular lan-
guages are considered, where our approach outperforms others
by 16–26%. This suggests that while the syntactic features
included in the Buse metric are sufficient for an aggregate
description of Java readability, they lack the expressiveness to
describe the readability requirements of targeted domains.

The results of cross validation highlight another notable
difference between the features in our model and those in the
Buse model. The performance difference between testing and
training on the same data and using 10-fold cross-validation
was 2× to 14× larger for the Buse metric than for our metric,
with the largest differences observed on the language-specific
slices. This suggests that the features in the Buse metric, while
good for predicting student evaluations of Java snippets, do
not capture the complexity of this more general situation, and
that regression shows more signs of overfitting using the large
number of available syntactic features.

C. Agreement with Defect Density

In this subsection we demonstrate that the established link
between readability metrics and software quality [16] extends
to our readability metric. Readability is a popular metric for
use in software analytics. While our goal is to make a metric
predictive of human judgments of readability, not to make a
metric predictive of software quality, many have observed that
similar metrics can be intertwined [31], [32].

We focus on one aspect of defect density. Even for



TABLE III: Percentage of methods implicated by FindBugs.

Readability
Benchmark Low High Ratio

Angry IP Scanner 8.2% 1.8% 4.64
Azureus/Vuze 29.8% 14.1% 2.12
FreeMind 26.0% 18.2% 1.43
Liferay Portal 3.7% 2.5% 1.48
PDF Split and Merge 10.8% 3.8% 2.84
SAP NetWeaver Server 8.6% 19.8% 0.43
SQuirreL SQL Client 12.7% 4.1% 3.11
Sweet Home 3D 8.2% 3.8% 2.19
Tight VNC 10.4% 12.8% 0.82
Webmin 12.7% 3.8% 3.37

average 13.1% 8.5% 2.24

open source software with issue-tracking and version control
software, it can be difficult to link defect reports to code
changes [33], [34] or properly handle reassignments [35]
or non-essential changes [36]. We thus employ the popular
FindBugs [37] static analysis software as a proxy for defects.
Intuitively, we seek to test the hypothesis that code rated as
less readable is more likely to be flagged by FindBugs as
containing a potential defect. Since FindBugs takes compiled
Java bytecode as input, this experiment does not apply to
CUDA and Python benchmarks. We consider every method
containing at least one line that was mentioned in at least one
FindBugs report to contain a reported defect. We then compute
the readability for each method, and compare the readability of
methods implicated by bug reports to the readability of those
methods involved in no bug reports.

Table III separates the methods of each benchmark accord-
ing to whether our tool assigned them high or low readability
scores. For each category, the table lists the percentage of
methods in that category that FindBugs implicated as poten-
tially containing a defect. On average we find that methods
with low readability scores are 2.24 times more likely to
be flagged by FindBugs than methods with high readability
scores. Note that FindBugs operates on compiled bytecode and
does not look at syntactic features of source code during its
analysis. In other words, FindBugs and our metric are based
on potentially-independent signals in the software (compiled
program semantics vs. visual and spatial source code features)
but tend to agree on the same result. We thus gain confidence
that the increased rate of defect reports among less readable
methods reflects a true association between certain bugs and
low readability.

D. Universal and Particular Aspects of Readability

Having established that our metric and features are highly
predictive of human judgments of readability, we perform a
series of comparative analyses on slices of our dataset. These
controlled experiments allow us to tease apart which features
best explain readability judgments made by various groups
of humans or made on various sorts of software. We use the
survey data to focus on judgments made by individuals with
a particular level of experience in the language at hand.

Intuitively, we expect some of the features that most effec-
tively characterize readable code to be different for different
programming languages. Table IV shows our results, which
support this intuition when we restrict attention to each
language or subset of humans. Each feature’s description is
prefixed with its category, as described in Section III. Each
feature’s relative power is calculated using the ReliefF [38]
method, which does not assume conditional independence.
Higher values indicate a more predictive feature. Finally, each
feature’s direction of correlation with modeled readability is
given. For example, in our full model, long lines decrease
readability while our perceptual feature related to the visual
shape of comments increases readability.

Not all features are universal across languages. For example,
we find that line length is the most significant characteristic
of source code affecting readability across all languages, as
well as for Java specifically. However, when we consider only
Python examples, line length does not play a role in the metric
we learned. Instead, the most significant feature is the average
number of identifiers per line, which is not a significant feature
for either of the other two languages.

Table IV also highlights the differences in perceptions of
readability among people with at least 5 years of experience
in industry and people with school background, but no more
than one year of experience in industry. We consider user
ratings provided for all languages. As with the data set from all
respondents in the survey, we find that line length is the most
significant factor in predicting readability ratings. However,
we find that whitespace also plays a significant role for the
group with at least 5 years industry experience, whereas it
does not among those with primarily academic experience.

We also investigated the effect of experience on perceptions
of readability within single languages. In this experiment, we
compare the responses of all participants on code samples from
a single language against those of participants with experience
in that language. (We do not conduct this experiment for
CUDA because the general inexperience with CUDA pre-
vented us from calculating a reliable ground-truth for people
with CUDA experience.)

Our results, shown in the table, indicate a marked degree
of consistency in the factors that describe readability. For
example, the features that predict the Java readability ratings
from the entire survey population by and large continue to do
so for the subset with Java experience. Only one feature in
the former model — the number of lines between instances
of the same identifier — is missing from the latter model.
The model learned from the experienced Java users data does
include several structural features that are not recognized in the
other model. We speculate that these patterns may be learned
with increased exposure to typical examples in the language.

Similarly, for Python the syntactic use of identifiers and
their linguistic content plays a significant role in our models
for all responses to Python code examples, and to those from
individuals with Python experience. The remainder of the
models show a less pronounced consistency than in the Java
experiment. However, we do observe that the visual impact of



TABLE IV: Selected features in our readability metric, ranked
according to ReliefF values for each. The direction is of
correlation with increased readability.

Category Feature Description Power Direction

Full Model, All Code Samples (5468 users, 76741 ratings)

syntax line length 0.0319 -
syntax long lines 0.0210 -
visual operator area and total area 0.0174 -

structural 1D DFT of syntax 0.0056 -
visual 2D DFT of comments 0.0039 +
visual string area to keyword area 0.0024 +

alignment minimum alignment length -0.0001 +

Java Samples (4956 users, 25684 ratings)

structural 1D DFT of whitespace 0.0388 -
syntax long lines 0.0349 -
syntax lines between identifiers 0.0114 -
syntax keywords 0.0040 +

structural 1D DFT of syntax -0.0065 -

Java Samples, 1+ Years Experience (1881 users, 12565 ratings)

structural 1D DFT of whitespace 0.0433 -
syntax long lines 0.0273 -
syntax keywords 0.0212 -

structural operator to keyword tokens 0.0158 -
structural 1D DFT of identifiers 0.0034 +
structural 1D DFT of keywords 0.0025 +
structural 1D DFT of syntax 0.0008 +

Python Samples (4966 users, 25352 ratings)

syntax identifiers 0.0442 -
linguistic identifier components 0.0141 -

visual operator area to keyword area 0.0083 -
structural operator to identifier tokens 0.0025 +
structural 1D DFT of syntax -0.0021 -

Python Samples, 1+ Years Experience (1654 users, 10901 ratings)

syntax identifiers 0.0325 -
linguistic identifier components 0.0257 -
structural 1D DFT of numbers 0.0099 -

visual string area to keyword area 0.0053 +

5 Years Industry Experience (1091 users, 21738 ratings)

syntax long lines 0.0203 -
syntax whitespace 0.0979 -
visual comment area to total area 0.0077 +

structural 1D DFT of whitespace 0.0054 -

Student, Less Than 1 Year Industry (786 users, 15707 ratings)

syntax long lines 0.0296 -
structural 1D DFT of syntax 0.0095 +
structural keyword to comment tokens 0.0085 +
structural 1D DFT of keywords 0.0077 -

visual keyword area to comment area 0.0072 +
syntax arithmetic 0.0048 -
syntax numbers 0.0035 +
visual operator area to string area 0.0011 +
visual string area to keyword area 0.0000 +

structural number to comment tokens -0.0029 -

keywords is important to both models.
Of the features we considered, our results show that the

only factor for readability that could be called universal is
line length, and even that is not relevant to Python-only judg-
ments. The readability of most subsets — different languages,
different realms of experience — are best explained through

features almost unique to those subsets.
However, while specific features are not universal, broad

concepts are. For example, each of the feature sets we describe
includes features related to the regularity of structural patterns
within source code (here measured by one-dimensional Fourier
transforms). Similarly, most of the feature sets include a
component describing the visual area occupied by various
colors on the screen. This supports our claim that our proposed
visual and structural techniques help to generalize our notion
of readability and provide a strong complement to simple
surface level features.

E. Threats to Validity

Although our experiments suggest that our metric agrees
with humans on a broad range of readability judgments, our
results may not generalize. In this subsection we address a
number of possible threats to validity.

a) Human study sample size: The accuracy of our metric
depends on the accuracy of the ground-truth data provided by
the thousands of volunteer participants in our on-line survey.
This represents more than an order of magnitude increase over
the number of participants used in previous models [13], [14].
Such a large number of respondents strongly mitigates the
danger that any single perspective might happen to dominate
our ground-truth readability scores.

b) Human study sample makeup: Another possible threat
to validity is that the respondents do not represent the atti-
tudes and preferences of the larger programming community.
However, our survey included a large number of practitioners
from both academia and industry, with a wide range of ex-
perience in both. The variety of experiences and backgrounds
shown among the survey participants diminishes the danger
of collecting a narrow sample of opinions. In particular, our
study contains 1091 participants with more than five years of
industrial experience, reducing the risk that our results would
reflect the tastes and needs of only the academic community.

c) Code sample selection: In addition to the representa-
tiveness of the survey participants, our results depend on the
representativeness of the code samples. An unrepresentative
set of samples would restrict the range of feature values
seen during the training phase and would limit our model’s
ability to generalize to other environments. To address this
concern, we selected code examples from a large number of
projects, in a variety of languages and sizes. To avoid human
bias in selecting examples that match a particular individual’s
perspective, we automated the selection process, randomly
choosing code examples from projects that had been selected
systematically based on external activity rankings.

d) Overfitting: As discussed in Section V-A, the danger
of overfitting the metric to the data exists in any application
of machine learning. We performed 10-fold cross validation
for every metric that we learned as a safeguard to detect cases
of overfitting. The average difference revealed was less than
2%, suggesting that overfitting is not a significant threat and
that our metric may generalize.



VI. RELATED WORK

The two most closely-related areas of related work include
other software readability metrics and software quality metrics.

To the best of our knowledge, the first automatic metric
of software readability that was based on the results of a
human study was developed by Buse et al. [13]. The Buse
work demonstrated that it is possible to capture mechanically
some notions of readability, a traditionally subjective judg-
ment. However, their study included 120 student participants
evaluating 100 short, Java-only snippets. In contrast, our
survey features almost 50× more participants, who rated 3×
as many long, medium, and short examples of code from three
different languages. Their model measured characteristics of
the character content in the source code, but did not consider
visual or spacial structure in the on-screen representation.

Posnett et al. developed an improved readability model [14],
based on Buse’s survey data, which demonstrated significant
agreement with human ratings using a simpler set of features
than its predecessor. In addition, they were the first to identify
a lack of generality in the Buse model: in particular, they
noted its focus on 7-line snippets and difficulties with longer
code samples. Their features focus on the textual complexity
or entropy of the source code rather than its spacial or visual
characteristics.

McCabe introduced the Cyclomatic complexity metric,
which aims to quantify the decision logic in a piece of soft-
ware [39]. Cyclomatic complexity is based on simple control
flow graph features. While it is used in practice, previous work
has suggested that Cyclomatic complexity largely measures the
length of a function and is unlikely to correlate with coding
defects (e.g., [17], [40]). Chidamber and Kemerer proposed
an improved set of metrics for object-oriented programs [41].
Their metrics are theoretically grounded and capture notions
such as the depth of the inheritance tree and the cohesion
in methods. By contrast, our approach aims to model read-
ability and human understanding — accidental complexities
in the source code text — rather than inherent architectural
complexity or control-flow decision logic.

Finally, code clone detection tools often make use of textual
features to locate code that has been duplicated from one
location to another (e.g., [42], [43], [44]). It is also possible
to use searches for similar code to aid in development, and
Lee et al. demonstrate a tool that aids development with
efficient searches of a large corpus [45]. While our structural
pattern and alignment features (see Section III) do capture
some notions of self-similarity or repetition, our goal is very
different from code clone detection or code search.

VII. CONCLUSION

Readability is one of the three most desired software analyt-
ics metrics by managers and developers, but of those three it is
the least available by a factor of two [9, Fig. 4]. In this paper
we seek to remedy that gap by proposing a general model
for software readability. Although readability is fundamental
to many aspects of software maintenance, existing models
are based on shallow syntax and the views of relatively few

students evaluating 7-line Java samples [13], [14], [16], which
limits their generality to other situations.

We acknowledge that code is typically read on screens by
humans and thus introduce visual, spatial and linguistic fea-
tures into the domain of software readability metrics. We pro-
pose structural pattern features (intuitively capturing regular
shapes using a 1D DFT), visual perception features (intuitively
capturing the colored regions seen when one “stands back”
from an IDE, using a 2D DFT), alignment features (intuitively
capturing elements that have been “lined up” by humans to
make structure clear, using token information), and natural
language features (intuitively capturing words inside identifiers
using dictionaries). We performed a large scale human study
involving over 5000 participants — an order of magnitude
larger than previous readability studies, and containing over
1000 people with at least five years of industrial experience.
We targeted multiple languages (Java, Python and CUDA) and
presented code samples of multiple, more indicative sizes.

Using our features and our human study data, we derived
an automatic metric of software readability that is highly
correlated with human values: it agrees with human judgments
at least as well as they agree with each other. Our metric
shows 2.3 times better agreement than a previously-published
metric [13], [16], which we demonstrate does not generalize to
multiple languages or code sample sizes. We find that a non-
trivial 5% of the performance of our metric can be attributed to
our visual, spatial and linguistic features. We demonstrate that
our metric, in addition to agreeing with humans, also correlates
with analysis-reported defects: less readable code is 2.2 times
more likely to be flagged as buggy. Finally, our large survey
allows us to tease apart aspects of readability that are universal
and aspects that are language specific. For example, long lines
generally negatively affect readability over all languages and
user backgrounds that we investigated, while we found that
users perceive whitespace and the natural language content
of identifiers to be specifically important to the readability of
Java and Python, respectively.

We have presented a model of readability that is signifi-
cantly more likely to generalize than previous work. We hope
that our large-scale human study and the availability of our
dataset may encourage other researchers to consider more
general user evaluations.
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