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1 Introduction

Software errors are both pervasive and expensive. Mature software projects ship with both known
and unknown bugs [49], and the number of outstanding defects typically exceeds the resources
available to address them [5]. A 2008 FBI survey of over 500 large firms reported that security
defects alone cost such firms $289,000 annually [66, p.16]; a 2002 NIST survey calculated that
software errors in the US cost 59.5 billion (0.6% of GDP) annually [59]. Manual error repair remains
the norm, but has become unsustainably time-consuming and expensive. A 2008 survey of 139
North American firms found that each spent an average of $22 million annually fixing software
defects [10]. Many defects, including critical security defects [78], remain unaddressed for long
periods of time [36] despite the fact that the cost of repairing a defect can increase dramatically as
development progresses [85].

As a result, automatic error repair, in which an algorithm constructs a repair to an error without
human intervention, has become urgent. However, previous approaches suffer from several
key deficiencies. Most trade generality for correctness by considering only a predefined set of
vulnerability and repair types; most repair memory overflow errors exclusively [71, 74]. Lack
of generality reduces the utility of such techniques in the current landscape, where new types
of vulnerabilities regularly gain prominence [35]. Additionally, existing repair techniques often
prohibitively increase either code size [18] or run-time [70] or both [63], precluding applicability to
the real-world, legacy systems where they are needed the most.

We propose to automatically repair errors by using search algorithms, in conjunction with
existing test cases and lightweight program analyses, to find a version of a program that does not
exhibit a given error but that still maintains required functionality and correctness. An algorithm
based on search admits a more general approach to automatic repair because it is not definitionally
constrained to one type of runtime monitor or repair template. Unfortunately, previous efforts to
apply search algorithms to automatic error repair have been stymied by scalability concerns [32],
which must be overcome for such a technique to be successful.

Our proposed approach relies on two key insights to achieve generality and scalability. First,
test cases provide useful insight into program behavior. While they provide weaker guarantees
than formal correctness proofs, test suites as measures of correctness scale more readily to real-
world systems [48, 76]. They are also readily available in practice and easier to generate than formal
behavioral specifications [28, 68]. Moreover, test cases can flexibly encode a broad set of behaviors,
and program behavior on test inputs can provide considerable feedback about dynamic program
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semantics. We propose that an automatic repair technique that relies on test cases can apply to
a general set of both programs and error types. Second, existing program behavior contains the
seeds of many repairs. Fundamentally, we presume that most programmers program correctly
most of the time: incorrect program behavior, such as a forgotten null check, is often correctly
implemented elsewhere in the source code of the same program. This insight underlies certain static
specification mining techniques [20, 58]. We view existing program behavior as an expression of the
domain-specific expertise of the original programmers. An automatic repair process can thus adapt
existing techniques that analyze dynamic invariants over program data [22] to precisely reason
about existing semantics, particularly as they relate to the location and nature of an error and its
potential repair, encouraging both correctness and scalability. An initial automatic repair prototype
tool that leverages portions of these insights and uses genetic programming has shown promise in
preliminary work [25, 83], successfully repairing errors spanning 4 different vulnerability types in
11 legacy C programs totaling over 62,000 lines of code in under three minutes each, on average.
The expected main contributions of the proposed dissertation are:

1. Automatic Repair: A tool, which we call GenProg, (“Generic Program Repair”), that uses
search strategies to automatically repair a varied set of existing errors in legacy software.

2. Fault and Fix Localization: Two new algorithms for automatically localizing a defect and its
likely candidate repairs.

3. Repair Templates: An algorithm for mining templates of likely repairs as well as techniques
to use such templates in the context of a search for a repair.

4. Objective Functions: A more precise objective function for use in search for program repair.

The rest of this proposal is organized as follows. Section 2 presents background and related
work. Section 3 motivates and then outlines the proposed research in detail. Section 4 describes
metrics and experimental strategies that will be used to evaluate the proposed research. Section 5
presents an initial implementation and preliminary results. Section 6 provides a timeline for the
proposed dissertation research, and Section 7 concludes.

2 Background and Related Work

Genetic Programming. Stochastic search algorithms, such as simulated annealing, hill climbing,
random search, and genetic programming, are optimization algorithms that incorporate proba-
bilistic elements. Genetic programming (GP) is a stochastic search method, inspired by biological
evolution, that discovers computer programs tailored to a particular task [24, 44]. GP maintains a
population of tree-based representations of different programs, referred to as individuals, chromo-
somes, or variants. The fitness, or desirability, of each variant, is evaluated via an external objective
function (typically called a fitness function in this context). High-fitness individuals are selected to be
copied into the next generation. Computational analogies to the biological processes of mutation
and crossover introduce variations into the population. These mutation operators create a new
generation, and the cycle repeats, until either a goal or a resource limit is reached.

Although GP has solved an impressive range of problems (see, for example, [38]), most
program repair GP efforts to date have been plagued by scalability problems [32]. The space of
programs that must be searched is usually infinite, the objective function must scale while providing
sufficient search feedback, and GP operators often introduce irrelevant code into intermediate
variants while searching for a repair. Some previous efforts to apply GP to program repair [6]
relied on formal specifications to evaluate fitness; this approach is time-intensive and limited,



as specifications are rare in practice, difficult to generate [22], and limited in the types of errors
they can prevent. In general, previous attempts [6, 7, 8, 60] are limited to very small, hand-coded
examples. We propose novel representation choices to overcome these scalability concerns.

Search-Based Software Engineering. Search-based software engineering (SBSE) [33] applies
evolutionary and related search methods to software testing, especially test suite generation,
selection, and minimization [54, 79, 80], and engineering [3, 11, 69]. Many GP innovations in SBSE
involve new kinds of fitness functions, and there has been less emphasis on novel representations
or operators, as there is in the proposed work. However, test suite generation and evaluation are
complementary to the proposed research, and we specifically propose new objective functions to
use in a GP algorithm for program repair.

Debugging and fault localization. Debugging techniques aim to produce information to help
programmers understand and correct software errors [88]. Fault localization is a particular de-
bugging technique that identifies smaller sets of code likely to be implicated in a particular error
(e.g. [4, 49, 53]). Ultimately, however, repairs for unannotated programs must still be generated
manually. Additionally, despite the fact that many errors in real programs are addressed by adding
code [83], such tools typically cannot localize the “cause” of an error to a missing statement. In
general, debugging research is complementary to our own: an automatic repair technique can use
localization or static analyses coupled with trace minimization techniques [9, 15, 31] as starting
points in determining where to affect a repair. We propose to adapt fault localization techniques to
improve scalability and generality in automatic program repair.

Dynamic Program Invariants. Techniques for learning and analyzing invariants over dynamic
program data values (such as “z > 0”) have been used to mine specifications [22], localize faults [50],
and select templates to repair N-variant systems [63]. These techniques typically monitor program
executions such that each execution, either on an indicative workload or during the course of
normal operation, produces both program output and a set of invariants that were true during that
run. This data is analyzed over many runs to identify invariants that appear to correlate with an
event of interest, such as program failure. The result of a fault localization analysis, for example,
might produce a set of facts similar to: “the branch condition at line 5 in file foo.c is often true
when the program fails.” We propose to leverage such dynamic semantic information to guide a
search for a repaired program.

Automatic Error Preemption and Repair. Research in automatic error preemption and repair
has ranged from using formal specifications to detect and patch errors [18, 81]; to automatically
inserting code to handle overflow attacks using specific monitors [73, 74] or exception handlers [70];
to emulating vulnerable code [51, 72], suspicious requests [71], or candidate, templated repairs [63].
Several other recent but less mature proposals in this area, e.g., [17] suggest that we can expect
rapid progress over the next several years.

There are two major limitations to these otherwise promising techniques. First, they require a
priori enumeration of vulnerability types and repair approaches, often via formal specifications.
Second, they increase code size or run-time or both, to a degree ranging from 20% [70] to 150% [74],
usually precluding their application to legacy systems. We seek to address both of these issues in
the proposed dissertation research.

Repair Templates. Repair templates have shown promise in automatic error preemption and
repair; several existing approaches preemptively enumerate templates of repairs that they select and
instantiate at repair time [51, 63, 71] using heuristics. Orthogonally, techniques and type systems
for code templates feature prominently in run-time code generation and dynamic compilation



research, which use run-time information, such as run-time constants, to compile code on-the-fly
to speed execution [64]. Two well-known approaches, ‘C [21] and DyC [30], propose template
types, type systems, and techniques for selecting and instantiating templates to support dynamic
compilation. We propose to generalize these techniques to develop template systems that usefully
contribute to an automatic error repair algorithm.

Test Suites. Researchers have developed techniques for automatically generating test suites with
varying coverage goals statically [16, 26, 27], dynamically [43, 75] and using a combination of static
and dynamic analyses [14, 19, 29, 52, 68]. Prioritization (e.g., [67]) and reduction (e.g., [34]) techniques
have been proposed to deal with the high cost of running test suites. Impact analysis [45, 61, 62, 65]
uses static and dynamic analyses to determine which tests might possibly be affected by a source
code change. As with fault localization and debugging research, faults identified by a test suite can
be used as input by an automatic repair technique. Reduction, prioritization, and impact analyses
can be used to reduce the time taken by the fitness function in the proposed application of search
strategies to program repair [23]. However, we leave such extensions as future work and do not
address them as part of the proposed dissertation.

3 Proposed Research

Our goal is to address some portion of the problem posed by ubiquitous and expensive errors
in real-world systems by developing techniques to automatically repair them. At a high level,
we propose to develop GenProg, an algorithm that takes as input a defective program, a negative
test case that tests for the error, and a set of positive test cases that tests for required functionality.
GenProg uses mutation operators to mutate the original program and perform a guided search
through the space of closely-related programs, seeking a variant that passes all of the positive
test cases (e.g. implements required functionality) as well as the negative test case (e.g. avoids
the error). The search is guided by an objective function, which measures the behavior of a variant
relative to the goal (e.g., passing all test cases). The choices underlying these aspects of GenProg
are research questions that we propose to investigate; we focus particularly on leveraging and
analyzing existing program semantics on test cases to increase generality and scalability.

We first motivate the proposed research by examining issues that arise when performing
a search for a repair of an error adapted from a real-world vulnerability (Section 3.1). We then
describe four proposed research thrusts:

1. Using Search For Program Repair. We propose to develop a baseline approach that uses
guided search techniques to automatically repair program errors (Section 3.2). The devel-
opment of the initial prototype and algorithm was performed in conjunction with other
researchers and represents a part, but not the entirety, of this proposed dissertation research.

Preliminary results have been previously published [23, 25, 82, 83].
2. Fault and Fix Localization. We propose to investigate how to accurately localize faulty

code and identify code likely to affect a fix in the context of an automatic repair technique

(Section 3.3).
3. Repair Templates. We propose to investigate techniques for mining and synthesizing tem-

plates of likely repairs, and develop new mutation operators to use them when generating

closely-related variants in the space of nearby programs (Section 3.4).
4. Objective Functions. We propose to use dynamic invariants over program data in conjunc-

tion with test cases to construct a more precise and effective objective function to guide a
search for a repaired program (Section 3.5).
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I char* ProcessRequest (int sock) { 5 if (line == "Request:")

2 int len, rc; 6 strncpy (req method, line+l2)
3 char* req method, line, buff; 7 if (line == "Content-Length:")
while(line = sgets(line, sock)) { 8 len=atoi (line+16)

5 if (line == "Request:") 9 }

6 strncpy (req _method, line+12) 10 if (req method == "GET")

7 if (1line == "Content-Length:") 11 buff=DoGETRequest (sock, 1len);

len=atoi (line+16) 12 if (req _method == "POST") {
9 } 13 + if(len > 0) {
10 if (req _method == "GET") 14 buff=calloc(len, sizeof(char));
11 buff=DoGETRequest (sock, len); 15 rc=recv (sock, buff, len);
12 if (req _method == "POST") { 16 buff[len]="\0";
13 buff=calloc(len, sizeof(char)); 17 + } else {
14 rc=recv (sock, buff, len); 18 + buff=null;
15 buff[len]="\0'; 19 + }
16 } 20 }
17 return buff; 21 return buff;
18 } 22}
(a) Buggy webserver code snippet. (b) Patch to repair the webserver.

Figure 1: A buggy webserver implementation, and a repaired portion of the same program.

Research thrust 1 serves to establish the baseline feasibility of applying search to automatic
error repair. If successful, research thrusts 2—4 will increase the generality and scalability of
automated error repair, allowing GenProg to be applied to more programs and bugs, and thus
reduce development costs in more instances. This section describes the proposed research but does
not discuss evaluation; Section 4 provides metrics and experiments for evaluating success.

3.1 Motivating Example

This section uses an example defect to highlight three key concerns in using search for automatic
repair: localization, repair templates, and objective functions.

Consider the webserver pseudo-code in section (a) of Figure 1, adapted from a remote ex-
ploitable heap buffer overflow vulnerability in the nul1lhttpd webserver.! processRequest handles
an incoming request based on data copied from the request header. The code that processes POST
requests contains a defect: line 13 allocates a buffer to hold the request content without bounds-
checking the specified content-length, obtained on line 8. An attacker can remotely gain control of
the running webserver by specifying a negative content-Length in a POST request and providing a
malicious payload in the request body. For the purposes of repair, we write a negative test case that
checks for this error by sending such a POST request, and then checking whether the webserver is
still running properly. We also write a positive test case that checks for required functionality by
requesting index.html from the webserver and comparing the response against expected output.?

GenProg searches closely related programs by randomly mutating the defective program
until it finds a version that passes all test cases; it may delete statements from the program, and it
may insert or swap statements chosen uniformly at random from elsewhere in the program. The
version in column (b) of Figure 1 shows the result of inserting a bounds-check from elsewhere in
the webserver source code (the egi_main function, which must also handle POST requests) at lines
13-17 of ProcessRequest. This variant passes both the positive and negative test case and does not

Mttp://nvd.nist.gov/nvd.cfm?cvename=CVE-2002-1496
In practice, requirements would be encoded using multiple test cases; we omit others for brevity.



include spurious changes; it serves as the final repair.

Unfortunately, the search process leading to this repaired variant can take too long, because the
size of the search space of nearby programs is too great; we now highlight three ways to improve
search performance as well as improve the generality of the automatic repair technique.

Localization. As the webserver incorporates far more code than is shown in Figure 1, the search
for a repair may waste time investigating changes to irrelevant code. To reduce the search space,
we propose to use fault localization to focus the random modifications on code that might affect
the bad behavior, ideally without affecting good behavior. For example, a simple technique that
identifies which program statements are executed on the negative test case but not the positive one
focuses random changes on statements implementing POST functionality, on lines 13-17. More
precise fault localization techniques might provide additional feedback to the mutation operators,
or more accurately localize data-only vulnerabilities.

Even when the fault is localized, the number of possible changes remains very large, as random
mutations may add or substitute arbitrary code. To address this, we leverage our hypothesis that a
program that makes a mistake in one location often handles the situation correctly in another [20].
The general intuition holds for nulihttpd: the cgi_main function, implemented elsewhere, correctly
bounds-checks the content-Length of POST requests, and sets buff to null if 1en < 0; this portion
of code, when inserted at line 13 of the code shown in section (a) of Figure 1, produces the repaired
variant in section (b). GenProg uses heuristics to guide a search for the appropriate piece of code to
insert at the fault location. We call the problem of identifying candidate portions of existing code
that are more likely to affect a repair fix localization, and consider it the dual of fault localization.

Repair Templates. The error in ProcessRequest highlights the intuition that it should be possible
to learn templates for common defects. Bounds-checking is common in C, and forgetting to do
so is the source of many errors. Accordingly, it may be possible to create a template repair that
generalizes bounds-checking, and add this template to the pool of candidate changes considered
during the search for a repair. Moreover, a system for creating and using templates may increase the
utility of fix localization, described above. For example, the repair described above and shown in
(b) of Figure 1 requires that the code inserted from cgi-main uses the same names for local variables
as the code in ProcessRequest; a repair template that could be legally instantiated in a new context
would lift that restriction.

The Objective Function. The objective func- 1> if (req method == "POST") {

tion defines the search stopping condition and 13 + if(len > 0) {

measures the distance between a variant and the 14 bu£f=ca]('1°c]:l:n' bs;;‘”f (c})‘ar ))i
. . 5 rc=recv (socket, uff, en) ;

goal. Although the larger goal is to avoid the . buff [len]=’ \0’ ,

error, an objective function that measures only 7 4+ } e1se g
whether a variant passes the negative test case 18 + buff=null;
may yield undesirable results. For example, aver- 7 +}
.sion of ProcessRequest. that returns null on 2'111 ot }assert (false) ;
inputs passes the negative test case, but also fails - return buff;
to process any requests at all. The objective func- 23 }
tion must consider both the presence of correct Figure 2: A variant that is close to the repair.
behavior and the absence of incorrect behavior.
Additionally, an objective function that measures success only by test cases passed may be
imprecise. Consider the variant of processrequest shown in Figure 2, which differs from the



repaired variant by only one line (line 21); however, this line causes it to fail all tests. Measured by
tests passed, this variant is far from a repair.

A more precise objective function would allow the variant in Figure 2 to be retained, to help
intermediate search steps. We propose to examine run-time data values to obtain this precision.
For example, an examination of intermediate program state of the variant in Figure 2 shows that its
behavior on the positive test case is almost unchanged (except for crashing on line 21), while its
behavior on the negative test case has improved (it crashes instead of giving the attacker control).
We propose to add such dynamic information to the objective function.

This example highlights three concerns in the design and implementation of an automatic
repair technique based on search, and the ways that our proposed research thrusts can leverage
dynamic program semantics and test cases to establish correctness while scalably and generally
repairing a security defect. We will now outline proposed research to address each of these concerns.

3.2 Research: Using Search for Program Repair

The goal of this research thrust is to establish the feasibility of using search techniques, specifically
genetic programming, to automatically repair programs. We propose several novel representation
choices to overcome the dominant challenges of correctness and scalability [32]. We hypothesize:
A search algorithm that (1) operates at the statement level of an abstract syntax tree,
(2) uses test cases to localize a fault and define variant fitness, and (3) draws candidate
repairs from elsewhere in the program source can automatically, quickly, and correctly
repair a variety of defects in C programs, including legacy software.
The research in this subsection was performed in conjunction with other researchers and is described
in detail in [25, 82, 83]. It serves as an initial prototype and baseline.
Approach. The output of this research thrust is an initial prototype of GenProg that uses genetic
programming to search for a program variant that maintains required functionality without demon-
strating a given defect. GenProg reduces the search space to a manageable size in several ways.
First, it uses the positive and negative test cases to localize mutation operators to a smaller, likely-
faulty subset of the program. The baseline localization approach is simple set intersection [39],
as demonstrated in the motivating example (Section 3.1). Second, the GP mutations function at
the level of the program’s abstract syntax tree (AST), instead of at a lower level, for example, at
the byte-level [60]. This choice increases the granularity of the search, further reducing the search
space size. Finally, GenProg draws candidate changes exclusively and uniformly from elsewhere
in the entire program source. The baseline objective function for calculating variant fitness is a
weighted sum of the number of test cases passed by an variant. Additionally, GP often introduces
irrelevant changes on the way to a solution, a problem known as code bloat. We control code bloat
by combining a tree-structured differencing algorithm [2] with delta debugging [87], to efficiently
tind a 1-minimal subset of the differences between a repaired variant and the original, defective
program.® This minimal subset is called be the final repair; it may be encoded as a source-level
program patch.

3.3 Research: Fault and Fix Localization

We define fault and fix localization to be the tasks of selecting, respectively, (1) a subset of a program
to subject to mutation and (2) portions of source code to use as candidate repairs. The chosen

®For reasons of space we elide the details of this procedure; see [83, Section 3.5] for further detail.



localization techniques affect the types of errors GenProg can handle, and thus its generality. For
example, data-only attacks, such as SQL injection attacks, are poorly-localized by the baseline set
intersection technique proposed in Section 3.2. Moreover, both the set of statements considered for
mutation (defined by fault localization) and the set of statements the mutation operator may use to
attempt a repair (defined by fix localization) contribute to search space size, influencing scalability.

Previous research has shown how to learn dynamic invariants over program data [22] and how
to use such invariants to precisely localize faults [50], mine specifications [22], and dynamically
repair N-variant systems [63]. Other work suggests that there are a number of lightweight features
of course code, such as churn or complexity, that correlate with bug density [13, 56, 77]. In previous
work [47, 46], we showed that a combination of such software quality features can usefully augment
static specification mining techniques. We propose to adapt those results to the domain of program
repair, and hypothesize:

A combination of static code quality metrics and learned dynamic behaviors can identify
(1) candidate locations for automatic repair and (2) regions of source code that represent
likely automatic repair fix candidates.

Approach. The output of this research thrust will be two algorithms that take as input a defective
program and its positive and negative test cases. As output, they will associate with each program
segment a probability that expresses its faultiness and repair potential, respectively. We propose to
perform localization by combining measurements (called features) of program source and dynamic
behavior. We first enumerate potential features, and then potential methods for their combination.

We first propose to adapt previous work in statistical bug isolation [50] (SBI) to learn predicates
over program data that correlate with a defect under repair. SBI produces a simple mapping
from a measure of faultiness to source code locations, suggesting a direct but incomplete starting
point. We further propose to identify regions of code that are likely to impact apparently predictive
invariants, based on either dynamic behavior (observed impact of the code region on relevant
data values) or static source code features (reference to implicated variables). If necessary, we may
develop a metric for identifying semantically similar regions of program source code as defined by
mined invariant behavior, or adapt itemset mining techniques to the same purpose [1]. Second, we
optionally propose to collect lightweight source code quality metrics, as in [46, 47]. However, the
feasibility of this approach may be limited by the availability of suitable benchmarks.

There are several candidate approaches for combining the features into a coherent localization
model. It is possible that a small subset of the SBI statistics will be sufficient to dramatically improve
both fault and fix localization for program repair; we will begin by investigating several of these
smaller sets, if only as baselines. We have had success in previous work using machine learning
to construct a model that relate features to a dependent variable [46, 47]; a similar approach may
prove beneficial here. Time permitting, we may investigate the application of belief-propagation
techniques to localization for program repair [84].

3.4 Research: Repair Templates

We propose to use type system-informed approaches, potentially adapted from the run-time
code generation community [21, 30], to mine candidate repair templates from program source
(potentially informed by the fix localization algorithm proposed above) or code repositories. We
further propose to develop new mutation operators that use repair templates in the context of
an automatic search for a repair. We conjecture that a small set of templates, in addition to other



candidate repair sources, may positively affect scalability without a large increase in search space
size. This proposed approach generalizes previous repair techniques requiring templates [51, 63, 71]
by leveraging our insight that existing program behavior contains the seeds of repair, and avoiding
a restrictive preemptive enumeration of allowable templates. We hypothesize:

An algorithm that synthesizes templates from existing source code or from source code
repositories, in conjunction with new operators that can use such templates in mutation,
can improve either the scalability or generality of search-based automated repair.

Approach. The output of this research thrust is an algorithm for synthesizing templates of possible
repairs from program sources and source control repositories, as well as new mutation operators
that can select and instantiate such templates to affect a repair. At a high level, a template is a piece
of code, potentially including a set of “holes” that may be filled by in-scope variables. We will
develop a distance metric on code changes (e.g., from a source code repository) or source code
pieces to enable the use of clustering techniques [41] to identify clusters of similar changes or code
snippets and identify “paragon” changes that encompass entire clusters to serve as templates.

To identify portions of the paragon template to serve as “holes”, we will adapt either the
proposed distance metric or type system approaches from run-time code generation research [21, 30].
In the latter approach, a paragon may be a template that encompasses a least-upper-bound type
between several code changes in one cluster; this may require inference of simple type annotations.
We may also be able to adapt notions of small-step contextual operational semantics to formalize
the meaning of such a template [86].

Further, we propose to modify the mutation operator such that it may select a repair template
as a potential program change in addition to its standard source code options. We will investigate
semantics-oblivious mutation operators as well as operators that consider whether a template may
be instantiated semantically legally; the latter approach may further leverage the type annotation
approaches from run-time code generation research.

3.5 Research: Objective Functions

The objective function guides the automatic repair search by approximating the distance between a
variant and the goal, e.g. a version of the program that passes all test cases. An objective function
is ideally precise, accurately distinguishing intermediate variants representing partial solutions.
Consider, for example, a program that contains a race condition that can be repaired by adding
two distinct function calls: a lock acquisition and a lock release. A variant that contains only the
lock acquisition should ideally have a higher fitness than the original (defective) program, as it
is closer to the repair. However, the baseline proposed in Section 3.2, which evaluates a variant
by counting how many test cases it passes, will likely return a lower fitness for this variant (e.g.,
as the unbalanced locking call may introduce deadlocks, leading to failed positive test cases). In
the limit, an imprecise objective function transforms a guided search into a random search of
closely-related variants, increasing the search space and decreasing the likelihood of finding repairs
containing more than one change, and thus generality. We believe that the baseline approach is
imprecise because it loses important intermediate information about dynamic program behavior.
We therefore propose to further leverage learned dynamic invariant approaches, as in Section 3.3,
to increase objective function precision. We hypothesize:

An objective function that compares dynamic invariant behavior of the original and
intermediate program variants on test cases can provide a precise signal to a program



repair search and permit either the more rapid repair of any error or the efficient
discovery of repairs containing more than one change.

Approach. The output of this research thrust is a new objective function that uses intermediate
dynamic behavior to measure the distance between a variant and a repair. We propose to observe
dynamic invariant behavior on both the original program and intermediate variants. We will collect
features to describe the different behavior of dynamic invariants on a program and its intermediate
invariants. For example, we may count which invariants that were highly predictive of failure in
the original program are no longer observed on an intermediate variant. We will then use machine
learning to construct a model that relates observed dynamic behavior to fitness. Machine learning
requires known data for a learning phase to construct a model. To enable this learning phase, we
will develop an “oracular” distance function that expresses the actual distance between a program
variant and a repaired variant. We propose to adapt tree-structured differencing techniques [2], or
use a profile of dynamic predicate behavior on fixed variants, as starting points for this oracular
distance function.

We have published, with other researchers, a proof-of-concept in [23]. We showed that it is
possible to construct, for a single program, a model relating variant behavior quantified by dynamic
invariants to an initial oracular function based on tree-based textual differences between a variant
and a repair. The proposed research will expand on these results by generalizing the model to all
programs, seriously investigating the problem of an oracular objective function, and incorporating
the resulting model in the program repair search.

4 Proposed Experiments

This section describes the experiments and metrics we propose to use to evaluate the research
proposed in Section 3. Beyond the individual contributions, the proposed research ultimately
combines to create a system for automated program repair. To be successful, GenProg must be:

e Scalable. Previous work in automatic repair systems impose intractable run-time or code-size
overhead. GenProg must scale to software modules of realistic size, such as hundreds of
thousands of lines of code.

e General. To apply to legacy systems, GenProg must not require special coding practices,
program annotations, or formal specifications, which are rare in practice. Additionally,
previous research often requires a priori enumeration of vulnerability or repair types. GenProg
should repair as generic a set of defect types with as little a priori knowledge as possible.

e Correct. To gain acceptance, GenProg must produce software patches that repair a defect as
completely as possible while sacrificing as little functionality as possible.

Section 4.1 therefore proposes experiments to evaluate the initial approach (Section 3.2) in light
of these three goals; we will also use these strategies to evaluate the contribution of the subsequent
research to the system. Subsequent subsections outline experiments to individually evaluate the
localization, repair templates, and objective function research. Research involving machine learning
will be verified using 10-fold cross validation [42] to detect overfitting of the training data.

4.1 Experiments: Using Search for Program Repair

This subsection outlines an experimental plan for both the initial approach to applying stochastic
search to automatic program repair (Section 3.2) as well as the contribution of each subsequent
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research thrust to the goal of automatic, scalable, general, and correct program repair. Much of
the work from this research thrust has already been published, and the strategies for evaluating
scalability and generality described here follows those and allow for direct comparison [25, 82, 83].

There are two important metrics for scalability: size of repaired programs and time taken to
repair. As wall-clock time is strongly related to test suite used to evaluate fitness, and as initial
work [23] suggests that running time can be managed with test suite selection techniques [65, 79],
we will prefer generally to measure time to repair by number of fitness evaluations required.

To evaluate generality, we will seek a benchmark set containing a variety of program and error
types, with a focus on off-the-shelf, legacy code. We will also seek (and hand-craft if necessary)
programs containing specific error types as necessary for particular research thrusts.

We propose to measure correctness both manually (by inspecting the generated patches and,
when available, comparing them to a hand-crafted repair) and using automated techniques, when
possible on given benchmarks. First, we propose to use black-box fuzzers, such as the spixe tool
from immunitysec.com, to generate large numbers (e.g., 100,000) of held-out fuzz inputs. We will
measure how many of these inputs the benchmarks “get wrong” after the repair, to approximate a
patch’s impact on correctness and required functionality; Microsoft requires that security-critical
changes be subject to exactly this type of test [37]. Second, we propose to use an off-the-shelf
tool to fuzz exploit input, to evaluate whether the repairs truly repair the vulnerability, or if they
simply represent fragile memorizations of the buggy input. Finally, we will measure benchmark
performance in wall-clock time before and after repair, using workloads and held out tests.

4.2 Experiments: Fault and Fix Localization

We propose to use metrics from the debugging community, specifically the score metric [39], to
evaluate the fault localization algorithm independently of its impact on program repair. Where
possible, we will use related work in fault localization techniques as baselines. We will also evaluate
the returned fault and fix candidates by comparing them manually to the “correct” answer (as
defined by a human- or machine-generated fix, when available), similar to the approach of Liblit
et al. [49, 50]. Additionally, we can quantify the instantiation of a given localization technique
by summing the fault or fix probabilities associated with each statement in the program. We
hypothesize that this sum approximates search space size and is related to algorithm success; we
will investigate this hypothesis and, if it appears to hold, report this quantification for the new
localization techniques. Finally, to evaluate the algorithms’ effects on generality, we will seek out
or hand craft difficult-to-localize errors, specifically data-only attacks such as SQL injection attacks.

4.3 Experiments: Repair Templates

To evaluate our new template mining and synthesis algorithms as well as templates’ effects on time
taken to repair, we will seek programs for which centralized version control information is available,
such as applications on SourceForge, or from the IBM Jazz project, and especially benchmarks
that contain errors repaired elsewhere in the source code or history (e.g., an error caused by a
change from 32- bit to 64- bit operations that is not propagated to all relevant source locations). The
proposed technique admits experimentation with mining algorithm parameters, particularly the
definition of change or code similarity, how similar changes must be to justify forming a template,
and how many similar changes are required to form a template. We propose to evaluate the new
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mutation operators that use repair templates in terms of their effect on scalability and, for example,
by measuring the proportion of generated intermediate variants that are semantically valid.

4.4 Experiments: Objective Functions

Our ultimate goal is to create a precise objective function that can distinguish variants of a defective
program that contain partial repairs. We will first focus on finding or creating benchmark programs
that require more than one change to repair. We will therefore evaluate objective function precision
by measuring the fitness distance correlation [40] between a new fitness function and an oracular
distance function, following our previously-established methodology [23]. We will experiment with
different oracular distance functions in both the training and testing phases of model generation
and evaluation to identify an optimal solution.

5 Preliminary Results

This section describes and evaluates the initial implementation of GenProg described in Section 3.2
and published in [25, 82, 83]. We outline implementation, design, and representation choices
in Section 5.1. We describe the experimental setup in Section 5.2. Section 5.3 presents experimental
results on 11 benchmark C programs totaling 63 kLOC containing a total of 4 different error types.

5.1 Prototype Implementation

We use the CIL toolkit [57] to construct and manipulate abstract syntax trees (ASTs) of C programs;
a CIL AST may be serialized as source code and passed to a compiler. The localization and GP
operations function at the statement level of a a CIL AST; this includes all assignments, function
calls, conditionals, blocks, and looping constructs. Program variants therefore consist of a pair of
an AST and a weighted path through that AST.

The weighted path represents the application of a given localization approach to a particular
error: each statement on the path is considered for mutation with probability equal to its weight,
and only statements on the weighted path may be mutated. The prototype instruments the input
program to record unique IDs for each statement as it is executed on the positive and negative test
cases. Any statement visited exclusively by the negative test case is always considered for mutation;
a statement that is executed by both a positive and a negative test case may also be considered, but
with a lower (tunable) probability. Candidate repair statements are selected uniformly at random
from anywhere else in the AST.

To evaluate variant fitness, GenProg compiles its AST to an executable program and then
computes a weighted sum of all test cases passed by the executable. A variant that does not compile
receives a fitness of zero. The search terminates when a variant is found that passes all test cases.

GenProg selects high-fitness individuals to create a new mating pool from the current genera-
tion; individuals in the mating pool are mutated at random and are the parents in the crossover
operation. To perform selection, GenProg discards individuals with fitness 0 and then selects, based
on fitness, up to half of the generation to retain. Two GP operators, mutation and crossover, create
new program variants from the mating pool produced by the selection step:

e Mutation. Each variant in the mating pool is subject to mutation; each location on a variant’s
weighted path is considered for mutation with probability proportional to its path weight. The
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mutation operator consists of either a deletion (the entire statement is deleted), an insertion
(another statement is inserted after it), or a swap with another statement; we choose from
these three options with uniform random probability. In the case of an insertion or swap, a
second statement is chosen uniformly at random from anywhere in the program; its new path
weight is equal to the weight at the location to which it is being moved.

e Crossover. Each variant in the mating pool is crossed over no more than once with the
original parent program; this type of crossover is sometimes referred to as crossing back. Only
statements along the weighted paths are crossed over. GenProg randomly chooses a cutoff
point along the paths and swap all statements after the cutoff point to create two new variants.

To control code bloat, the post-processing minimization step compares the variant containing
the initial repair to the original program to generate a list of tree-based edits [2]. It then uses
delta-debugging [87] to reduce this list of edits to a minimal repair.

5.2 Experimental Setup

Figure 3 shows our C benchmark programs, Program Lines | Description
which include unix utilities taken from Mil- ["geca 22 example

ner et al.’s work on fuzz testing [55] and | zune 28 example [12]
programs taken from public vulnerability | uniq utx 4.3 1146 | text processing
reports; see [25] for references, where avail- | 1ook utx 4.3 1169 | dictionary lookup

able. We used a single negative test case | 1ook svr 4.0 1.1 | 1363 | dictionary lookup
that elicits the fault for each benchmark, | “rits svr 4.0 1.1 | 1504 | metric conversion

For the fuzz testing programs, we selected deii}f):tuzxo‘l:() éggg Svoe%irer;iri processing
. . . n ..

the first fuzz input that evinced a fault; iz Gent 11) 51 9906 | code text processing

for the others, we constructed test cases [z1.. 5 5 4a 18775 | lexer generator

based on the vulnerability report. To select [Lizis 1.0.6 21553 | graphical tetris game

a small number of positive test cases for [ Total 63277

each program, we either used non-crashing
fuzz inputs; or manually created simple
test cases with a focus on testing a relevant
subset of the benchmark’s functionality.

Our experiments were conducted on a quad-core 3 GHz machine. Beyond memoizing results
based on the pretty-printed abstract syntax tree to avoid recalculating fitness on functionally
equivalent variants, the prototype tool is not optimized. We report results for one set of global
parameters that seemed to work well; see [83, Section 4.1] for details. We stop a trial if an initial
repair is discovered. We performed 100 random trials for each program, reporting the fraction of
successes and the time to find the initial repair. The initial repair is minimized to find the final
repair. Minimization is deterministic and takes fewer seconds and fitness evaluations than the
initial repair process.

Figure 3: Benchmarks used in our experiments, with pro-
gram size in lines of code (LOC).

5.3 Experimental Results

Figure 4 summarizes the repair results on our benchmarks. The ‘|Path|” column shows the weighted
path length, the sum of the probabilities along the weighted path, roughly estimating the complexity
of the search space. The ‘Initial Repair” heading reports timing information for the genetic pro-
gramming phase. The “Time” column reports the wall-clock average time required for a trial that
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Program | Fault |Path| Time | Fitness | Success | Initial | Final
ged infinite loop 1.3 149 s 41.0 54% 21 2
zune infinite loop 29 42s | 203.5 72% 11 3
uniq segmentation fault 81.5 32s 9.5 100% 24 4
look-u segmentation fault 213.0 42s 11.1 99% 24 11
look-s infinite loop 32.4 51s 8.5 100% 21 3
units segmentation fault 2159.7 | 107s 55.7 7% 23 4
deroff segmentation fault 2514 | 129s 21.6 97% 61 3
nullhttpd || remote heap overflow || 7685 | 502s 79.1 36% 71 5
indent infinite loop 1435.9 533s 95.6 7% 221 2
flex segmentation fault 3836.6 | 233s 33.4 5% 52 3
atris local stack overflow 34.0 69 s 13.2 82% 19 3
Average 801.56 | 171.7 s 520 | 599% | 554 3.9

Figure 4: Experimental results on 63 kKLOC. We report averages for 100 random trials. The ‘|Path|” column
gives the weighted path length, which approximates search space size. ‘Success’ reports the percentage of
random trials that resulted in a repair. “Time’ gives the average wall-clock time, and ‘Fitness’ the average
number of fitness evaluations for a successful trial; neither includes minimization time. ‘Initial” and “Final’
report the average Unix diff size for both the initial and the minimized repair.

May 2008 May 2009 May 2010 May 2011 May 2012 May 2013
GPforProgramRepair | NN = |
Fault/Fix Localization |
Precise Fitness Functions M Research Period B
Repair Templates [ Publication Lag Il 2
Journal Paper (optional) I 2

Figure 5: Proposed work schedule.

produced a primary repair; on average, less than 3 minutes are required to find the initial repair.
The “Fitness’ column lists the average number of fitness evaluations performed during a successful
trial. The ‘Success’ column gives the fraction of trials that were successful. On average, 60% of the
trials produced a repair, although most of the benchmarks either succeeded very frequently or very
rarely. The ‘Size” column gives the size of both the initial repair and the final repair, in lines of code
in the reified patch. The final minimized patch is quite manageable, averaging 4 lines of code.
This experiment demonstrates that the initial proposed repair approach (Section 3.2), that
applies GP to automatic program repair is effective and promising. GenProg has successfully
repaired several different error types in existing programs, in a reasonable amount of time.

6 Schedule

Figure 5 outlines the research schedule for the proposed dissertation. We propose to finish the
proposed research and dissertation in three years, to graduate in May, 2013. We have completed
the research described in Section 3.2 to establish the viability of using genetic programming for
program repair [25, 82, 83]. A journal article on the subject is under revision with Transactions on
Software Engineering. We have begun initial work on localization (Section 3.3) and expect to finish
by January 2011. We have performed very preliminary research into the use of dynamic program
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invariants for precise fitness functions [23].# We have not begun work on the repair templates
research (Section 3.4). The schedule includes considerable slack for projects not included in this
proposal, including collaborative research on safety-critical medical equipment software with
Professor John Knight; the completion of a publication based on a previous internship at Microsoft
Research; and new research ideas that arise from the proposed research. We optionally intend to
prepare an additional journal article based on the proposed dissertation research. We leave open
the possibility of an additional research internship.

We have previously targeted venues such as International Conference on Software Engineering
(ICSE), Genetic and Evolutionary Computation Conference (GECCO), and Transactions on Software
Engineering (TSE). We propose to target similar venues for the remaining work, as well as a top-tier
programming languages venue like Programming Language Design and Implementation (PLDI) or
Principles of Programming Languages (POPL).

7 Conclusion

We argue that defects in deployed software are numerous and economically detrimental, and that
the current practice of requiring programmers to address all such defects by hand is no longer
sustainable. Accordingly, we propose to research new automatic techniques for repairing errors in
legacy programs. Automated repair techniques suffer from the twin challenges of generality and
scalability. We propose to leverage two insights to address these challenges: first, that test cases
provide useful and sufficient insight into program behavior, and second, that existing program
behavior contains the seeds of a program repair.

We propose four research thrusts. First, we propose a set of novel representation choices to
effectively apply search techniques to automatic program repair to automatically find a variant of
a defective program that does not contain the error but still implements required functionality. Our
initial work has shown that this approach is both promising and effective [25, 82, 83]. Second, we
propose to combine analyses of dynamic program semantics with static measures of code quality to
develop novel techniques for fault and fix localization. This research is necessary for scalability
because the chosen localization technique directly influences the search space size. Localization
additionally affects generality: without better localization techniques, data-only attacks like cross-
site scripting cannot feasibly be repaired. Third, we propose to generalize previous automatic repair
research while further taking advantage of existing program behavior by developing techniques
to mine and synthesize repair templates. Templates allow the repair of programs for which the
fix must be found in a previous version or similar project, and the adaptation of more complex
fixes from elsewhere in the program source. Finally, we propose to use test cases and existing
research in dynamic invariant analysis to develop precise and effective objective functions for
program repair. A precise objective function is necessary for the repair of many multi-step repairs,
and directly impacts search efficiency, and thus scalability. We will evaluate each of these research
thrusts on its own merits, as well as in the context of a tool for automatic defect repair, that we call
GenProg, (“Generic Program Repair”).

While we do not expect to develop a tool that can repair all defects in all programs, we do hope
to gain insight into the nature of defective program behavior, and to develop tools and techniques
to ease the ever-growing burden of error repair in software practice.

4The relevant paper included orthogonal work on test suite reduction and selection which we do not claim in this
dissertation; we mention it for completeness.
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