
AUTOMATIC
PROGRAM REPAIR
USING GENETIC
PROGRAMMING

CLAIRE LE GOUES
APRIL 22, 2013

http://www.clairelegoues.com 1

Claire Le Goues

STOCHASTIC SEARCH
+

TEST CASE GUIDANCE
=

AUTOMATIC,
EXPRESSIVE,

SCALABLE PATCH
GENERATION

GENPROG

http://www.clairelegoues.com 2

Claire Le Goues

PROBLEM: BUGGY SOFTWARE

“Everyday, almost 300
bugs appear […] far too
many for only the Mozilla
programmers to handle.”

– Mozilla Developer,
2005

Annual cost of
software errors in the

US: $59.5 billion
(0.6% of GDP).

90%: Maintenance

10%: Everything Else

Average time to fix a
security-critical error:

28 days.

http://www.clairelegoues.com 3

Claire Le Goues

SOLUTION:
AUTOMATE

http://www.clairelegoues.com 4

Claire Le Goues

Self-healing systems, security research:
runtime monitors, repair strategies, error
preemption.

• Designed to address particular types of bugs,
(e.g., buffer overruns).

• Very successful in that domain (e.g., data
execution prevention shipping with Windows 7).

But what about generic repair of new real-world
bugs as they come in?

PRIOR ART

http://www.clairelegoues.com 5

Claire Le Goues

HOW DO HUMANS
FIX NEW BUGS?

http://www.clairelegoues.com 6

Claire Le Goues http://www.clairelegoues.com

??!!

NOW WHAT?

7

Claire Le Goues

printf
transformer

http://www.clairelegoues.com 8

Claire Le Goues

Input:

2

5 6

1

3 4

8

7

9

11

10

12

Legend:
"   Likely faulty.

probability
"   Maybe faulty.

probability
"   Not faulty.

http://www.clairelegoues.com 9

Claire Le Goues

•  Existing program
code and behavior
contains

SECRET SAUCES

http://www.clairelegoues.com

•  Test cases are useful.
•  Existing program

behavior contains the
seeds of many
repairs.

•  The space of program
patches can be
searched.

10

Claire Le Goues

Stochastic search, guided by existing test
cases (GENPROG), can provide a

• scalable
• expressive
• human competitive

…approach for the automated repair of:
•  many types of defects
•  in many types of real-world programs.

THESIS

http://www.clairelegoues.com 11

Claire Le Goues

GenProg: automatic program repair using
genetic programming.
Four overarching hypotheses.
Empirical evaluations of:

• Expressive power.
• Scalability.

Contributions/concluding thoughts.

OUTLINE

http://www.clairelegoues.com 12

Claire Le Goues

Given a program
and a set of test
cases, conduct a
biased, random
search for a set of
edits to a program
that fixes a given
bug.

APPROACH

http://www.clairelegoues.com 13

Claire Le Goues

GENETIC PROGRAMMING: the
application of evolutionary or

genetic algorithms to program
source code.

http://www.clairelegoues.com 14

Claire Le Goues

Population of variants.
Fitness function evaluates desirability.
Desirable individuals are more likely to be
selected for iteration and reproduction.
New variants created via:

GENETIC PROGRAMMING

• Mutation • Crossover

http://www.clairelegoues.com

ABCDEF  ABADEF ABCDEF ABCWVU!

ZYXWVU ZYXDEF!

15

Claire Le Goues

The search is through the space of candidate
patches or sets of changes to the input
program.
Two concerns:

1.  Scalability – management, reduction, and
traversal of the search space.

2.  Correctness – proposed repair should fix the
bug while maintaining other required
functionality.

CHALLENGES

http://www.clairelegoues.com 16

Claire Le Goues

Explore coarse-grained edits at the statement
level of the abstract syntax tree ([delete;
replace; insert]).
Use existing test suites as proxies for
correctness specifications, and to reduce the
search space.

• Evaluate intermediate solutions.
• Localize the fault, focusing candidate changes.

Leverage existing code and behavior.
• Do not invent new code; copy code from
elsewhere in the same program.

INSIGHTS

http://www.clairelegoues.com 17

Claire Le Goues

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 18

Claire Le Goues MUTATE

DISCARD

INPUT EVALUATE FITNESS

ACCEPT

OUTPUT 19

Claire Le Goues

EVALUATE FITNESS

MUTATE

INPUT

OUTPUT

ACCEPT

DISCARD

20

Claire Le Goues MUTATE

INPUT

ACCEPT

DISCARD

EVALUATE FITNESS

OUTPUT 21

Claire Le Goues

1   void gcd(int a, int b) {!
2   if (a == 0) {!
3   printf(“%d”, b);!
4   }!
5   while (b > 0) {!
6   if (a > b) !
7   a = a – b;!
8   else!
9   b = b – a;!
10   }!
11   printf(“%d”, a);!
12   return;!
13   }!

>  gcd(4,2)!
>  2!
>  gcd(0,55)!
>  55!

(looping forever)

http://www.clairelegoues.com 22

Claire Le Goues

1   void gcd(int a, int b) {!
2   if (a == 0) {!
3   printf(“%d”, b);!
4   }!
5   while (b > 0) {!
6   if (a > b) !
7   a = a – b;!
8   else!
9   b = b – a;!
10   }!
11   printf(“%d”, a);!
12   return;!
13   }!

(a=0; b=55)!
true!
> 55!

(a=0; b=55) true!
false!

!
!

b = 55 - 0!

!!

http://www.clairelegoues.com 23

Claire Le Goues

printf(b)!

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

http://www.clairelegoues.com 24

Claire Le Goues

printf(b)!

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

Legend:
"   High change

probability.
"   Low change

probability.
"   Not changed.

http://www.clairelegoues.com 25

Claire Le Goues

printf(b)!

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

An edit is:
•  Insert statement X

after statement Y
• Replace statement

X with statement Y
• Delete statement X

http://www.clairelegoues.com 26

Claire Le Goues

printf(b)!

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

An edit is:
•  Insert statement X

after statement Y
• Replace statement

X with statement Y
• Delete statement X

http://www.clairelegoues.com 27

Claire Le Goues

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

An edit is:
•  Insert statement X

after statement Y
• Replace statement

X with statement Y
• Delete statement X return!

printf(b)!

http://www.clairelegoues.com 28

Claire Le Goues

INPUT

OUTPUT

EVALUATE FITNESS

DISCARD

ACCEPT

MUTATE 29

Claire Le Goues

GenProg: automatic program repair using
genetic programming.
Four overarching hypotheses.
Empirical evaluations of:

• Expressive power.
• Scalability

Contributions/concluding thoughts.

OUTLINE

http://www.clairelegoues.com 30

Claire Le Goues

Goal: an automatic solution to alleviate a
portion of the bug repair burden.
Should be competitive with the humans its
designed to help.
Humans can:

• Fix many different kinds of bugs in many
different kinds of programs. [expressive power]

• Fix bugs in large systems. [scalability]
• Produce acceptable patches. [repair quality]

HUMAN-COMPETITIVE REPAIR

http://www.clairelegoues.com 31

Claire Le Goues

Without defect- or program- specific information,
GenProg can:

1.  repair at least 5 different defect types, and can repair
defects in at least least 10 different program types.

2.  repair at least 50% of defects that humans
developers fix in practice.

3.  repair bugs in large programs of up to several million
lines of code, and associated with up to several
thousand test cases, at a time and economic cost
that is human competitive.

4.  produce patches that maintain existing program
functionality; do not introduce new vulnerabilities;
and address the underlying cause of a vulnerability.

HYPOTHESES

http://www.clairelegoues.com 32

Claire Le Goues http://www.clairelegoues.com

Program Description LOC Bug Type

gcd example 22 infinite loop

nullhttpd webserver 5575 heap buffer overflow (code)

zune example 28 infinite loop

uniq text processing 1146 segmentation fault

look-u dictionary lookup 1169 segmentation fault

look-s dictionary lookup 1363 infinite loop

units metric conversion 1504 segmentation fault

deroff document processing 2236 segmentation fault

indent code processing 9906 infinite loop

flex lexical analyzer generator 18774 segmentation fault

openldap directory protocol 292598 non-overflow denial of service

ccrypt encryption utility 7515 segmentation fault

lighttpd webserver 51895 heap buffer overflow (vars)

atris graphical game 21553 local stack buffer exploit

php scripting language 764489 integer overflow

wu-ftpd FTP server 67029 format string vulnerability 33

Claire Le Goues

Without defect- or program- specific information,
GenProg can:

1.  repair at least 5 different defect types, and can repair
defects in at least least 10 different program types.

2.  repair at least 50% of defects that humans
developers fix in practice.

3.  repair bugs in large programs of up to several million
lines of code, and associated with up to several
thousand test cases, at a time and economic cost
that is human competitive.

4.  produce patches that maintain existing program
functionality; do not introduce new vulnerabilities;
and address the underlying cause of a vulnerability.

HYPOTHESES

http://www.clairelegoues.com 34

Claire Le Goues

Goal: systematically evaluate GenProg on a
general, indicative bug set.
General approach:

• Avoid overfitting: fix the algorithm.
• Systematically create a generalizable
benchmark set.

• Try to repair every bug in the benchmark set,
establish grounded cost measurements.

SETUP

http://www.clairelegoues.com 35

Claire Le Goues

CHALLENGE:
INDICATIVE BUG SET

http://www.clairelegoues.com 36

Claire Le Goues

Goal: a large set of
important,
reproducible bugs in
non-trivial programs.
Approach: use
historical source
control data to
approximate
discovery and repair
of bugs in the wild.

SYSTEMATIC BENCHMARK SELECTION

http://www.clairelegoues.com 37

Claire Le Goues

BENCHMARKS
Program LOC Tests Bugs Description
fbc 97,000 773 3 Language (legacy)
gmp 145,000 146 2 Multiple precision math
gzip 491,000 12 5 Data compression
libtiff 77,000 78 24 Image manipulation
lighttpd 62,000 295 9 Web server
php 1,046,000 8,471 44 Language (web)
python 407,000 355 11 Language (general)
wireshark 2,814,000 63 7 Network packet analyzer
Total 5,139,000 10,193 105

http://www.clairelegoues.com 38

Claire Le Goues

CHALLENGE:
GROUNDED COST
MEASUREMENTS

http://www.clairelegoues.com 39

Claire Le Goues http://www.clairelegoues.com 40

Claire Le Goues

READY:
GO!

13 HOURS LATER

http://www.clairelegoues.com 41

Claire Le Goues

SUCCESS/COST
Program

Defects
Repaired

Cost per non-repair Cost per repair
Hours US$ Hours US$

fbc 1/3 8.52 5.56 6.52 4.08
gmp 1/2 9.93 6.61 1.60 0.44
gzip 1/5 5.11 3.04 1.41 0.30
libtiff 17/24 7.81 5.04 1.05 0.04
lighttpd 5/9 10.79 7.25 1.34 0.25
php 28/44 13.00 8.80 1.84 0.62
python 1/11 13.00 8.80 1.22 0.16
wireshark 1/7 13.00 8.80 1.23 0.17
Total 55/105 11.22h 1.60h

$403 for all 105 trials, leading to 55 repairs; $7.32 per bug repaired.
http://www.clairelegoues.com 42

Claire Le Goues

JBoss issue tracking: median 5.0, mean 15.3 hours.
IBM: $25 per defect during coding, rising at build, Q&A,
post-release, etc.
Median programmer salary in the US: $72,630

• $35.40 per hour = $460 for 13 hours
Bug bounty programs:

• Tarsnap.com: $17, 40 hours per non-trivial repair.
•  At least $500 for security-critical bugs.
• One of the php bugs that GenProg fixed has an

associated NIST security certification.

PUBLIC COMPARISON

http://www.clairelegoues.com 43

Claire Le Goues

WHICH BUGS…?
Slightly more likely to fix bugs where the
human:

• restricts the repair to statements.
• touched fewer files.

As fault space decreases, success increases,
repair time decreases.
As fix space increases, repair time decreases.
Some bugs are clearly more difficult to repair
than others (e.g. in terms of random success
rate).

http://www.clairelegoues.com 44

Claire Le Goues

Without defect- or program- specific information,
GenProg can:

1.  repair at least 5 different defect types, and can repair
defects in at least least 10 different program types.

2.  repair at least 50% of defects that humans
developers fix in practice.

3.  repair bugs in large programs of up to several million
lines of code, and associated with up to several
thousand test cases, at a time and economic cost
that is human competitive.

4.  produce patches that maintain existing program
functionality; do not introduce new vulnerabilities;
and address the underlying cause of a vulnerability.

HYPOTHESES

http://www.clairelegoues.com 45

Claire Le Goues

Any proposed repair must pass all regression
test cases.

REPAIR QUALITY

A post-processing step
minimizes the patches.
However, repairs are not
always what a human
would have done.

• Example: Adds a bounds
check to a read, rather
than refactoring to use a
safe abstract string class.

http://www.clairelegoues.com 46

Claire Le Goues

What makes a high-
quality repair?

• Retains required
functionality.

• Does not introduce
new bugs.

• Addresses the
cause, not just the
symptom.

QUANTITATIVE REPAIR QUALITY

Behavior on held-
out workloads.

Large-scale black-
box fuzz testing.

Exploit variant
fuzzing.

http://www.clairelegoues.com 47

Claire Le Goues

GenProg: automatic program repair using
genetic programming.
Four overarching hypotheses.
Empirical evaluations of:

• Expressive power.
• Scalability.

Contributions/concluding thoughts.

OUTLINE

http://www.clairelegoues.com 48

Claire Le Goues

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest
and Westley Weimer. GenProg: A Generic Method for
Automated Software Repair. Transactions on Software
Engineering 38(1): 54-72 (Jan/Feb 2012). (featured
article)
Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest and Westley Weimer. A Systematic Study of
Automated Program Repair: Fixing 55 out of 105 bugs
for $8 Each. International Conference on Software
Engineering, 2012: 3-13. (Humies 2012, Bronze)
Westley Weimer, ThanhVu Nguyen, Claire Le Goues
and Stephanie Forrest. Automatically Finding Patches
Using Genetic Programming. International Conference
on Software Engineering, 2009:364-374. (Distinguished
Paper, Manfred Paul Award, Humies 2009, Gold)

49

PUBLICATIONS: GENPROG

http://www.clairelegoues.com

Claire Le Goues

Westley Weimer, Stephanie Forrest, Claire Le Goues and ThanhVu Nguyen. Automatic
Program Repair with Evolutionary Computation, Communications of the ACM Vol. 53 No. 5,
May, 2010, pp. 109-116. (invited)
Claire Le Goues, Stephanie Forrest and Westley Weimer. Current Challenges in Automatic
Software Repair. Journal on Software Quality (invited, to appear).
Claire Le Goues, Westley Weimer and Stephanie Forrest. Representations and Operators
for Improving Evolutionary Software Repair. Genetic and Evolutionary Computation
Conference , 2012: 959-966. (Humies 2012, Bronze)
Ethan Fast, Claire Le Goues, Stephanie Forrest and Westley Weimer. Designing Better
Fitness Functions for Automated Program Repair. Genetic and Evolutionary Computation
Conference, 2010: 965-972.
Stephanie Forrest, Westley Weimer, ThanhVu Nguyen and Claire Le Goues. A Genetic
Programming Approach to Automatic Program Repair. Genetic and Evolutionary Computation
Conference, 2009: 947-954. (Best Paper, Humies 2009, Gold)
Claire Le Goues, Stephanie Forrest and Westley Weimer. The Case for Software Evolution.
Working Conference on the Future of Software Engineering 2010: 205-209.
ThanhVu Nguyen, Westley Weimer, Claire Le Goues and Stephanie Forrest. ”Using
Execution Paths to Evolve Software Patches." Search-Based Software Testing, 2009. (Best
Short Paper)
Claire Le Goues, Anh Nguyen-Tuong, Hao Chen, Jack W. Davidson, Stephanie Forrest,
Jason D. Hiser, John C. Knight and Matthew Gundy. Moving Target Defenses in the Helix
Self-Regenerative Architecture. Moving Target Defense II, Advances in Information Security
vol. 100: 117-149, 2013.
Stephanie Forrest and Claire Le Goues. Evolutionary software repair. GECCO (Companion)
2012: 1345-1348.

50 http://www.clairelegoues.com

Claire Le Goues

Claire Le Goues and Westley Weimer. Measuring
Code Quality to Improve Specification Mining.
Transactions on Software Engineering 38(1):
175-190 (Jan/Feb 2012).
Claire Le Goues and Westley Weimer.
Specification Mining With Few False Positives.
Tools and Algorithms for the Construction and
Analysis of Systems, 2009: 292-306
Claire Le Goues, K. Rustan M. Leino and Michal
Moskal. The Boogie Verification Debugger.
Software Engineering and Formal Methods, 2011:
407-41

51

PUBLICATIONS: OTHER

http://www.clairelegoues.com

Claire Le Goues

GenProg, a novel algorithm that uses genetic
programming to automatically repair legacy, off-the-
shelf programs.
Empirical evidence (and novel experimental
frameworks) substantiating the claims that GenProg:

•  is expressive, in that it can repair many different types
of bugs in different types of programs.

• produces high quality repairs.
•  is human competitive in expressive power and cost.

The ManyBugs benchmark set, and a system for
automatically generating such a benchmark set.
Analysis of the factors that influence repair success
and time, including a large-scale study of program
repair representation, operators, and search space.

CONTRIBUTIONS

http://www.clairelegoues.com 52

Claire Le Goues

GenProg: scalable, generic, expressive automatic bug
repair.

• Genetic programming search for a patch that addresses
a given bug.

• Render the search tractable by restricting the search
space intelligently.

It works!
• Fixes a variety of bugs in a variety of programs.
• Repaired 60 of 105 bugs for < $8 each, on average.

Benchmarks/results/source code/VM images available:
• http://genprog.cs.virginia.edu

CONCLUSIONS

http://www.clairelegoues.com 53

Claire Le Goues

I LOVE
QUESTIONS.

http://www.clairelegoues.com 54

Claire Le Goues

Representation:
• Which representation choice gives better results?
• Which representation features contribute most to

success?
Crossover: Which crossover operator is best?
Operators:

• Which operators contribute the most to success?
• How should they be selected?

Search space: How should the representation
weight program statements to best define the
search space?

UNDER THE HOOD

http://www.clairelegoues.com 55

Claire Le Goues

printf(b)!

{block}!

while
(b>0)!

{block}!{block}! {block}!

if(a==0)!

if(a>b)!

a = a – b

{block}!{block}!

printf(a)! return!

b = b – a

Input:

Legend:
"   High change

probability.
"   Low change

probability.
"   Not changed.

http://www.clairelegoues.com 56

Claire Le Goues

Hypothesis: statements executed only by the
failing test case(s) should be weighted more
heavily than those also executed by the
passing test cases.
What is the ratio in actual repairs?

Expected: 10 : 1
vs.

Actual: 1 : 1.85

SEARCH SPACE: SETUP

http://www.clairelegoues.com 57

Claire Le Goues

Dataset: the 105 bugs from the earlier dataset.
Rerun that experiment, varying the statement
weighting scheme:

• Default: the original experiment
• Observed: 1 : 1.85
• Uniform: 1 : 1

Metrics: time to repair, success rate.

SEARCH SPACE EXPERIMENT

http://www.clairelegoues.com 58

Claire Le Goues

0
10
20
30
40
50
60
70
80
90

100
110

Easy Medium Hard All

fit

ne
ss

 e
va

lu
at

io
ns

 to
 re

pa
ir

Search difficulty

Default
Realistic
Equal

SEARCH SPACE: REPAIR TIME
10 : 1

1 : 1.85

1 : 1

http://www.clairelegoues.com 59

Claire Le Goues

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Easy Medium Hard 0% All

G
P

Su
cc

es
s

R
at

e

Search difficulty

Default
Realistic
Equal

SEARCH SPACE: SUCCESS RATE

10 : 1

1 : 1.85

1 : 1

http://www.clairelegoues.com 60

Claire Le Goues

Atypical problems warrant study; some results
are counter-intuitive!
Representation and operator choices matter,
especially for difficult bugs:

• Repairs an additional 5 bugs: 60 out of 105.
• Reduced time to repair 17 – 43% for difficult
bug scenarios.

We have similarly studied fitness function
improvements.

DISCUSSION

http://www.clairelegoues.com 61

Claire Le Goues

To mutate an individual patch (creating a new
one), add a new random edit to it.

• (create new individuals by generating a couple
of random edits to make a new patch)

Fault localization guides the mutation process:
1.  Instrument program.
2.  Record which statements are executed on

failing vs. passing test cases.
3.  Weight statements accordingly.

MUTATION: HOW

http://www.clairelegoues.com 62

Claire Le Goues

SCALABLE: FITNESS
Fitness:

• Subsample test
cases.

• Evaluate in parallel.
Random runs:

• Multiple
simultaneous runs
on different seeds.

 http://www.clairelegoues.com 63

Claire Le Goues

Minimization step: try removing each line in the
patch, check if the result still passes all tests
Delta Debugging finds a 1-minimal subset of
the diff in O(n2) time
We use a tree-structured diff algorithm (diffX)

• Avoids problems with balanced curly braces,
etc.

Takes significantly less time than finding the
initial repair repair.

CODE BLOAT

http://www.clairelegoues.com 64

Claire Le Goues

1.  class test_class { !
2.  public function __get($n) !
3.  { return $this; %$ }!
4.  public function b()!
5.  { return; }!
6.  }!
7.  global $test3 = new test_class(); !
8.   $test3->a->b();!
!
Expected output: nothing
Buggy output: crash on line 8. !

EXAMPLE: PHP BUG #54372

http://www.clairelegoues.com 65

Claire Le Goues

$test3->a->b();
Note: memory management uses reference counting.

Problem: (in zend_std_read_property in
zend_object_handlers.c)
436. object = $test3->a ($this)!
…!
449.  zval_ptr_dtor(object)!
If object points to $this and $this is global, its
memory is completely freed, which is a problem.

EXAMPLE: PHP BUG #54372

http://www.clairelegoues.com 66

Claire Le Goues

GenProg :
% 448c448,451!
> Z_ADDROF_P(object);!
> if (PZVAL_IS_REF(object)) !
> {!
> SEPARATE_ZVAL(&object);!
> }!
 zval_ptr_dtor(&object)!

EXAMPLE: PHP BUG #54372

Human :
% 449c449,453 !
< zval_ptr_dtor(&object);!
> if (*retval != object)!
> { // expected!
> zval_ptr_dtor(&object);!
> } else {!
> Z_DELREF_P(object);!
> }

http://www.clairelegoues.com

Human: if the result of the get is not the original object (is not
self), call the original destructor. Otherwise, just delete the
one reference to the object.
GenProg: if the object is a global reference, create a copy of it
(deep increment), and then call the destructor.

67

Claire Le Goues

Apply indicative workloads to vanilla servers.
• Record results and times.

Send attack input.
• Caught by intrusion detection system.

Generate, deploy repair using attack input and
regression test cases.
Apply indicative workload to patched server.
Compare requests processed pre- and post-
repair.

• Each request must yield exactly the same
output (bit-per-bit) in the same time or less!

EXPERIMENTAL SETUP

http://www.clairelegoues.com 68

Claire Le Goues

Webservers with
buffer overflows:

• nullhttpd (simple,
multithreaded)

•  lighttpd (used by
Wikimedia, etc.)

Language interpreter
with integer overflow
vulnerability:

• php

SCENARIO
Long-running servers
with an intrusion
detection system that
generates/deploys
repairs for detected
anomalies.

• Worst-case: no humans
around to vet the
repairs!

Workloads: unfiltered
requests to the UVA
CS webserver.

Webservers: 138,226 requests,
12,743 distinct IP addresses
php: 15k loc reservation system,
12,375 requests

http://www.clairelegoues.com 69

Claire Le Goues

Program Post-patch requests lost
Fuzz Tests Failed
General Exploit

nullhttpd 0.00 % ± 0.25% 0  0 10  0
lighttpd 0.03% ± 1.53% 1410  1410 9  0
php 0.02% ± 0.02% 3  3 5  0

REPAIR QUALITY RESULTS

http://www.clairelegoues.com 70

Claire Le Goues

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

uniq

look ultrix

look svr4

units

deroff

nullhttpd

openldap

indent

lighttpd

flex

atris

php

wu-ftpd

Weighted Path Length (log)

F
it
n
e

s
s
 E

v
a

ls
 t

o
 R

e
p

a
ir
 (

lo
g

)

SEARCH SPACE

Y = 0.8x + 0.02
R2 = 0.63

http://www.clairelegoues.com 71

Claire Le Goues

Bug (colloquialism): a mistake in a program’s
source code that leads to undesired behavior
when the program is executed.

• E.g., a deviation from the functional
specification, a security vulnerability, or a
service failure of any kind

• Also referred to as a defect.
Repair: a set of changes (patch) to program
source, intended to fix a bug.

DEFINITIONS

http://www.clairelegoues.com 72

