
Specification Mining With Few
False Positives

Claire Le Goues
University of Virginia
February 20, 2009

1

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

2

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

3

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

4

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

5

Outline

• Motivation: Specifications
• Problem: Specification Mining
• Solution: Trustworthiness
• Evaluation: 3 Experiments
• Future Work and Conclusions

6

7

Why Specifications?

• Modifying code, correcting defects, and evolving
code account for as much as 90% of the total
cost of software projects.

• Specifications are useful for debugging, testing,
maintaining, refactoring, and documenting
software.

8

Our Definition

A specification is a formal
description of legal program

behavior.

9

What kind of specification?

• Many forms:
▫ English prose document describing the

entirety of a program.
▫ First-order logic (Z): pre- or post-

conditions or invariants.
▫ Low-level invariants (array bounds)…

• We would like specifications that are
simple and machine-readable.

10

Example: Locks

1 2 1

11

Mutex.lock()

Mutex.unlock()

Example: Locks

1 2 1

12

Example: Locks

1 2 1

13

Start state!

Example: Locks

1 2 1

14

Mutex.lock()

Example: Locks

15

1 2 1

Mutex.lock()

Mutex.unlock()

Example: Locks

16

1 2 1

Mutex.lock()

Mutex.unlock()

Example: Locks

17

1 2 1

Mutex.lock()

Mutex.unlock()

Success!

Our Definition of Specifications

• I focus on partial-correctness specifications
describing temporal properties
▫ Describes legal sequences of events, where an

event is a function call; similar to an API.
• Each important resource can have an associated

FSM.
• These specifications are machine readable and

can be used by static analyses to find bugs.

18

Example: Locks

19

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

Example: Locks

20

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1

2

Example: Locks

21

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

2

Example: Locks

22

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

2

Example: Locks

23

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

2

Example: Locks

24

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

2

Example: Locks

25

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

2

Example: Locks

26

1: void example () {

2: do {

3: mut.lock();

4: old = new;

5: q = q.next();

6: if (q != null) {

7: q.data = new;

8: mut.unlock();

9: new ++;

10: }

11: } while (new != old);

12: return;

13: }

1
M

utex.lock()

Our Specifications

• For the sake of these experiments, I am talking
about this type of two-state temporal
specifications.

• These specifications correspond to the regular
expression (ab)*

▫ More complicated patterns are possible.

27

28

Where do formal specifications come
from?
• Formal specifications are useful, but there

aren’t as many as we would like.
• We use specification mining to

automatically derive the specifications
from the program itself.

29

Mining 2-state Temporal Specifications

• Input: program traces – a sequence of events
that take place as the program runs.
▫ Consider pairs of events that meet certain criteria.
▫ Use statistics to figure out which ones are likely

true specifications.
• Output: ranked set of candidate specifications,

presented to a programmer for review and
validation.

30

False Positives in Specification Mining

• A real specification encodes required behavior.
Any run of the program that contains an A not
followed eventually by a B demonstrates a bug.

• Not all emitted specifications encode required
behavior.

• Evaluating output requires manual inspection of
the specification and the source code
implementing the library.

31

Problem: False Positives Are Common

Event A: Iterator.hasNext()
Event B: Iterator.next()

32

• This is very common behavior.
• This is not required behavior.
▫ Iterator.hasNext() does not have to be followed

eventually by Iterator.next() in order for the code
to be correct.

• This candidate specification is a false positive.

Previous Work
Benchmark LOC Candidate Specs False Positive Rate

Infinity 28K 10 90%

Hibernate 57K 51 82%

Axion 65K 25 68%

Hsqldb 71K 62 89%

Cayenne 86K 35 86%

Sablecc 99K 4 100%

Jboss 107K 114 90%

Mckoi-sql 118K 156 88%

Ptolemy2 362K 192 95% *
R

es
ul

ts
 a

da
pt

ed
 fr

om
 W

ei
m

er
-N

ec
ul

a
20

05

33

Previous Work
Benchmark LOC Candidate Specs False Positive Rate

Infinity 28K 10 90%

Hibernate 57K 51 82%

Axion 65K 25 68%

Hsqldb 71K 62 89%

Cayenne 86K 35 86%

Sablecc 99K 4 100%

Jboss 107K 114 90%

Mckoi-sql 118K 156 88%

Ptolemy2 362K 192 95% *
R

es
ul

ts
 a

da
pt

ed
 fr

om
 W

ei
m

er
-N

ec
ul

a
20

05

34

35

The Problem (as I see it)

• Let’s pretend we’d like to learn the rules of
English grammar.

• …but all we have is a stack of high school English
papers.

• Previous miners ignore the differences between
A papers and F papers.

• Previous miners treat all traces as though they
were all equally indicative of correct program
behavior.

36

Solution: Code Trustworthiness

• Trustworthy code is unlikely to exhibit API
policy violations.

• Candidate specifications derived from
trustworthy code are more likely to be true
specifications.

37

What is trustworthy code?

Informally…
• Code that hasn’t been changed recently
• Code that was written by trustworthy developers
• Code that hasn’t been cut and pasted all over the

place
• Code that is readable
• Code that is well-tested
• And so on.

38

Can you firm that up a bit?

• Multiple surface-level, textual, and semantic
features can reveal the trustworthiness of code
▫ Churn, author rank, copy-paste development,

readability, frequency, feasibility, density, and
others.

• open() – close() is a specification if it is often
followed on trustworthy traces and often
violated on untrustworthy ones.

39

Trustworthy Traces

• Statically estimate the trustworthiness of each
code fragment.

• Lift that judgment to program traces by
considering the code visited along the trace.

• Weight the contribution of each trace by its
trustworthiness when counting event
frequencies while mining.

40

Incorporating Trustworthiness

• We use linear regression on a set of previously
published specifications to learn good weights
for the different trustworthiness factors.

• Different weights yield different miners.

41

42

Experimental Goals

• Show that we can use trustworthiness metrics to
build a miner that finds useful specifications
with few false positives.

• Determine which trustworthiness metrics are
the most useful in finding specifications.

• Prove that our ideas about trustworthiness
generalize.

43

Experimental Goals

• Show that we can use trustworthiness
metrics to build a miner that finds useful
specifications with few false positives.

• Determine which trustworthiness metrics are
the most useful in finding specifications.

• Prove that our ideas about trustworthiness
generalize.

44

Experimental Setup: Some Definitions

• False positive: an event pair that appears in
the candidate list, but a program trace may
contain only event A and still be correct.

• Our normal miner balances true positives and
false positives (maximizes F-measure)

• Our precise miner avoids false positives
(maximizes precision)

45

Experiment 1: A New Miner
Normal Miner Precise Miner WN

Program F
al

se

V
io

la
ti

on
s

F
al

se

V
io

la
ti

on
s

F
al

se

V
io

la
ti

on
s

Hibernate 53% 279 17% 153 82% 93

Axion 42% 71 0% 52 68% 45

Hsqldb 25% 36 0% 5 89% 35

jboss 84% 255 0% 12 90% 94

Cayenne 58% 45 0% 23 86% 18

Mckoi-sql 59% 20 0% 7 88% 69

ptolemy 14% 44 0% 13 95% 72

Total 69% 740 5% 265 89% 426

On this dataset:
•  Our normal
miner produces
107 false positive
specifications.
•  Our precise
miner produces 1
•  The previous
work produces
567.

46

More Thoughts On Experiment 1

• Our normal miner improves on the false positive
rate of previous miners by 20%

• Our precise miner offers an order-of-magnitude
improvement on the false positive rate of
previous work.

• We find specifications that are more useful in
terms of bug finding: we find 15 bugs per mined
specification, where previous work only found 7.

• In other words: we find useful
specifications with fewer false positives.

47

Experimental Goals

• Show that we can use trustworthiness metrics to
build a miner that finds useful specifications
with few false positives.

• Determine which trustworthiness metrics
are the most useful in finding
specifications.

• Prove that our ideas about trustworthiness
generalize.

48

Experiment 2: Metric Importance

•  Results of an analysis of
variance (ANOVA).
•  Shows the importance of
the trustworthiness
metrics.
•  F is the predictive power
(1.0 means no power).
•  p is the probability that it
had no effect (smaller is
better).

Metric F p

Frequency 32.3 0.0000

Copy-Paste 12.4 0.0004

Code Churn 10.2 0.0014

Density 10.4 0.0013

Readability 9.4 0.0021

Feasibility 4.1 0.0423

Author Rank 1.0 0.3284

Exceptional 10.8 0.0000

Dataflow 4.3 0.0000

Same Package 4.0 0.0001

One Error 2.2 0.0288

49

More Thoughts on Experiment 2

•  Statically predicted path
frequency has the strongest
predictive power.

Metric F p

Frequency 32.3 0.0000

Copy-Paste 12.4 0.0004

Code Churn 10.2 0.0014

Density 10.4 0.0013

Readability 9.4 0.0021

Feasibility 4.1 0.0423

Author Rank 1.0 0.3284

Exceptional 10.8 0.0000

Dataflow 4.3 0.0000

Same Package 4.0 0.0001

One Error 2.2 0.0288

50

More Thoughts on Experiment 2

•  Statically predicted path
frequency has the strongest
predictive power.
•  Author rank has no effect
on the model.

Metric F p

Frequency 32.3 0.0000

Copy-Paste 12.4 0.0004

Code Churn 10.2 0.0014

Density 10.4 0.0013

Readability 9.4 0.0021

Feasibility 4.1 0.0423

Author Rank 1.0 0.3284

Exceptional 10.8 0.0000

Dataflow 4.3 0.0000

Same Package 4.0 0.0001

One Error 2.2 0.0288

51

More Thoughts on Experiment 2
Metric F p

Frequency 32.3 0.0000

Copy-Paste 12.4 0.0004

Code Churn 10.2 0.0014

Density 10.4 0.0013

Readability 9.4 0.0021

Feasibility 4.1 0.0423

Author Rank 1.0 0.3284

Exceptional 10.8 0.0000

Dataflow 4.3 0.0000

Same Package 4.0 0.0001

One Error 2.2 0.0288

•  Statically predicted path
frequency has the strongest
predictive power.
•  Author rank has no effect
on the model.
•  Previous work falls
somewhere in the middle.

52

Experimental Goals

• Show that we can use trustworthiness metrics to
build a miner that finds useful specifications
with few false positives.

• Determine which trustworthiness metrics are
the most useful in finding specifications.

• Prove that our ideas about
trustworthiness generalize.

53

Experiment 3: Does it generalize?

• We have shown that trust allows us to build a
new miner, but does trustworthiness generalize?

• Previous work claimed that more input is
necessarily better for specification mining.

• I hypothesized that smaller, more trustworthy
input sets would yield more accurate output
from previously implemented tools.

54

Experiment 3: Generalizing

55

Experiment 3: Generalizing

56

Experiment 3: Generalizing

57

Experiment 3: Generalizing

58

•  The top 25% “most
trustworthy” traces make for a
much more accurate miner;
the opposite effect is true for
the 25% “least trustworthy”
traces.
•  We can throw out the least
trustworthy 40-50% of traces
and still find the exact same
specifications with a slightly
lower false positive rate.
•  More traces != better, so
long as the traces are
trustworthy.

Experimental Summary
• We can use trustworthiness metrics to Build a Better

Miner: our normal miner improves on previous
work by 20%, our precise miner by an order of
magnitude, while still finding useful specifications.

• Statistical techniques show that our notion of
trustworthiness contributes significantly to our
success.

• We can increase the precision and accuracy of
previous techniques by using a trustworthy subset of
the input.

59

60

Conclusions

• Formal specifications are very useful.
• The previous work in specification mining yields

too many false positives for industrial practice.
• Incorporating code trustworthiness into

specification mining provides a much lower rate
of false positives while still producing useful
specifications.

61

Future Work

• Extend trustworthy specification mining to
larger patterns.

• Bring trustworthiness metrics into other
applications.

• Compare trustworthiness metrics against
commonly used notions of code quality.

62

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

63

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

64

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

65

Slide 0.5: Thesis

We can use measurements of the
“trustworthiness” of source code
to mine specifications with few

false positives.

66

The End
(questions?)

67

