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Outline 

• Motivation: Specifications 
• Problem: Specification Mining 
• Solution: Trustworthiness 
• Evaluation: 3 Experiments 
• Future Work and Conclusions 
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Why Specifications? 

• Modifying code, correcting defects, and evolving 
code account for as much as 90% of the total 
cost of software projects. 

• Specifications are useful for debugging, testing, 
maintaining, refactoring, and documenting 
software. 

8 



Our Definition 

A specification is a formal 
description of legal program 

behavior. 
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What kind of specification? 

• Many forms: 
▫ English prose document describing the 

entirety of a program.    
▫ First-order logic (Z): pre- or post- 

conditions or invariants. 
▫ Low-level invariants (array bounds)… 

• We would like specifications that are 
simple and machine-readable. 
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Example: Locks 

1 2 1 
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Our Definition of Specifications 

• I focus on partial-correctness specifications 
describing temporal properties  
▫ Describes legal sequences of events, where an 

event is a function call; similar to an API. 
• Each important resource can have an associated 

FSM. 
• These specifications are machine readable and 

can be used by static analyses to find bugs. 
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Example: Locks 
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1: void example () {

2:   do {

3:       mut.lock();

4:       old = new;  

5:       q = q.next();

6:       if (q != null) { 

7:         q.data = new; 

8:         mut.unlock();

9:         new ++;

10:      }

11:     } while (new != old);

12:  return;

13: } 
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Our Specifications 

• For the sake of these experiments, I am talking 
about this type of two-state temporal 
specifications.  

• These specifications correspond to the regular 
expression (ab)*

▫ More complicated patterns are possible. 
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Where do formal specifications come 
from? 
• Formal specifications are useful, but there 

aren’t as many as we would like. 
• We use specification mining to 

automatically derive the specifications 
from the program itself. 
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Mining 2-state Temporal Specifications 

• Input: program traces – a sequence of events 
that take place as the program runs. 
▫ Consider pairs of events that meet certain criteria. 
▫ Use statistics to figure out which ones are likely 

true specifications. 
• Output: ranked set of candidate specifications, 

presented to a programmer for review and 
validation. 
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False Positives in Specification Mining 

• A real specification encodes required behavior. 
Any run of the program that contains an A not 
followed eventually by a B demonstrates a bug. 

• Not all emitted specifications encode required 
behavior.  

• Evaluating output requires manual inspection of 
the specification and the source code 
implementing the library. 
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Problem: False Positives Are Common 

Event A: Iterator.hasNext() 
Event B: Iterator.next() 

32 

• This is very common behavior. 
• This is not required behavior. 
▫ Iterator.hasNext() does not have to be followed 

eventually by Iterator.next() in order for the code 
to be correct.   

• This candidate specification is a false positive. 



Previous Work 
Benchmark LOC Candidate Specs False Positive Rate 

Infinity 28K 10 90% 

Hibernate 57K 51 82% 

Axion 65K 25 68% 

Hsqldb 71K 62 89% 

Cayenne 86K 35 86% 

Sablecc 99K 4 100% 

Jboss 107K 114 90% 

Mckoi-sql 118K 156 88% 

Ptolemy2 362K 192 95% * 
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The Problem (as I see it) 

• Let’s pretend we’d like to learn the rules of 
English grammar. 

• …but all we have is a stack of high school English 
papers. 

• Previous miners ignore the differences between 
A papers and F papers. 

• Previous miners treat all traces as though they 
were all equally indicative of correct program 
behavior. 
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Solution: Code Trustworthiness 

• Trustworthy code is unlikely to exhibit API 
policy violations. 

• Candidate specifications derived from 
trustworthy code are more likely to be true 
specifications. 
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What is trustworthy code? 

Informally… 
• Code that hasn’t been changed recently 
• Code that was written by trustworthy developers 
• Code that hasn’t been cut and pasted all over the 

place 
• Code that is readable 
• Code that is well-tested 
• And so on. 
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Can you firm that up a bit? 

• Multiple surface-level, textual, and semantic 
features can reveal the trustworthiness of code 
▫ Churn, author rank, copy-paste development, 

readability, frequency, feasibility, density, and 
others. 

• open() – close() is a specification if it is often 
followed on trustworthy traces and often 
violated on untrustworthy ones. 
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Trustworthy Traces 

• Statically estimate the trustworthiness of each 
code fragment. 

• Lift that judgment to program traces by 
considering the code visited along the trace. 

• Weight the contribution of each trace by its 
trustworthiness when counting event 
frequencies while mining.  
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Incorporating Trustworthiness 

• We use linear regression on a set of previously 
published specifications to learn good weights 
for the different trustworthiness factors. 

• Different weights yield different miners.   
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Experimental Goals 

• Show that we can use trustworthiness metrics to  
build a miner that finds useful specifications 
with few false positives. 

• Determine which trustworthiness metrics are 
the most useful in finding specifications. 

• Prove that our ideas about trustworthiness 
generalize. 
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Experimental Setup: Some Definitions 

• False positive: an event pair that appears in 
the candidate list, but a program trace may 
contain only event A and still be correct. 

• Our normal miner balances true positives and 
false positives (maximizes F-measure) 

• Our precise miner avoids false positives 
(maximizes precision) 
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Experiment 1: A New Miner 
Normal Miner Precise Miner WN 
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Hibernate 53% 279 17% 153 82% 93 

Axion 42% 71 0% 52 68% 45 

Hsqldb 25% 36 0% 5 89% 35 

jboss 84% 255 0% 12 90% 94 

Cayenne 58% 45 0% 23 86% 18 

Mckoi-sql 59% 20 0% 7 88% 69 

ptolemy 14% 44 0% 13 95% 72 

Total 69% 740 5% 265 89% 426 

On this dataset: 
•  Our normal 
miner produces 
107 false positive 
specifications. 
•  Our precise 
miner produces 1 
•  The previous 
work produces 
567. 
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More Thoughts On Experiment 1 

• Our normal miner improves on the false positive 
rate of previous miners by 20%  

• Our precise miner offers an order-of-magnitude 
improvement on the false positive rate of 
previous work. 

• We find specifications that are more useful in 
terms of bug finding: we find 15 bugs per mined 
specification, where previous work only found 7. 

• In other words: we find useful 
specifications with fewer false positives. 
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Experiment 2: Metric Importance 

•  Results of an analysis of 
variance (ANOVA). 
•  Shows the importance of 
the trustworthiness 
metrics. 
•  F is the predictive power 
(1.0 means no power). 
•  p is the probability that it 
had no effect (smaller is 
better). 

Metric F p 

Frequency 32.3 0.0000 

Copy-Paste 12.4 0.0004 

Code Churn 10.2 0.0014 

Density 10.4 0.0013 

Readability 9.4 0.0021 

Feasibility 4.1 0.0423 

Author Rank 1.0 0.3284 

Exceptional 10.8 0.0000 

Dataflow 4.3 0.0000 

Same Package 4.0 0.0001 

One Error 2.2 0.0288 
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•  Statically predicted path 
frequency has the strongest 
predictive power. 
•  Author rank has no effect 
on the model. 
•  Previous work falls 
somewhere in the middle.  
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Experimental Goals 

• Show that we can use trustworthiness metrics to  
build a miner that finds useful specifications 
with few false positives. 

• Determine which trustworthiness metrics are 
the most useful in finding specifications. 

• Prove that our ideas about 
trustworthiness generalize. 
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Experiment 3: Does it generalize? 

• We have shown that trust allows us to build a 
new miner, but does trustworthiness generalize? 

• Previous work claimed that more input is 
necessarily better for specification mining. 

• I hypothesized that smaller, more trustworthy 
input sets would yield more accurate output 
from previously implemented tools. 
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Experiment 3: Generalizing 
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Experiment 3: Generalizing 
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•  The top 25% “most 
trustworthy” traces make for a 
much more accurate miner; 
the opposite effect is true for 
the 25% “least trustworthy” 
traces. 
•  We can throw out the least 
trustworthy 40-50% of traces 
and still find the exact same 
specifications with a slightly 
lower false positive rate. 
•  More traces != better, so 
long as the traces are 
trustworthy.  



Experimental Summary 
• We can use trustworthiness metrics to Build a Better 

Miner: our normal miner improves on previous 
work by 20%, our precise miner by an order of 
magnitude, while still finding useful specifications. 

• Statistical techniques show that our notion of 
trustworthiness contributes significantly to our 
success.  

• We can increase the precision and accuracy of 
previous techniques by using a trustworthy subset of 
the input.  
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Conclusions 

• Formal specifications are very useful. 
• The previous work in specification mining yields 

too many false positives for industrial practice. 
• Incorporating code trustworthiness into 

specification mining provides a much lower rate 
of false positives while still producing useful 
specifications.   
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Future Work 

• Extend trustworthy specification mining to 
larger patterns. 

• Bring trustworthiness metrics into other 
applications.  

• Compare trustworthiness metrics against 
commonly used notions of code quality.  
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The End 
(questions?) 
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