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Figure 1: Comparison of BRDFs modeling the tungsten carbide material from the MERL BRDF database. Each scene consists of a sphere
rendered under the grace cathedral lighting environment. Center: Ground truth render produced from measured, tabulated data. Left: Cook
Torrance fit to MERL data using parameters learned by [Ngan et al. 2005]. Right: An analytical BRDF produced using our search technique.

Abstract

We present a framework for automatically synthesizing new an-
alytical BRDFs to model classes of measured materials using a
heuristic-based search commonly called Genetic Programming.
Our approach can be seen as an extension of traditional approaches
to reflectance modeling that rely either on a phenomenological pro-
cess or a physically-based model. In both cases, our technique aug-
ments the human effort involved in deriving suitable mathematical
approximations of complex reflectance functions with a large-scale
search. We present results that show our technique is able to find
novel mathematical expressions that are adjustable, compact, and
more accurate than previously available alternatives for represent-
ing common classes of materials like metals and dielectrics. We
also describe a new fast approximation of a common perceptual
BRDF error metric used to make this search tractable.
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1 Introduction

Accurately modeling material appearance plays a critical role in
photo-realistic rendering. Despite our understanding of the physics
of light propagation, real-world materials include many complex
and subtle properties that defy simple mathematical approxima-
tions. For this reason, deriving a BRDF that is both accurate
enough to meet the demands of modern rendering systems yet gen-
eral enough to express a range of interesting materials remains a
difficult task.

This paper focuses on homogeneous opaque surfaces whose ap-
pearance is characterized by the Bidirectional Reflectance Distri-
bution Function (BRDF) [Nicodemus 1965]. Traditionally, BRDFs
have been derived either according to some phenomenological pro-
cess [Phong 1975] hypothesized model of surface micro-geometry
and the physics of light propagation [Cook and Torrance 1982b; He
et al. 1991]. A more recent trend has been to measure the BRDFs
of physical samples and use those measurements either directly, in
so called data-driven models [Matusik et al. 2003], or as input to an
optimization process that determines the best fitting parameters of
an analytical model [Ngan et al. 2005].

Analytical BRDFs are desirable for their compactness and the fact
that they often include adjustable parameters that can be used by a
designer to author a wide range of materials [Dorsey et al. 2008].
Their main drawback is that they are typically less accurate than
data-driven models and often fail to capture subtle aspects of ma-
terial appearance [Ngan et al. 2005]. Figure 1 illustrates the gap
that remains between state-of-the-art analytic BRDFs and measured
data in the case of tungsten carbide. This example is representative
of the performance of leading analytical BRDFs in fitting measured
samples [Ngan et al. 2005]. Indeed, something in the measured data
is lost, but it’s difficult to say exactly what that is and, more impor-
tantly, exactly how to modify the analytical function to achieve a
better match.

The goal of this paper is to develop new analytic BRDFs that are
more accurate than current alternatives without losing their advan-
tages (compactness and comprising a handful of adjustable param-
eters suitable for exploration and intuitive material design). Our
approach is to perform a large-scale heuristic-based random search,
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often called Genetic Programming (GP), that considers hundreds of
thousands of symbolic transformations of a few “seed” analytical
models with the goal of achieving a more accurate fit to measured
data. The result of this search is a series of analytical expressions
that trade accuracy for complexity, from which a final model is cho-
sen and further improved by culling unimportant sub-expressions.

This seemingly inefficient “blind” approach to a staggeringly diffi-
cult optimization problem like learning new analytical BRDFs has
only recently become more feasible due to the increasing availabil-
ity of inexpensive large-scale computing resources. In other words,
just like monkeys and typewriters, directed stochastic search even-
tually works if you are able to consider enough variants!

We use this framework to synthesize new analytical BRDF mod-
els for metals and dielectrics, respectively, relying on the MERL-
MIT BRDF database [Matusik et al. 2003] to guide the search. We
present results that show these new analytical BRDFs are more ac-
curate than current alternatives and that their mathematical structure
offers some interesting insights into real-world reflectance func-
tions. Additionally, we introduce a new fast approximation of a
perceptual BRDF error metric [Pereira and Rusinkiewicz 2012] that
is necessary to make this search tractable. Finally, we examine the
parameters in these new models and demonstrate that they support
intuitive material design and conclude with several ideas of how
this basic approach to BRDF modeling could be applied to related
problems in the field.

2 Related Work

Analytic BRDF Models The large number of analytic BRDF
models can be roughly divided into two groups: phenomenologi-
cal and physically-based. A phenomenological approach aims to
reproduce the qualitative aspects of material appearance through
mathematical expressions that have no direct connection to the op-
tical properties of the underlying material. This approach led to
the seminal Phong BRDF [Phong 1975]. The current paper may be
thought of as an automated large-scale phenomenological approach
to BRDF modeling. Our GP search is essentially identifying math-
ematical expressions chosen at random that match measured data
better than alternative expressions without consideration of the ma-
terial’s underlying physical structure.

Physically-based analytical BRDF models result from applying
some model of light propagation (e.g. geometric, wave-based, etc.)
to a hypothesized surface micro-geometry. The Torrance-Sparrow
BRDF [Torrance and Sparrow 1992] and its many derivatives [Cook
and Torrance 1982a; Ashikhmin and Shirley 2000] are perhaps the
most widely used physically-based models. They posit that surfaces
are composed of randomly oriented Fresnel mirrors (microfacets)
whose aggregate orientations follow some analytical probability
distribution function (e.g., the Beckmann distribution [Beckmann
and Spizzichino 1963]). Other physically-based models either rely
on more general models of light propagation, assume different op-
tical characteristics of the individual microfacets [Oren and Nayar
1994], or consider different categories of microgeometries like ori-
ented grooves for brushed metal [Ashikhmin and Shirley 2000] or
fibers [Marschner et al. 2003; Marschner et al. 2005].

The principal advantages of analytical BRDF models are two-fold.
They are compact and often contain only a handful of adjustable pa-
rameters that enable intuitive material design [Dorsey et al. 2008].
Their main drawback is that they often fail to achieve the fidelity re-
quired for modern rendering systems [Ngan et al. 2005]. Our goal
is to develop new analytical models that retain these benefits while
providing better matches to measured data.

Data-Driven BRDF Models A recent trend in material model-
ing is to measure the BRDFs of physical samples [Ward 1992;
Marschner et al. 1999; Matusik et al. 2003; Ngan et al. 2005].
Using measured data directly for rendering produces realistic im-
ages, but tabulated data cannot be easily edited and carries a high
storage cost. Therefore, it’s more common to fit the parameters
of an existing analytic BRDF to measurements [Ngan et al. 2005]
or use any number of dimensionality-reduction algorithms to pro-
duce more compact and useful representations [Matusik et al. 2003;
Lawrence et al. 2004; Peers et al. 2006]. However, these representa-
tions still present significant difficulties for material design [Dorsey
et al. 2008] and are less compact than analytical models.

We use the MIT-MERL database of isotropic BRDFs to guide our
GP search [Matusik et al. 2003]. This database includes 20 metal
surfaces (e.g., copper, steel, metallic paints etc.) and 20 common
dielectrics like plastics, ceramics, and coated surfaces. We derive a
new analytic BRDF for each of these classes that outperform avail-
able analytic models [Ngan et al. 2005].

GP Shader Simplification and Code Repair A source of inspi-
ration for this work is the recent work of Sitthi-Amorn et al. [2011],
which applied Genetic Programming to the problem of automatic
procedural shader simplification. Their results indicate the ability
of GP-based searches to identify complex transformations of a sym-
bolic expression that effectively trade speed for accuracy. As in that
work, we use a similar internal representation of analytical BRDFs
and apply a similar set of expression transformations to enumerate
candidate variants during the search.

Finally, recent work in the programming languages and compilers
field has also demonstrated the promise of using Genetic Program-
ming for identifying useful high-level code transformations. The
pioneering work of Le Goues et al. [2012] uses a GP search to au-
tomatically identify and fix bugs in source code. Similar to our
technique, their approach represents new candidate programs as an
ordered list of edits with respect to some initial expression.

3 GP for Synthesizing New Analytical BRDFs

Our approach to synthesizing new analytical BRDFs is illustrated
in Figure 2. Starting from an input analytical BRDF (or multi-
ple BRDFs) we apply a series of expression transformations, or
mutations, chosen at random to produce multiple BRDF variants.
For example, a transformation may swap two sub-expressions in a
BRDF or remove one of them altogether. Another transformation
may swap sub-expressions across two different BRDF variants.

The next step is to sort the resulting variants based on their ac-
curacy. This is accomplished by measuring the residual error af-
ter performing a standard non-linear optimization that determines
the best fitting parameters of each variant with respect to a train-
ing set of several measured BRDFs. We use a fast approxima-
tion technique for a perceptual BRDF error metric [Pereira and
Rusinkiewicz 2012] as the objective function in this non-linear op-
timization.

Lastly, we select a subset of these variants chosen according to the
competing objectives of exploring a large portion of this challeng-
ing search terrain while exploiting favorable variants. We repeat
these three steps, mutation–evaluation–selection, over several gen-
erations, until the error has converged, and output those BRDFs
found to have the lowest residual error across all of the generations.
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Figure 3: Selected BRDFs from the example search in Section 3.1. Each BRDF is visualized on a sphere lit by a natural lighting environment.
Below is the BRDF expression and the genome that produces the expression.
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Figure 2: Architecture diagram for our search.

3.1 Example

Figure 3 provides a didactic example of our search. In this case,
we attempt to synthesize the Blinn-Phong BRDF [Blinn 1977] from
the original Phong BRDF [Phong 1975]. Recall that the Blinn-
Phong BRDF uses the cosine of the half-angle, (H ·N), to express
the shape of the specular lobe whereas the original formulation uses
the cosine of the angle between the view direction and perfect mir-
ror reflection, (R · V ).

We list the best performing variant in each generation below a ren-
dered image that shows it on a sphere in the Grace lighting envi-
ronment [Debevec 1998]. Below each analytical expression is an
ordered list of the edits that were applied to the input BRDF to pro-
duce this variant. Above each rendered sphere image is the value of
the parameter n found to produce the best match to the target BRDF.

(The optimal value of n is determined using the Nelder-Mead sim-
plex non-linear optimization algorithm [Nelder and Mead 1965].)
We also list the value of the objective function that guides our GP
search. Note that the error is not guaranteed to monotonically
decrease from one generation to the next (this property of genetic
programming favors exploration over exploitation).

Each generation of variants is produced by making a single edit to
the variants in the previous generation. In the example shown, the
best performing variant in the first generation contains the parame-
ter n as a multiplicative factor in front of the expression. Note that
this provides a better fit to the target BRDF (residual error of 4.83
versus 5.12). Recall that edits may bring in material from any of the
other input analytic BRDFs, as in generation 2 when V is replaced
by H .

Some variants in the nth generation with lower error are selected
to form the n + 1th generation. This process repeats until a preset
generation limit is reached. Notice how the generation 2 BRDF in
Figure 3 includes the best edit from generation 1 as well a new edit
that replaces the V vector with H . Note that this change does not
lower the error of the BRDF: unlike strict hill-climbing approaches,
genetic programming sometimes retains locally suboptimal individ-
uals to allow for a greater exploration of the search space and the
hope of eventually reaching a more global optimum. Thus, the ul-
timate sequence of edits, which reduces error, may include subse-
quences that increase error when considered alone.

The selected BRDFs from generations 2, 5, and 6 demonstrate why
such higher error edits can be acceptable. The BRDF in generation
6 achieved low error by changing the both R and V vectors in the
original BRDF to N and H . However, generations 2 and 5 show
that changing only one of these vectors can increase error. By al-
lowing a diverse population of variants, the search can ultimately
discover better solutions by combining edits that are less desirable
locally.

By generation 10 in Figure 3 we have learned an expression that
perfectly fits the target measured BRDF. Note, however, that the
expression learned is semantically but not syntactically identical to
Blinn-Phong. The BRDF in generation 10 achieved zero error with
n = 82, while our data were generation using n′ = 80. However,
since the BRDF learned is mathematically identical when n′ = n+
2, the generation 10 BRDF perfectly matches the data. This shows
that our search can not only come up with accurate solutions, but
may do so in novel or unexpected ways.



Having demonstrated that a GP search has the potential to discover
compact, low-error analytic BRDFs, we next formalize the details
(e.g., mutation, selection, etc.) of our algorithm.

3.2 Algorithm Description

Our algorithm is an iterative, population-based, heuristically-
guided search through the space of possible edits to an input BRDF.
The goal is to find a sequence of edits that, when applied to the in-
put BRDF, produce a new BRDF that minimizes the observed error
with respect to measured reference data. The edits are performed at
the abstract syntax tree level and can involve terms from the current
individual or from other input BRDFs provided.

Our approach is population-based, in that it maintains a set of di-
verse variants. In particular, we use an island model genetic algo-
rithm [Grosso 1985], a particular type of parallel genetic algorithm
that maintains partitions the population into sub-populations that in-
teract only rarely. The biological analogy is an archipeligo of small
islands with creatures that normally evolve in isolation. Occasion-
ally (e.g., low tides, strong winds, etc.), however, some individual
from one island may migrate to another. This sub-population struc-
ture has the effect of favoring exploration over exploitation, as each
island can diverge more freely without being corralled by the ho-
mogenizing effect of selection pressure within one population.

Step 1: Inputs

To begin, our algorithm takes as input (1) an initial target analyt-
ical BRDF expression; (2) an optional set of additional analyti-
cal BRDF expressions to serve as additional source material; and
(3) a set of target measured materials. Measured materials con-
sist of a discrete lookup table that maps incoming (L) and out-
going (V ) light vectors to the BRDF response at those vectors
(L, V ) → brdf(L, V ). Our algorithm is parametric with respect
to a few implementation details (e.g., the size of the population or
the number of generations to iterate before terminating, etc.).

Step 2: Creating the Initial Sub-Populations of BRDFs

Each element of the initial population of BRDFs is initialized to a
genome containing a single random edit, and those elements are
randomly partitioned into equal-sized sub-populations. An analytic
BRDF expression can be reified from a genome by sequentially ap-
plying each of its edits to a copy of the original. Section Section 3.3
outlines our edit representation in detail.

Step 3: Evaluating the Variants

Next we evaluate how well each new BRDF can fit all target mea-
sured materials. We use a fast BRDF error computation detailed in
Section 3.4 and a second nonlinear search outlined in Section 3.6 to
learn parameter values that minimize fitting error a each material.

We handle multiple materials and color channels by fitting to each
color channel in each material separately. We then combine the
residual error for each fitting by taking the L2 norm. This results in
a single error value for each new BRDF in the population.

Step 4: Creating a New Population of BRDFs

We advance the search by creating a new generation of BRDFs from
the current population. We favor exploration of the space of possi-
ble BRDFs (rather than exploitation of existing structures) by en-
suring diversity in the new BRDF population. Thus, unlike strict
gradient descent, we retain some less fit but diverse individuals into
each new iteration.

For each island sub-population of size n, we select n/2 BRDFs to
act as parents. We use the established tournament selection sam-
pling technique [Miller et al. 1995] with k = 8 to select fit parents.

〈brdf 〉 ::= 〈node〉

〈node〉 ::= 〈op〉 | 〈scalar〉

〈op〉 ::= 〈unaryOp〉 ( 〈node〉 )
| 〈binOp〉 ( 〈node〉 , 〈node〉 )
| 〈vecOp〉 ( 〈vector〉 〈vector〉 )

〈unaryOp〉 ::= - | sin | cos | tan | exp | asin | acos | atan | sqrt

〈binOp〉 ::= + | - | * | / | max | min | pow

〈vecOp〉 ::= dot

〈vector〉 ::= wi | wo | wh | wr | wn

〈scalar〉 ::= 〈parameter〉
| 〈const〉
| 〈component〉

〈parameter〉 ::= p0 | p1 | p2 | p3

〈component〉 ::= wi.z | wo.z | wh.z | wr.z

〈const〉 ::= 1.0 | 2.0 | π | 4.0

Figure 4: Grammar describing all BRDFs expressed in our search

Those parents are then randomly paired and create n/2 offspring, in
the form of new BRDFs, using one-point crossover operator [Hol-
land 1992] to produce two offspring. Crossover is a computational
analog of biological operations that form offspring by combining
material from parents. Intuitively, parent genomes (edit sequences)
〈A1, A2〉 and 〈B1, B2〉 produce offspring 〈A1, B2〉 and 〈B1, A2〉.
Both the offspring and the parents then append a new random edit
to their genome and are added to the new population. This last mu-
tation step increases diversity and allows possible improvements to
enter the population.

Each island sub-population is handled separately: two parents will
always be chosen from the same island (thus favoring exploration).

Step 5: Iteration

Population creation and evaluation repeat for the given number of
generations, after which the fittest BRDF found is returned.

Every kth generation, the topm variants from each island xmigrate
in a ring to island x + 1. Previous work in the genetic algorithm
community has demonstrated that this simple migration topology
performs well on a wide variety of problems [Andalon-Garcia and
Chavoya-Pena 2012].

When the desired number of iterations have been performed, the al-
gorithm terminates and reports a Pareto frontier of all variants dis-
covered that represent non-dominated trade-offs between observed
error and analytic BRDF size.

3.3 Representing Edits to Analytic BRDFs

We represent new analytical BRDFs using a series of edits to the
abstract syntax tree (AST) [Aho et al. 1986] of an existing BRDF.
The full grammar of expressible BRDFs is shown in Figure 4. This
section outlines the types of edits that can be applied.

Swap(〈node〉1, 〈node〉2) – Given two nodes in the tree, replace
node1 with node2 and node2 with node1. To avoid creating cy-



cles, no Swap() edits are created where either node is a subtree of
the other.

Insert(〈node〉new, 〈node〉old) – Insert 〈node〉new at the location
once occupied by 〈node〉old. Rather than synthesize a node to in-
sert, all inserted nodes are drawn from the codebank. The code-
bank is populated with subexpressions drawn from existing analyt-
ical BRDFs.

Replace(〈node〉old, 〈node〉similar) – Unlike Insert, this edit re-
places 〈node〉old with a similar node, leaving any children un-
touched. Specifically, a 〈binOp〉 is replaced by another 〈binop〉
production, a 〈unaryOp〉 with another 〈unaryOp〉 production,
and a 〈scalar〉 is replaced with a different 〈scalar〉 production.
For example, this edit could replace sin with cos, + with ∗, or 2.0
with p0.

Delete(〈node〉) – This operation replaces 〈node〉 with the con-
stant 1.0.

3.4 BRDF Similarity Metric

This section outlines the BRDF similarity metric used by our
search. The next section outlines how this new metric admits a large
precomputation step, allowing for rapid evaluation of new BRDFs.
Note that for an analytical BRDF, this metric assumes values have
been chosen for each parameter. In Section 3.6 we detail how we
choose these parameter values using this similarity metric.

Our new metric is approximates an image-based metric used by
Pereira and Rusinkiweicz [Pereira and Rusinkiewicz 2012], where
a BRDF is applied to a rendered sphere lit by an artificial light-
ing environment. While these renders are expensive, Pereira and
Rusinkiweicz offer a fast analytical expression for their metric that
admits a precomputation step. However, this fast precomputation
requires all BRDFs be expressed as θh curves. Since we do not ob-
serve such a constraint, we have instead created an approximation
to their metric that also admits a large precomputation step. This
approximation enables our search explore hundreds of thousands
of possible BRDFs within our computational budget.

In the non-analytic form of the Pereira and Rusinkweicz metric,
each element in the L2 norm corresponds to a pixel. When pro-
ducing this value using Monte Carlo integration with importance
sampling, each pixel is computed using a finite sum of light contri-
butions. The contribution of this sample to the final pixel (Lo) can
be expressed using the incident light, LI(wi)cos(wi), the BRDF
of the material (f(wi, wo)), and the probability of choosing that
sample p(wi) as shown in equation (1).

Lo(fr, wi, wo) =
fr(wi, wo)L(wi)cosθi

p(wi)
(1)

Equation (2) shows the non-analytic form of the Pereira nd
Rusinkweicz metric whem comparing two BRDFs (f1 and f2).
Since each pixel corresponds to a single value of ωo, the metric can
be expressed as a sum of squared pixel value differences , where
each pixel is a sum of contributions for all ωi.

S(f1, f2) =

√√√√√∑
ωo

∑
ωi

Lo(f1, wi, wo) −
∑
ωi

Lo(f2, wi, wo)

2

(2)

S
′
(f1, f2) =

√∑
ωo

∑
ωi

(Lo(f1, wi, wo) − Lo(f2, wi, wo))
2 (3)

Our new metric instead takes the L2 norm of each incident light
sample contribution as shown in (3). Rather than measure similarity

by comparing aggregate reflectance at many ωo (i.e., pixels), we
compare individual reflectance events as modulated by the BRDF.
Note that if two BRDFs observe high similarity using our metric,
they should necessarily observe high similarity using image-based
L2.

3.5 Pre-computation Optimization for BRDF Similarity

In the last section, we presented our new image-based similarity
metric and how it compares indidividual light samples contributions
rather than converged pixel values. A benefit of this change is the
ability to precompute large portions of this similarity metric and
remove redundant evaluations of the BRDF.

The first step is to discretize the BRDF using half-angle coordi-
nates [Rusinkiewicz 1998]. For isotropic materials, this reduces the
BRDF dimensionality in spherical coordinate from four (θi, φi, θo,
φi) to three (θh, 0, θd, φd). Next, we discretize θh, θd, φd using
1 degree divisions along θd and φd, with a nonlinear mapping for
θh [Matusik et al. 2003]. We chose this binning resolution as pub-
lically available measured BRDF databases are tabulated using the
same format.

We perform this precomputation by performing a single high-
resolution render of the target scene with sufficient samples to en-
sure convergence of the image. For each light sample, we compute
the equation as shown in Equation (1), but replate the BRDF with 1.
Rather than compute the pixel value, this light contribution without
the BRDF is recorded in a table indexed by its half angle represen-
tation.

The result is a table that maps a small, discrete region of the BRDF
to the aggregate amount of light it would have contributed to the
final image (4). Similarity is then computed by comparing each
BRDF evaluated a (θh, 0, θd, φd) with the cached light value from
the table (T [θh, θd, φd]).

S′(f1, f2) =
∑

(θh,θd,φd)

(T [θh, θd, φd]f1 − T [θh, θd, φd]f2)2

(4)

This precomputation compresses an arbitrarily high resolution ren-
der with arbitrary many light samples to a fixed-length table. We
remove any redundant BRDF calculations and still allow fast paral-
lel execution on CPU or GPU hardware. While we are aggregating
multiple light samples that index into the same discrete region of the
BRDF, traditional image-based metrics perform a similar aggrega-
tion. The next section will show how this fast evaluation of BRDF
similarity can be used to fit parameter values to arbitrary analytical
BRDFs.

3.6 Fitting BRDFs to Measured Data

For each analytical BRDF produced by our search, we must fit a
unique set of parameter values to each target measured BRDF. The
residual errors of these fittings guide our GP search, making this a
critical step in our process.

We fit parameters using a Nelder-Meade simplex search[Nelder and
Mead 1965] to guided by our BRDF error metric. For a given mate-
rial and RGB color channel, we randomly initialize each parameter
then invoke the simplex search. Because we allow our search sig-
nificant freedom in generating expressions, after the simplex search
converges we repeat the random initialization and search multiple
times before reporting the lowest error found. Once all color chan-
nels and materials have been fit, we take the L2 norm of all color



Metals Dielectrics

Figure 5: Selected 40 metal and dielectric materials from the
MERL BRDF database.

channels and materials. The result is a single error value represent-
ing how well a BRDF fits the set of target measured BRDFs.

4 Experimental Setup

This section outlines how we will produce new BRDFs and evaluate
them for accuracy, generality, and tunability. We will produce a new
analytical BRDF for two material classes, metals and dielectrics
(e.g., plastics, acrylics, and ceramics). For each material class we
chose 20 isotropic, measured BRDFs from the 100 materials in the
MERL MIT BRDF database (Figure 5). The materials chosen for
each class were manually selected to represent a broad range of
material properties.

brdfinit = kd + ks
F

π

DG

(N · L)(N · V )
(5a)

D =
1

m2cos4δ
e−[tan(δ)/m]2 (5b)

G = min{1, 2(N ·H)(N · V )

(V ·H)
,
2(N ·H)(N · L)

(V ·H)
} (5c)

F = R0 + (1−R0)(1− (N ·H))5 (5d)

Each BRDF will be learned by modifying the Cook Torrance[Cook
and Torrance 1982a] BRDF shown in (5). We will learn each new
BRDF using 4 of the 20 materials in each material class. We chose
Cook Torrance as it models this dataset better than other existing
analytical BRDFs[Ngan et al. 2005]. We will test our new BRDF
against Cook Torrance using the remaining 16 materials in each
class. Each search will consists of 100 generations with a popula-
tion size of 4096. We split each population into 4 islands of size
1024. Each island sends its best variant to one neighboring island
every 5 generations. We allow each new BRDF to include at most
four free parameters for each color channel.

We will demonstrate accuracy by comparing each new BRDF to
Cook Torrance using three error metrics. The first metric will be the
fast precomputed error metric used by our search. The remaining
two metrics compare images of representative scenes rendered us-
ing either a measured or analytical BRDF. We will compare ground-
truth renders produced from measured BRDF data to renders using
either our new BRDF or Cook Torrance. We will compare images
using both L2 error in RGB space as well as the perceptually-based
structural similarity metric (SSIM) [Wang et al. 2004].

We evaluate the generality by comparing how well each new BRDF
fits the 16 materials not seen during the search. If our new BRDFs
are general, we should observe acceptable levels of accuracy in fit-
ting the remaining 16 materials.

Existing analytical BRDFs like Cook Torrance can also be manu-
ally adjusted to fine-tune a material’s appearance. A tunable BRDF
should produce a valid BRDF over a continuous range of values for
each parameter. Each parameter should also offer some intuitive ef-
fect on the BRDF’s appearance. We evaluate tunability by sweeping
each parameter over an empirically determined range while keeping
all other parameters fixed. We will show how valid BRDF is pro-
duced across this range, and offer a high-level description of each
parameter’s effect.

Each experiment was run on the Longhorn visualization cluster at
the Texas Advanced Computing Center. We chose to use GPU
cluster resources due to the parallel nature of our error evaluation
and population evaluation. Each node on Longhorn contains two
NVIDIA Quadro FX 5800 GPUs, 8 2.5GHz Intel Nehalem CPU
cores, and 48GB of RAM. We evaluate 8 BRDFs simultaneously
on a single node. Each experiment used approximately 1000 CPU-
hours, where CPU-hours are measured per-core.

5 New Metal BRDF

The minimized form of our new Metal BRDF is shown in equation
(6). Similar to Cook Torrance, our new BRDF contains four free
parameters: k′d, k′s, α, and β. δ represents the angle between N
and H . The expression consists of a diffuse color parameter (k′d)
and a specular term. The specular term consists of a specular color
parameter (k′s) multiplied by three subexpressions, D′, G′, and F ′.
Each of these subexpressions show several novel modifications to
the Cook Torrance microfacet distribution (D), geometry shadow-
ing (G), and fresnel (F ) terms. Note that these modifications result
in a more compact expression. Our new BRDF contains only 41
AST nodes compared to 84 for Cook Torrance.

While each subexpression roughly parallels Cook Torrance, each
models the BRDF very differently. Unlike G in Cook Torrance, G′

includes three tunable parameters. This allows the BRDF to control
transitions between the left or right term in the min expression by
adjusting the values of β and α. Such tunable selection of subex-
pressions does not exist in Cook Torrance. The D′ term is also
much simpler than the microfacet distribution term (D) in Cook
Torrance, removing the normalization and exponent square terms.
Finally, the F ′ contains two edits to Schlick’s approximation for
the Fresnel equations. Both the (1−R0) subexpression is removed
and the view vector V replaces the surface normal N .

brdfm =
k′d
π

+ k′sD
′G′F ′ (6a)

D′ = e−δ/β (6b)

G′ = min{ α
k′d

(V ·H),
4β

tan(δ)(N · V )(N · L)} (6c)

F ′ = α+ (1− (V ·H))5 (6d)

5.1 Metal BRDF Accuracy

We learned this new metal BRDF by training on the Steel, Two
Layer Gold, Green Metallic Paint, and Red Ornament materials
from the MERL database. Our fits for these materials are shown
in shown in Figure 7 with error reductions shown in Figure 6. In
Figure 7, the center image of each row is a render of our target
measured BRDF. We chose these materials as they represent a wide
range of metal appearances.

The first row of spheres in Figure 7 compares our new BRDF to
Cook Torrance in modeling the Steel BRDF. Note from the table



Metal BRDF Training Set
L2 Error 1-SSIM Error

MERL Material CT New %Impr CT New %Impr
Steel .083 .052 36.9% .125 .036 71.3%
Two Layer Gold .087 .028 67.9% .077 .032 58.5%
Green Metallic Paint .079 .040 49.4% .078 .035 55.5%
Red Ornament .096 .084 11.9% .160 .072 54.8%
Average .086 .051 41.5% .110 .044 60.0%

Metal BRDF Testing Set
L2 Error 1-SSIM Error

MERL Material CT New %Impr CT New %Impr
Tungsten Carbide .082 .025 69.3% .160 .016 90.0%
Blue Metallic Paint .054 .024 55.8% .043 .006 86.6%
Gold Metallic Paint .098 .028 70.8% .101 .015 85.1%
Silver Metallic Paint .143 .038 73.6% .117 .027 76.7%
Silver Paint .098 .032 66.9% .032 .008 75.2%
Aluminium .092 .053 42.4% .139 .037 73.3%
Nickel .075 .039 48.3% .094 .026 72.8%
Chrome .071 .036 48.8% .102 .032 68.5%
Gold-paint .086 .027 68.5% .032 .011 64.3%
Gold Ornament .118 .086 27.2% .149 .054 64.0%
Black Oxidized Steel .061 .036 41.0% .054 .029 47.1%
Hematite .093 .087 6.0% .192 .123 35.9%
Green Ornament .064 .059 8.3% .084 .060 29.3%
Blue Ornament .077 .073 5.5% .091 .066 27.0%
Brass .081 .111 -37.3% .134 .099 25.8%
Aluminum Bronze .100 .066 34.4% .107 .089 16.8%
Average .087 .051 39.3% .102 .044 58.6%

Figure 6: The 4 materials used during training for our new metal
BRDF.

that our new BRDF reduces L2 and 1−SSIM error by 36.9% and
71.3% respectively. We chose this material as it represents a com-
mon, simple, highly specular metal. Note that the measured BRDF
includes a small amount of anisotropic noise around its specular
highlights. This is due to inter-lens reflection during capture and
should not be modeled. Qualitatively, notice how reflections in the
Cook Torrance render appear darker and flatter. This is shown in the
inset L2 error plots, where Cook Torrance shows higher amounts of
error (green and red areas) around bright reflections. Our new metal
BRDF more accurately models the falloff of these reflections, re-
sulting in lower error in the inset L2 error plots (blue areas).

Two Layer Gold is a more complex BRDF, with both a highly spec-
ular and a diffuse reflection present. Materials with a thin translu-
cent film layered over a highly specular surface can exhibit this be-
havior. While our new BRDF halves the image error in both metrics
compared to Cook Torrance, the second highly specular reflection is
not modeled by either BRDF. This is somewhat expected, as multi-
layer materials are typically modeled using multiple specular lobes.
We leave fitting multiple specular lobes of our new BRDF as future
work.

The Green Metallic Paint BRDF represents a simpler diffuse mate-
rial. However, the large specular lobe of this material falls off more
gradually than the Cook Torrance BRDF. This is demonstrated by
the window reflections in the upper quarter of the rendered spheres.
In both the new and measured BRDFs, notice how the bright win-
dow reflections smoothly transition upward to light green. Cook
Torrance, however, makes this transition much more sharply and to
a darker shade of green. While our new BRDF has slightly brighter
highlights, again it reduces both error metrics by about half.

The final Red Ornament material is highly specular, but falls off
more gradually than the raw Steel BRDF. This manifests as an al-
most glowing appearance to the measured material. Note that this
glow around the windows is absent in Cook Torrance, but captured

Figure 7: Renders metal materials used during for learning our
new metal BRDF.

by our new metal BRDF.

5.2 Metal BRDF Generality

A useful analytical BRDF should be generally applicative to a wide
variety of materials. Figure 6 shows improvements over Cook Tor-
rance when fitting 16 metal materials not seen during our search.
All 16 testing materials show an improvement in 1-SSIM error
compared to Cook Torrance, with 15 materials showing an im-
provement in L2 error. We average improvements in 1-SSIM of
60% for the 4 training materials and 59% for testing materials with
similar improvements of 41% and 39% for L2 train and test. Our
best improvement of 90% was observed in our testing set. These
results offer strong evidence that the metal BRDF is generally ap-
plicable to a wide range of metal materials.

5.3 Tunability

Figure 8 shows the affect of adjusting each parameter in our new
metal BRDF. Each sphere is rendered using the grace cathedral
lighting environment. The middle sphere in each row is rendered
using the median values for each parameter found when fitting
the 20 dielectric materials from the MERL dataset ( k′d = 0.01,
k′s = 4.0, α = 0.05, and β = 0.05). Each row sweeps a single
parameter from 1

4
, 1
2

, 1, 2, and 4 times it’s median value. Figure 8
shows how each parameter produces a valid, smooth transition in
BRDF appearance.

We will now offer a qualitative description of each parameter. Both
k′d and k′s bear a strong resemblence to the diffuse intensity (kd)
and specular intensity (ks) terms in Cook Torrance. Interestingly,
notice how reducing k′d in the leftmost two images of the first row



Figure 8: A demonstration of manual parameter adjustment for
the new metal BRDF. Each row of spheres shows the change in
the BRDF appearance when manipulating a single parameter while
keeping all others fixed.

in Figure 8 causes an increase in specular intensity. This is due
to the G′ term in equation (6) including k′d. Modifying α shows
a similar effect as k′s, but serves a dual-role in helping k′d control
the left portion of G′. Finally, β plays a strong role in determining
roughness in the BRDF, but also modulates intensity. We speculate
that these nuanced relationships between parameters play a key role
in achieving a high degree of fitting flexibility and accuracy.

6 New Dielectric BRDF

Our new BRDF for modeling dielectrics is shown in (7). It also
includes four free parameters, k′d, k′s, α, and β with δ represent-
ing the angle between N and H . Like Cook Torrance and our new
Metal BRDF, at a high level this new expression consists of a dif-
fuse term and specular term modulated by a color parameters k′d
and k′s. However, compared to our new metal BRDF, this BRDF
shows significantly more novel modifications while also including
unmodified Cook Torrance terms. The diffuse term now includes
the unique subexpression Rd, and the specular contribution can be
broken into two lobes, S1 and S2. Like our metal BRDF, we ob-
serve tunable parameters inside a min. Unlike our metal BRDF,
right min subexpression is much more complex, including the un-
modified Cook Torrance F and D terms parameterized by α and
β.

brdfd = k′dRd + S1S2 (7a)

Rd = (1 + cos(δ)1−α) (7b)

S1 = min{ 1√
k′d
,

F (α,N ·H)D(β)

π(V ·H)(N · L)(N · V )
} (7c)

S2 =
e−tan(δ)/k

′
s

α2(α+ 2)β
(7d)

It is interesting to note that each novel term in this expression is es-
sential for fitting success. Empirical attempts to remove or simplify
subexpressions such as the α2(α + 2)β normalization resulted in
significantly reduced fitting performance. While a mathematician
may not choose such a normalization, our GA has found a solu-

L2 Error 1-SSIM Error
MERL Material CT New %Impr CT New %Impr

Dielectric BRDF Training Set
Maroon Plastic .074 .019 74.8% .044 .006 85.6%
PVC .074 .026 65.3% .063 .010 83.4%
Green Acrylic .074 .021 71.8% .098 .019 81.1%
Dark Blue Paint .051 .017 66.5% .036 .013 62.6%
Training Set Average .068 .021 69.6% .060 .012 78.2%

Dielectric BRDF Testing Set
Green Phenolic .055 .013 75.9% .090 .007 92.1%
Blue Phenolic .053 .014 73.4% .098 .008 91.5%
Violet Phenolic .059 .016 72.2% .058 .006 89.4%
Green Plastic .064 .025 60.7% .061 .007 88.2%
Gray Plastic .077 .025 67.7% .048 .009 80.8%
Orange Phenolic .080 .032 59.7% .046 .009 79.7%
Dark Red Paint .083 .023 71.8% .025 .006 76.7%
Pure Rubber .121 .030 74.8% .026 .007 74.4%
Orange Paint .097 .043 55.9% .023 .007 70.5%
Black Soft Plastic .075 .025 66.7% .066 .020 70.3%
Neoprene Rubber .101 .033 66.8% .026 .008 67.6%
Blue Rubber .073 .015 79.1% .026 .010 63.0%
Violet Acrylic .085 .061 27.9% .078 .031 60.6%
Yellow Matte Plastic .088 .036 58.7% .038 .018 52.0%
White Acrylic .105 .038 64.1% .046 .023 50.1%
Red Specular Plastic .071 .035 51.1% .047 .030 36.0%
Test Set Average .080 .029 64.1% .050 .013 71.4%

Figure 9: The 4 materials used during training for our new dielec-
tric BRDF.

tion that does not require additional parameters and (we will show)
reduces fitting error.

6.1 Accuracy

We learned this new BRDF on the Dark Blue Paint, Green
Acrylic, Maroon Plastic, and PVC materials from the MERL BRDF
database. Figure 10 shows renders of each of these materials us-
ing Cook Torrance, measured MERL data, and our new dielectric
BRDF. Improvements in L2 and 1− SSIM error for these fits are
shown in Figure 9. For the four training materials we reduce L2

and 1− SSIM error by 70% and 78% respectively.

The first row of spheres in Figure 10 compares our BRDF to Cook
Torrance in fitting diffuse dielectric materials. Notice the left edge
the Cook Torrance sphere includes an orange glow from fresnel re-
flectance that is absent in both our new BRDF and the measured
data. Also note how the falloff of the specular highlights in the
upper edge of the sphere are better represented in our BRDF.

The Green Acrylic and Maroon Plastic in rows 2 and 3 of Figure 10
represent two subclasses of highly specular dielectrics. In both ma-
terials, notice how the brightness of the specular window reflections
are better matched using our new BRDF. Note again how the Cook
Torrance fit misrepresents fresnel reflectance at grazing angles.

Of the 20 dielectric materials chosen from the MERL dataset, most
are either highly specular or highly diffuse. We chose the PVC
material (4th row in Figure 10) as it represents a dielectric in the
middle of these extremes.

6.2 Generality

The results for our generality analysis are shown in Figure 9. For
all 20 dielectric materials our new dielectric BRDF improves over
Cook-Torrance, with some test set materials showing error values
one tenth that of Cook Torrance. Using SSIM, we improve the ma-
terials seen during our search by 78.2%, with held out materials



Figure 10: Renders of dielectric materials used for learning our
new dielectric BRDF.

showing an average improvement of 71.4%. Similar average im-
provements of 69.6% and 64.1% were seen using L2 error. These
results offer strong support that our dielectric BRDF does not over-
fit to the materials seen during testing.

6.3 Tunablity

Our parameter sweep for the new dielectric BRDF is shown in Fig-
ure 11. Each sphere is rendered using the grace cathedral lighting
environment. The middle sphere in each row is rendered using the
median values for each parameter found when fitting the 20 dielec-
tric materials from the MERL dataset ( k′d = 0.007, k′s = 0.016,
α = 0.16, and β = 1.03). Each row sweeps a single parame-
ter from 1

4
to 4 times its median value while holding the other 3

parameters fixed. Note that a valid BRDF is produced across all
sweeps.

Since our dielectric BRDF contains many novel modifications to
Cook Torrance, the effects of adjusting each parameter show sim-
ilar novelty. k′d is most similar to Cook Torrance, modulating the
diffuse color contribution of the sphere withing affecting specular
intensity. Like Cook Torrance, the remaining parameters each ad-
just the specular lobe intensity. Increasing k′s increases specular
highlight intensity while also increasing roughness. Increasing the
remaining parameters α and β reduce specular intensity, but show
a less pronounced effect on roughness.

7 Limitations and Future Work

Our technique relies on the existance of measured BRDF data to
produce new BRDFs. While we have access to 100 materials from
the public MERL MIT BRDF database, capturing additional ma-

Figure 11: A demonstration of manual parameter adjustment for
the new metal BRDF. Each row of spheres shows the change in
the BRDF appearance when manipulating a single parameter while
keeping all others fixed.

terials can require significant equipment and time commitments.
However, we believe that current databases already contain a broad
range of materials suitable learning BRDFs to fit broad classes of
materials. Dielectrics and metals are both well-represented, which
encompass many commong materials. While we did not attempt to
fit materials such as fabrics or woods, there is nothing inherit to our
fitting process that would limit our ability to produce BRDFs for
these material classes.

Our approach also only considers isotropic, opaque materials. We
chose to only focus on these types of materials due to the wealth
of available data, but also our ability to quickly precompute an
error evaluation for isotropic materials. This simplifying assump-
tion allowed us to test our technique by evaluating more candidate
BRDFs. Expanding our technique to synthesize anisotropic BRDFs
is left as future work. As long as we can reliably fit parameters to
the candidate expression, our search can produce new BRDFs of
arbitrary dimensionality.

For future work, we observe that our grammar for constructing new
BRDFs could be expanded to include the creation of arbitrary vec-
tors. Our grammar could be trivially changed to allow the creation,
addition, subtraction, and cross product of arbitrary vectors. While
we include all vectors used by standard analytical BRDFs, allowing
our search to create new vectors may lead to additional discoveries.
For example, if we did not include the half-angle vectors in our
search, we could not produce the Blinn Phong BRDF shown in our
example.

8 Conclusion

We have shown that our technique can automatically produce new
analytical BRDFs that match measured data better than any pre-
vious analytical BRDF. We have presented two new analytical
BRDFs for metals and dielectrics that are compact, adjustable, and
generalizable to a broad set of materials. We have shown that these
BRDFs obey standard BRDF properties such as reciprocity and
non-negativity. A key insight into this success is that existing ana-
lytical BRDFs can come close to fitting many materials, but require
edits at the expression level to further improve fitness. Using GP
search we are able to leverage these partial solutions and search a
diverse population of candidate BRDFs to find a solution that best



matches our visual perception. We evaluate these candidates using
a fast BRDF similarity metric for isotropic materials that leverages
a precompution optimization to allow our search to evaluate hun-
dreds of thousands of materials.
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